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Abstract

This article is dedicated to the problem of fault detection, isolation and estimation for nonlinear
systems described by a Takagi-Sugeno (T-S) model. One of the interests of this type of models is
the possibility to extend some tools and methods from the linear system case to the nonlinear one.
The principle of the proposed strategy is to transform the problem of simultaneously minimizing the
perturbation effect and maximizing the fault effect, on the residual vector, in a simple problem of
L>-norm minimization. A linear system is used to define the ideal response of the residual signal
to the fault. Then the aim is to synthesize a residual generator that both minimizes the difference
between real and ideal responses and the influence of the disturbance. The minimization problem is
formulated by using the bounded real lemma (BRL) and linear matrix inequality (LMI) formalism.
After studying the general framework, a special case of systems with actuator and sensor faults is
considered where the fault incidence matrix is not full column rank. Simulation examples are given
to illustrate the proposed method. Finally, Polya’s theorem is used to reduce the conservatism of the
proposed result. The obtained relaxation is also illustrated by a numerical example.

Takagi-Sugeno systems, robust fault diagnosis, robust fault estiméti@pproach, LMis.

1 Introduction

Diagnosis issues are becoming very important to ensure a good supervision of systems and guarantee
the safety of human operators and equipments even if system complexity increases. That is why, in the
last decades, many theories and methods have been developed for linear systems in the fields of fault

diagnosis [32, 11, 7] and fault tolerant control [17, 20, 39]. Unfortunately, the linearity assumption of
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a system is generally a local property, i.e. a linear modetrilesss the behavior of a real system only
around a single operating point. Furthermore, when a fault occurs, the operating point of the system may
change, therefore, the considered linear model is no longer valid. In order to enlarge the operating range
of the model, it is important to take into account the nonlinearities in the modeling tasks. The obtained
models are more accurate than linear ones but are obviously also harder to deal with. Indeed, due to this
complexity, no unified results for nonlinear system fault diagnosis or fault tolerant control are available
so far. Consequently, it leads to work on specific model classes, for example, Lipschitz systems [45],
switched systems [46], LPV systems, bilinear systems, etc.

Among the several classes of nonlinear systems, Takagi-Sugeno (T-S) models have been introduced
in [38]. Roughly speaking, a T-S model is made up of a set of linear sub-models and an interpolation
mechanism based on nonlinear weighting functions. The interest of this structure is the property of
“universal approximator”. Any nonlinear behavior can be then approximated with a given accuracy with
a T-S model. A second important property of this type of models is the convex sum property of the
weighting functions which allows to extend some of tools and methods developed for linear systems.

The T-S models have been extensively studied in the last decades. Modeling and identification are
treated in [8, 31, 30]. The principal methods to obtain a T-S model are the linearization of the system
trajectory around different operating points and the use of optimization techniques to minimize the iden-
tification error. Secondly, for more complex systems, a nonlinear analytic model is often difficult to
elaborate, so the black box approach has been used in order to identify the system parameters by differ-
ent optimization methods. Finally, if an analytical model exists, the sector nonlinearity approach can be
used [42, 43]. The interest of this last method is that the obtained model exactly represents the original
nonlinear model. This model may be difficult to study due to the dependence of the weighting functions
on the system state which is often not fully measurable. Nevertheless an adequate choice of the model
rewriting can be made in order to ease its use for control or diagnosis [26, 27]. In order to reduce the
complexity of T-S models, some works are undertaken recently leading to a reduced order model which
approximates a nonlinear T-S model, in discrete-time domain, by minimizifig.acriterion [22].

Stability analysis and stabilization of nonlinear T-S systems are studied in [43, 42, 41, 5, 21, 12, 9],
where different approaches are used. Among these approaches, one can cite the use of the Lyapunov the-
ory and the formulation of the stability conditions in terms of linear matrix inequalities (LMI). Quadratic
stability, where a common Lyapunov matrix is sought, has been studied in [42] but it may be too con-
servative to obtain a numerical solution. Then, the polyquadratic and the non-quadratic approaches have
been developed in [40, 19]. These approaches are extended in [1, 2, 3, 47, 13, 16, 37] to state and
unknown input observer design and filter design. These observers are then used for fault diagnosis in
[6, 13, 23, 2, 48, 28, 14].

Several techniques for fault detection and diagnosis have been proposed in the literature (for more
details, the reader can refer to the books [11, 17, 7]). In the domain of T-S systems, some approaches

are generalized from linear domain. In [6] (resp. [13]), diagnosis for T-S systems is dealt with but only



actuator (resp. sensor) fault was considered and the sysigutavas linear. Similar results as those
presented in this paper were established in [36] for linear systems with structured uncertainties using
the standard{., approach. In the present paper, both actuator and sensor faults are considered and the
system output is nonlinear with regard to the state and the exogenous signals. In [23, 28], both sensor and
actuator faults are envisaged, but the residual response is not designed in order to match a prescribed one.
The shaping of the residual response is treated in [35, 24] for linear systems. In [48], A similar problem

is aimed in the discrete time case in stochastic framework, for systems with intermittent measurements.
Here the residual response shaping is proposed for continuous time nonlinear systems.

In this paper, a robust residual generator is proposed in order to achieve the tasks of fault detection,
isolation and estimation. The main objective is to extend the method of fault diagnosis baskd on
control framework, developed for linear systems in [36, 35, 24] including a reference model shaping the
residual signals in order to enhance fault detection, isolation and estimation [24]. First, the problem of
disturbance attenuation and fault influence maximization is reduced to a matching problem. The residual
generator is built to provide a response to the fault that matches the output of a reference model virtually
fed with the fault signal. This reference model corresponds to the desired response of the residual to the
fault. The matching is quantified by th&-gain from the exogenous signals to the difference between
the residual and the output of the reference model. In other words, the objective of this work is to provide
a residual generator delivering signals which are sensitive to an occurring fault and insensitive to other
faults and perturbations, so, each residual signal detects one fault, thus, the structured residual vector
provides fault detection and isolation. The minimization of #jsgain can be recast in an optimization
problem under LMI constraints and solved with dedicated software. The detection, isolation and estima-
tion are performed in a unified way by an adequate choice of the reference model. The general case is
considered and a particular attention is made for the case of rank condition deficiency which is true in
actuator and sensor fault diagnosis because the fault distribution matrices are not full column rank).

This paper is organized as follows. The second section is dedicated to the problem statement; some
notations are also introduced. The main result is given in the third section and a particular case of actuator
and sensor faults where the distribution fault matrix of the output equation is not full column rank is
treated. Two examples are given to illustrate and to discuss the effectiveness of the proposed strategy
for fault diagnosis. In the fifth section, the conservatism of the previously proposed LMI conditions is
reduced with the help of the Polya’s theorem. This conservatism reduction is illustrated by a numerical

example. The last section is devoted to some conclusions and future works.



2 Problem statement

Nonlinear systems are generally modeled in the following form:
(1)

wherex(t) € R" is the state vectoy(t) € R™ is the control input ang(t) € R™ represents the system
output vector. The functiont andh are generally nonlinear. This mathematical model can represent any
nonlinear behavior but its main disadvantage is its complexity and therefore it is not always adapted to
design a controller or an observer. As explained in the previous section, the T-S formalism is suitable for
observer and/or controller design for nonlinear systems.

Using identification, linearization, or the so-called sector nonlinearity transformation, a T-S model

for the model (1) may be obtained under the form:

()= 3 (D) (Ax(D) + Bult)

r @
Yt = 3 H(EWD) (Cx(D) + D)

whereA € R™", B ¢ R™™, G € RY*", D; € R, The weighing functiongs; are nonlinear and
depend on the decision variabigt) which can be measurable likgt) or y(t) or not measurable like
the system statg(t). It can also be an external signal. The weighting functions satisfy the following

so-called convex sum property:

O< m(E() <1, W, Vi=1...r
()

5 W(Em) =1,

The multiple model structure is known to be a universal approximator since it can represent, with a given
accuracy, any nonlinear behavior according to an adequate nundfesubmodels (chap 14 of [43]).
Moreover, the multiple model structure provides a mean to generalize the tools developed for linear
systems to nonlinear systems due to the properties (3) and to the linearity of the submodels.

In this paper, the objective is to design a robust residual generator for nonlinear systems in order to
detect, and under specific hypothesis, to isolate the faults affecting a system. Thus, the study is dedicated
to the problem of fault detection, isolation and estimation for nonlinear systems described by continuous-
time T-S models. Besides the fault&) affecting the system, it may also be subject to disturbad@gs

thus the system is now modified as follows:

(0) = 3 W(E(0) (AX(1)+ Bu(D) + Eid(t) + Fi (1) “
|:r 4
V) = 3 (& (D) (CX(0) +Diut) + Gl + R (1)



whereE; € R™ ", F € R™" andG; € RY*™, andR; € R™*" . In the following, the decision variable

(1) is assumed to be measurable. With this representation, it should be noted that both the fault and the
disturbance affect the dynamic equation of the system as well as the measurement equation. However,
depending on the structures of the matrieeandR,; it is possible to consider specific faults affecting the
dynamic part and others affecting only the static part. This could be easily obtained when some columns
of the previous matrices are filled up with null elements.

The input signald (t) andd(t) belong toL, set. Thel,-norm ofu(t) € L5 is given by

. 1/2

Juo)ll= | [ uuta ©)
0

Given the system (4) affected by a fault and a disturbance, the diagnosis task consists in generating a
signal, namely a residual, that is mainly affected by the fault and thus can be used as a fault indicator. This
residual should be made as sensitive as possible to the fault while insensitive to the disturbance in order
that the fault diagnosis is robust. Ideally, in multiple faults case, the residual vector should be structured
to allow fault isolation. This later point can be addressed if the transfer from the fault to the residual
matches a desired response. In fact residual generation can be viewedastrol, since the residual
generator is designed by minimizing tlie-gain from the exogenous signals (fault and disturbance) to

the error between the desired and the obtained responses of the residual signal.

3 Residual generator design

The residual generator design for nonlinear systems described by a Takagi-Sugeno model is addressed
in this section. When synthesizing a residual generator, particular detection performances are desired.
A natural way for that is to define these performances using a reference model describing the desired
behavior of the residuals in regard to the faults.

Let consider the T-S nonlinear system subject to disturbances, sensor and actuator faults modeled by
(4). An observer-based residual generator is proposed in the following form where the residual is defined

by a linear combination of the output estimation errors

(1) = 3 H(EO) AR+ Bud) +Liy(O) ~3(1))
3(t) = 3 W(E D)X + Diult) ©)
r(t) =M(y(t) —y(t))
wherex(t) € R" is the estimated state vector arft) € R™ is the residual signal. The matricess R™"Y
andM € R"™*" are the residual generator gains. Since the measuregyfténin (4) is sensitive to the

fault and the disturbance, it is clear that the residual is also sensitive to these quantities. Thus, in order

to detect the fault despite the presence of the disturbance, the objective is to design the gadid



in order to minimize the transfer from the disturbandég and to maximize the transfer from the faults
f(t) to the residual signal(t). Let us define the state estimation erefr) = x(t) — X(t). Its dynamics is

deduced from (4) and (6) as follows

{ e(t) = Acgelt) +Eed(V) + Fec 10 -

F(t) = Ceelt) + Ged(t) + Re F (1)

where:
Age = i;glui(f)uj(f)(Ai—LiCj) @)
Ese = i_r JZM(E)M(E)(Ei—'-iGj) 9)
Fee = i_r JZM(E)MJ'(E)(F.—LiR,-) (10)
Ce - Zuﬁ(amci (11)
G = i_iluimwlei (12)
Re = 3 HEMR 13)

Thus, with (7), an explicit expression of the residugl) depending only on the faul(t) and the

disturbancel(t) is obtained.

'R

System

I3
—

~
—

A\

Residual
generator

Figure 1: Scheme of robust residual generation

The problem of simultaneously minimizing the effect of the disturbances and maximizing the effect
of the fault on the residual can be reduced to a single problem by introducing a transfer figtioor-
responding to the desired transfer from the fdutt) to the residuat (t). Then robust residual generator

(RRG) reduces to minimize the influence of exogenous sigdé$, (f (t)) on the difference between the



desired and the obtained residual, denatgt), defined by
re(s) = r(s) —Wet(s)f(s) (14)

which turns to be arf,-control problem (that is a generalization of thig-control problem to the non-
linear case).

In other words, ifre(t) is minimized, therr(t) will reflect the presence of the faul{t) as described
by Wiet. Obviously, f (t) is not accessible and the filtéfe 1 cannot be implemented on the faulty system:
the robust residual generation presented as a control scheme (as can be viewed on figure 1) is only used
for the design of RRG. Once the RRG is computed, it is implemented as described by (6), where itis only
fed with the measured signalgt), y(t) and the known decision variabft). As explained in [35] the
FDI problem depends on the selected structure of the transfer riégrix Indeed, the fault estimation
problem is obtained whem = nt andWet = I, (or at least an invertible matrix) since in that case the
residualr (t) directly follows the faultf(t); the fault detection problem is considered when= 1 and
Wes € R (with no null entry) since in that case the single residual is sensitive to all the possible
faults. In additionWes can be chosen as a dynamic system (linear in order to not artificially complicate
the FDI procedure). Consider the transfer matifx; = Dyet +C(SI — Aret) 1Bref, With Dy € R™ <M,

defined by:
B
Wiot = Avet ref (15)
Cret Dret

Wet € S whereS is the set of stable filters having the following property:
H\Nrefuf = inf (Q(\Nref(jw))) >1 (16)
welR

(see [24] and [25] for more details). The interest of this kind of filters is that there is no attenuation
of the faults but only an amplification on all frequency ranges (constraint (16)) which may improve the
performances of the fault detection method. The detection, isolation and estimation of the faults can be
obtained by an appropriate choice of the matriégs, Bret, Cret andDres. The FDI problem is then
formulated as the following multi-objective optimization problem. Let us derg@i€t) the state of the
system described by the transfer mathix ¢ (15) fed with f (t) (see figure 1).

In order to rewrite the whole model in a state space representation, let us define the augmented state
vectore(t)" = [e(t)" xef(t)T]. Using (7) and (15), the virtual residual vectgtt) (14) is generated by
the system

{ 8(0) = Agee(t) +Eed(0) )
re(t) = Cs&(t) + Ggd(t)



where the following notations are used

" ror A-LC, O

Asg = 2 leui(f(t))uj(f(t))( 0 J Aref) (18)
Eee = 3 S mEOEn [ 005G FTbR 19)
o i= leul uJ 0 Bref

C = ZM(E(U)( MCi —cref) (20)
G = 3 uE) (MG MR- D) @)
o e(t)

&t) = (Xref (t)) (22)

- [ dw
o - () e

The objective is now to obtain the gaihs and M of the observer minimizing the effects of the per-
turbationsd(t) and the faultsf (t) on the virtual residuate(t). That problem leads to solve a standard
L-control problem where(t) and f (t) are the exogenous signals an(t) is the controlled output. The
choice of the filteMe; is important because it allows the shaping of the residual response in order to
achieve the fault isolation and estimation.

Theorem 1 states the robust fault detection, isolation and estimation as a minimization problem under
LMI constraints allowing to design the residual generator (6) and to give a bound of the transfer from
(d®)" f()N)T tore(t).

Theorem 1. The robust residual generat@6) exists if there exists symmetric and positive definite matri-

ces R and B, matrices Kand M and a positive scalay solving the following optimization problem:

pmin Y (24)

under the following LMI constraints

Xi <0, i=1,..r
, . o (25)
XX X <0, 0 =110



where, for(i, j) € {1,...,r}, X; and®;; are defined by

dj; 0 PiEi - KiGj PiF—KiR; CiTMT
* A;refPZ"‘ PoAret 0 PoBret _C;I;;f
Xij=1 = * —y 0 GTMT (26)
* * * -yl RFMT - D;ref
% % * * _yl
®;j =A' P14+ PIA - C/ K —K(C; (27)

The residual generator gaing hre obtained by:
L =P K (28)

and M is obtained directly. The attenuation level of exogenous signals on residuals is giyen by

Proof. Using the bounded real lemma (BRL) [4], the stability of the system (17) is ensureddM)eﬁO

and theL-gain of the transfer frond(t) to re(t) is bounded byy if the following condition is satisfied

Al P+PA;; PE;; C]

€
% -yl Gl | <0 (29)
* * -yl

In order to obtain a more explicit inequality in terms of the gain matrigesdM, the matrixP is chosen

P= (30)
0 P

The definitions (18-21) and the chosen maRif30) allow to derive from (29) the following inequality

in block diagonal form as follows:

r r
Xee = i;;uu(ﬁ(t))uj(f(t))xj <0 (31)
where:
Pij 0 PE —-PLiG; PFR—-PLR; ~ C'MT
x ALiPo+ PoAet 0 PoBies —Cr,
Xij=1 * * —yl 0 G'MT (32)
. : v RIWT-D,
* * * * _yl

and the nonlinear functiong; (¢ (t)) satisfy the convex sum property (3) aXg; defined by (31). As



established in [44], the inequality (31) holds if

Xi<0, i=1,..r
, - - (33)
m>(ll+xlj+le<07 |7J:17"'7r7 I#J

Applying this result and using the change of varial§le= PiL;, the inequality (31) holds if inequalities
(25) with the definitions (26)-(27) are satisfied. Notice that (25) are expressed in LMI formulation re-
garding toPy, P>, Ki andM. Finally, an optimal residual generator is obtained by minimizimg order to

minimize the effect ofl(t) on the virtual residualg(t). O

4 Robust fault diagnosis

Due to the presence of exogenous disturbances, the residual signals are different from zero even in the
fault-free case. In the framework of fault detection, a threshildjs generated in a fault-free situation.

A fault detection alarm is generated by comparison between each compgienf the residual signal

r(t) and the threshold:

(34)

Iri(t)| < Jn= no fault
Iri(t)| > Jn = fault

In order to improve the fault detection and isolation, a residual generator can be constructed for each
fault. Each residual generator is designed to minimize the transfer fagth’ f(t)7)" to rei(t) =
ri(t) —Wer, fi(t), i =1,...,ns, fi(t) being thei!" component of the vectof(t) andWer,; a specific filter
corresponding to the desired transfer from the féty) to the residuat;(t).

As previously mentioned, it is often considered that the fault vettor may have two origins, the
first one denoted,(t) represents the fault vector affecting only the actuators, which appears in the state
equation. The second component dendigt) is the fault vector affecting only the sensors. The output
of the system is still given by the second equation of (4) but, in that case, the fault incidence matrices

have the following particular structures

F=(F 0), R=(0 RY) (35)

according to the decomposition 6ft) = (fJ (t) fJ (t))T. As explained in [35] and [24], if the matrices

R defined by (35) (foii € {1,...,r}) are not full column rank, this will have an adverse effect on the
minimal values ofy. It is well known in theH.,-control framework that the obtainabjds at least equal

to the maximal singular value of the direct transfer from the exogenous signal to the controlled output,
namelyéz defined in (21). From (21), it can be seen thdDjf; is not null, R is useful to minimize the
maximal singular value otfag. As a consequence, column rank deficiency ofRhenatrices will result

in limited performances of the residual generator, quantified by the minimum obtainable vglue of

When the actuator faul,(t) does not affect the output equation of the system, we Ra#e(O Ril)

10



and clearly these matrices are not full column rank. In a fjppr@ach, in order to avoid this problem, a

perturbation-like terniR? f,(t) is added on the output equation as follows:

Y(t):_iui(f) (CiX—I—DiU+Gid+<R|Q Fﬁ-l) (:ag)) (36)

whereR? are the distribution matrices of the actuator falt) in the output equation and are chosen as
small as possible. Notice that in the context of fault isolation, the introduction of theR&fat) may
generate false alarms. To improve the isolation results, we propose to add and subtract the perturbation-
like term. As a consequence, the matri(@’ Ril) are guaranteed to be full column rank (if diyn >

dim(f) which is a usual condition). The subtracted term is considered as a perturbation which influence

is to be minimized. For that purpose, (36) is rewritten as

y(t) =i;ui(f) (cix+ Diu+Gid+R (:28)) (37)

where

_ — — d(t

Gi - <G| bF\D> ; Rl = (R? RI:L) ) d(t) = ( faét)> (38)
whereb is a positive real parameter. Using this second approach, the residual generator is constructed as
explain in section 3 and the threshdlg is calculated by using the bound of the new perturbation vector

d(t); thus the fault isolation is improved.

5 Relaxed conditionsfor residual generator design using Polya’stheorem

The proposed result may be conservative in the sense that it is derived from the use of a common Lya-
punov matrixP that satisfies the? LMIs (25). Then, solving the optimization problem given in the
previous theorem under the LMI constraints may fail to provide a solution. Recently, in [34, 29], a new
interesting method to reduce the conservativeness of the matrix summations inequality has been proposed
to study the stability of a matrix polytope with the use of Polya’s theorem. The obtained conditions are
sufficient and asymptotically necessary. The Polya’s theorem is used, in this section, in order to derive
less conservative LMI conditions.

Due to the convex sum property (3), it is obvious that for any positive intpgie inequality (31) is

equivalent to p
<kzluk(f(t))> i;;ui(f(t))u;(f(t)mj <0 (39)

In order to write the multi-dimensional summations (39) in a compact form, let us consider the notations
used in [34]:
Ip = {i = (i1,i2,....,ip) e NP[1<ij<r Vj=12,...p} (40)

11



Hi=3 - HigHipHi, (41)

wherei represents a multi-dimensional multi-index, and:
p -
Hi = J_| i, = HigHiy..-Hiy, 1 €Tp (42)
=1

is a multi-dimensional fuzzy summations. Let us defi@) C I, the set of permutations of the multi-

indexi. For example, if:

i=(1,1,22) 43)
then, the permutations sBY(i) is given by:
P(i)=1{(1,1,2,2),(1,2,1,2),(2,1,1,2),(2,1,2,1),(2,2,1,1)} (44)
If:
JEP()= 1 = Ui (45)

these permutations allows to group elements which share theiséonenstance:

H1134) = HiHats = H1314) = Ha114) = K@141) = - (46)

Using the first result given in [34] in order to solve the problem of state estimation and residual generator

addressed in section 3, less conservative sufficient conditions for the negatity, afefined by

X =3, Jilumat»u,-(s(t)m,- )

are derived from the lemma 1 [34].

Lemma 1. For any functionsy; satisfying(3) and any integer g N, the matrix % (47) is negative
definite if

z Xi1j, <0, Vielp (48)
j€P(i)

As a particular case, setting= 0, the problem reduces to theorem 1. It can be shown that the
solution of this problem for a given valym of p is always solution of the problem with> po, implying

conservatism reduction.

12



5.1 Example

Let us consider a simple example where 2, then the system (7) is stableXf; < 0 which is equivalent

to (39). Settingo = 1, a triple summation is obtained, and the inequalify < 0 is equivalent to:
roror
D> D HigkiphiXii, <0< S Xy, <0 (49)
FRNPINE i€Pli)
wherei = (iq,i2,i3) andiy, iz, iz =1,...,2.
e Fori=(1,1,1), it follows: X11 <0
e Fori =(1,1,2), three permutations are possiblg; + Xj2+ Xo1 < 0
e Fori=(1,2,2), three permutations are possible:, + Xo1+ X12 < 0
e Fori=(2,2,2), it follows: X2 <0

In order to reduce the conservatism of the result in theorem 1, the Polya’s theorem is applied directly
on the inequality (31), with the changes of variabiigs= PiL;, for a suitable value op. Note that the
obtained conditions are only sufficient for guaranteeing the negativity of (31) and as explained in [34], if
p — o asymptotic necessary and sufficient conditions are obtained, but the number of LMI constraints
can drastically increase. Applying the Polya’s theorem approach as used in [34] to the residual generator

conditions detailed in theorem 1, the following result can be stated.

Theorem 2. The robust residual generat@6) exists if there exists symmetric and positive definite matri-

ces R and B, matrices Kand M and a positive scalay solution to the following optimization problem:

s Y (50)
under the constraints:
Z Xj1j, <0, Vielp (51)

jeP(i)
where X, j, is defined by{26) and j, j» belong toP(i) C I, whereP(i) is the set of all permutations of

the multi-index. The gains of the observer are given bybLPglKi and the attenuation level i
Using the Polya’s theorem and settipg= 3, the following theorem 3 is obtained.

Theorem 3. The robust residual generat@6) exists if there exists symmetric and positive definite matri-

ces R and B, matrices Kand M and a positive scalar solution to the following optimization problem:

P17rPT2]7II£i],M Y, S.t (52)

13



Xi <0

i=1..r

3Xii +Xij + Xji <0
Lj=1..,r i#]

3Xii + Xjj + 3Xij + 3Xji <0
Lj=1..,rni#]

6Xii + 3Xij + 3Xik + 3Xji + 3Xii + Xjk + Xij <0
ihj,k=1,...ri<j<k

3Xii + 3Xjj + 6Xjj + 6Xji + 3Xik + 3Xki + 3Xjk + 3Xj < 0
Lj,k=1..ri<j<k

3Xii + 3Xjj + 6Xjj + 6Xji + 3Xik + 3Xki + 3Xjk +3Xj < 0
Lj,k=1..,ri<j<k

6Xii + 6Xij + 6Xii + 6Xik + 6Xii + 6Xii + 6Xii + 3Xjic + 3Xicj + 3Xji + 3Xij + 3Xia + 33Xk <0
ihj,k=1,...rni<j<k<l

6(Xij -+ Xiji + Xik + X + Xt + Xii 4 Xim + Xeni + Xk
+ Xj 4 Xt +Xij + Xjm + Xmj+ X + Xik + Xkm+ Xmi) <0
LiLklIm=1..r i<j<k<l<m
where X is defined in(26). The gains of the observer are given Qy-LP,” K; and the attenuation level

isy.

Proof. According to theorem 1, the solution of the RRG problem is obtained by minimjzungler the
constraintyi_, i 4 (& (t))pj (& (1)) Xij < 0, which due to the convex property of the weighting functions
is equivalent to

r Pro
<Z uk(é’(t))> ZZM(E(U)H](E(UW <0 (53)
k=1 i=1]=I

In the following, for the sake of clarity, the terdit) is omitted. Settingp = 3 and gathering the terms
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sharing the same combinations of weighting functions, oW

<2M> le Hip;Xij = Elu. Xi + Z i (3K + X+ Xji)

i,]=1

i#]
r r r
3 7 2., W
+ LK + 2 g K + K X
2 uzl,zlkzul J zzk: i
;é] i<j J<k i<j J<k
r r r r -
+ Illlkll|><|k|+ Hi 1 Hic ki HmXijkim < O
IjJ<k <‘ <k||m

with

Xij =3Xi + Xjj + 3X;j + 3X;;
Xijk =6%i +3(Xij + Xji + Xik + Xii) + Xjk + X
Xt =3Xii + 3Xjj + 6Xij + 6X;i + 3Xik + 3K + 3K + 3Xj
Xijt =6(Xi 4 Xij + Xiji + ik + X + Xt + X)) + 3(Xji + Xij + Xji + Xij -+ X + Xi)
Kijiim =6(Xij + Xji + Xik + X + Xit + Xii =+ Xim + Xmi + Xj

+ Xij + Xji + Xij + Xjm 4 Xmj =+ Xt 4 Xik 4 Xim + Xmk)

what allows to find the constraints listed in theorem 3, which ends the proof.

6 [Illustrativeexample 1

(54)

The proposed algorithm of robust diagnosis is illustrated by an academic example. Let us consider the

nonlinear system (4) defined by

-1 4 1 -3 1 -2 1 3
A= 1 -3 0 [|,A=| 6 -3 0 |,Bi=| 5 |, B=| 1
-2 1 -10 1 2 -4 0.5 -1
0.5 1 0 2
Ei1= 1 , Eo=| 03 |, FR=]10 1], FR=]0 3],
1 0.5 1 1

and
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The weighting functiongs; are defined as follows:

{ I (U(D) = 1—tanr((u£t) —1)/10) -

H2(u(t)) = 1— pa(u(t))

Considering the structure of the matridgsandG;, the disturbance input vectd(t) affects the outputs of
the system and its dynamic. In the other hand, considering the structBramdR;, the first component

of the vectorf (t) is a sensor fault and the second component is an actuator fault defined by:

1, if10<t<16
fi(t) = fs(t) = (56)

0, else
1, if4<t<8

fa(t) = fa(t) = (57)
0, else

The initial conditions of the state of the system and those of the residual generators are the@ame:
R0)=[2 -2 -1.

6.1 Fault detection and isolation

The problem of residual generation is stated as designing a set of filters that furnish residuals such that
each residual is devoted to detect a particular fault or a particular set of faults. A bank of three residual
generators is designed (see figure 2) in order to illustrate the effectiveness of the proposed approach in
fault detection and fault isolation. Since a system with two measured outputs is considered, the fault
isolation may be obtained with two generators where each one is dedicated to a specific fault, or with
a single generator delivering a residual vector such that each of its entries corresponds to one of the
two faults. The first and the second generate3' and RG? are dedicated to the isolation of sensor

fault and actuator fault respectively, while the third &@° is built to detect simultaneously both faults.

A comparison between the performances of a global residual gen@&fband the bank of residual
generatolRG! and RG will be given. The three generators have dynamic characteristics fixed by the

block Al of the transfer matriy/

les- The problem of fault isolation is performed by residual structuring,

i.e. choosing adequate values of the bl¥gk: to make the residual generator sensitive or insensitive to

a specific fault.
e The first residual generator is designed with a stable fil{gr (15) defined by

. [ -120] 10
Wet = (58)

1 |10

The aim of this choice is to generate a reference signal corresponding to the (low-pass filtered)
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u(t) —»{  System > y(t)
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7e(t)
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re(t)
— R _,ﬁli Wi,
72 ()

Figure 2: Scheme of robust residual generation

\ 4

A

sensor fault. Indeed, with this filté/L, the residual generator 1 generates the residgl which
will be sensitive to the first fault (sensor fault) and insensitive to the second one (actuator fault).
After solving the optimization problem of theorem 1 under LMI constraints (25), the obtained
attenuation level i34 = 0.5306. The threshold i&, = 0.3. The simulation results are depicted

in the figure 3. The residual'(t) clearly allows the detection of the sensor fault and is quite

insensitive to the actuator fault (occurring betwéen4 andt = 8).

‘ —Sensor fault
—Residual detecting the sensor faulj

threshold
1.5- B

0.5+ 4

time

Figure 3: Residual generator 1 : Sensor fault detection

The second residual generator is performed with

2 -90 | 0 1
Wer = (59)
1 01
It is sensitive to the actuator fault and insensitive to the sensor fault. As explained in the previous
section, the matriR is not full column rank. By following the proposed strategy to solve this

problem withR® = 0.8 andb = 1 a solution is obtained to the optimization problem given in the
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theorem 1. It results ip = 0.7363 and), = 0.2. The figure 4 presents the obtained signal. The
residualr?(t) clearly allows the detection of the actuator fault while being insensitive to the sensor

fault (occurring betweeh= 10 andt = 16).

— Actuator fault
— Residual detecting the actuator faull

threshold
1.5- B

time

Figure 4: Residual generator 2 : Actuator fault detection

e Finally, the last residual generator is designed in order to simultaneously performs fault detection

and fault isolation. For that purpose, the fiMgg  is chosen as:

~120 0 | 1 0
. 0 -9 |01
Wet = T o 1o (60)
0 1 |01

andRi0 = 0.5, b = 1. After designing the residual generator according to theorem 1, the obtained
attenuation level i3z = 0.7637. Each residual signal can detect one fault as illustrated in the
figure 5, but it can be noted that the residual signal detecting the sensor fault is also affected by
the actuator fault. This problem can be solved by using the bank of residual generators. Thus, the
obtained results are better than those obtained by the global residual generator, desigwﬁi with

as shown in figure 6.

T T
| | —Sensor fault i
1.57| — Residual detecting the sensor fault M paiivi
1+ threshold 4
0.5~ 4
0 & v ot "y
~05 . W i | . i |
0 2 4 6 8 10 12 14 16 18 20
— Actuator fault
1.5~ — Residual detecting the actuator faull
1k threshold
0.5 |/ ‘ 1
o P, "
had "l meiivmataror g bt
~0.5 | I | I | | I | 1
0 2 4 6 8 10 12 14 16 18 20

time

Figure 5: Residual generator 3 : Fault detection and isalaifactuator and sensor faults
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T T
15- — Sensor fault i
"1 |——Residual detecting the sensor fault
1+ threshold degrepioahTe: 4 B
Ut
0.5~ 4
Ollvem - bdtadnniit
| i il | - i | | i ' | -
0. 0 2 4 6 8 10 12 14 16 18 20
— Actuator fault
1.5- — Residual detecting the actuator faull
1k threshold
0.5 / \ B
o P —— ol - o
~0.5 I I I I I I I I I
"0 2 4 6 8 10 12 14 16 18 20

time

Figure 6: Residual generators 1 and 2 : Fault detection atatimo of actuator and sensor faults

It can be mentioned that the dedicated RRG allow to obtain laiyegains (i.e.maxyi, y2) < y5)

by splitting the transfer matching constraints into two different problems.

e Now, assume that the faulfg(t) and f4(t) may appear simultaneously (foe [6 16 andt € [4 10
respectively). With the same parametwr%f, R? andb used previously, the simulation results are
given in the figure 7. It can be seen that the third residual generator is able to detect and isolate

simultaneous occurring faults.

T T T T T T T
18- ‘—Sensor fault— Residual detecting the sensor fault - threshold| |
1 ad v b
ot ™
0.5- 4
0 BN T T
_0.5! ! L 1 I | | I | |
0. 0 2 4 6 8 10 12 14 16 18 20
15 ‘—Actuator fault — Residual detecting the actuator fault- - threshold
1- 4
0.5 /‘ b \‘ B
o " PR TIR?
~05 I I I I I I I I I
o 2 4 6 8 10 12 14 16 18 20

Figure 7. Residual generator 3 : Simultaneous actuator arsbséault detection and isolation

In order to illustrate the enhancement offered by the relaxed conditions using Polya’s theorem, in
figure 8 the real fault,(t) and fs(t) are represented by blue lines, while the residuals obtained by the
approach in theorem 1 are depicted in black lines and the approach using Polya’s theorgm=vdth
gives residuals illustrated by red lines. It is clear that Polya’s theorem provides more accurate results. It
is due to the fact that the attenuation levels for each residual generator are less than those obtained using

the method proposed in theorem 1.

6.2 Fault estimation

Another simulation is run in order to illustrate the fault estimation of both actuator and sensor faults

with the bank of residual generatoRG! and RG?. To do that, let us consider the paramétés; =
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Figure 8: Residual generator comparison : approach of thearéblack) and Polya’s theorem approach
(red)

l2x2 (an identity matrix). With the parameteR® = 0.5 andb = 1, the solution of the optimization
problem provides the attenuation leygk= 0.5548 for the first residual generator apd= 0.7133 for the
second residual generator. The simulation results are displayed in the figure 9. It can be noticed that the

estimation of the faults are acceptable for both actuator and sensor.

T T T T T T
‘ — Sensor fault— Residual estimating the sensor fau't

= 4
:

1+ w NJ 4

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

T T T T T T
— Actuator fault — Residual estimating the actuator faulﬁ

0.5+ q

I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
time

Figure 9: Actuator and sensor fault estimation

Remark 1. In order to enhance the residual generator robustness with regard to disturbaricest i
possible to introduce agnorder stable weighting transfer functioné/,&/as shown in the figure 10. This
transfer function can take into account a possible knowledge on the frequency range distribution of the
disturbance d¢t). The procedure is the same as that used for fault detection and isolation by including
the reference filter VW;. Then the goal is to design the residual generator in order to make each residual
signal as sensitive as possible to a particular fault or set of faults and as insensitive as possible to the

disturbances ¢) in the considered frequency range.

7 Illustrative example 2

In this second example, an application of the proposed fault diagnosis algorithm is illustrated by a flexible
one link robot represented in the figure 11. The model of this system is described by the following

equations borrowed from [33]
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Figure 10: Scheme of robust residual generation

Torsional Spring

\ m

DC MOTOR [0 ﬁ i

B I

Optical Shaft Encoders

Figure 11: Flexible one link robot

BOm(t) = cwm(t)
Gn(t) = 35 (B(1) = Bm(1)) = Fom(t) + 5Eu(t) (61)
() =alt

where 6y(t) and wny(t) denote the angular position and velocity of the motéirt) and w (t) are the
angular position and velocity of the link. The input signaliis) = sin(t). Assume that two fault$,(t)

and fs(t) affect, respectively the state equation of the system and the output equation with respect to
distribution matrice$ andR. Furthermore, it is assumed that the system is subject to random perturba-
tion d(t), with maximal magnitude 1, affecting both the state and the output equations. Then, the state

representation of the faulty perturbed system is

AX(t) + @(X(t)) + Bu(t) + F £ (t) + Ed(t)
Cx(t) + Rf(t) + Gd(t)

e
< h
~~ ~~
— —+
I
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where:

0 1 0 0 0 0
—486 -—-125 486 O 216 0
= = » 9(x) =
0 0 0 1 0 0
195 0 -195 0 0 ~3.33sinXs)
Om(t) 00 0
t 10 0.1 0 010 00
X(t): mn() s F: s E: 7C: s = s
6(t) 10 1000 01
w (t) 00
0.1 fa(t
G= , f(t) = alt)
0.1 fo(t)

f(t) is vector containing a first component denofg@) which affects only the state equation and a sec-

ond one denotedk(t) which is a fault affecting the sensor measurka(t). By using a sector nonlinearity

transformation approach [42], a multiple model representation of the system described above is given by

(4) with
0 1 0 0 0 1 0 0
—486 —-125 486 O —486 —-125 486 O
A = , Ag=
0 0 0 1 0 0 0 1
195 0 —-2283 0 195 0 —-1877 O
B;=B,=B
0.2172
pa(2t) = L5
Ha(2(t)) = 15175
wherez(t) = %&()t)) The results presented in the theorem 1 are used to design a robust residual generator

with the same filter as that used in the first example for fault estimation. In order to overcome the problem

of rank deficiency of the matriceds and R, we choose the parametBP = 0.254. After solving the

optimization problem under LMI constraints, the obtained gains of the residual generator are

—0.0363 00869

—0.0363 00869

B 4.0080 —0.0633 B 39603 —0.0563 B 34390 —-0.0002
3.6853 -0.0179 36469 -0.0123 —0.9333 09983
—0.2219 -0.0055 0.0725 -0.0267
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The optimized parameter ys=0.6090. The figure 12 illustrates the fauftgt) andfs(t) (blue solid lines)

and the corresponding residuals (red dashed lines). In figuré,®3,and fs(t) affecting, respectively,

the state and the output equations are assumed to be time-varying faults (oscillatory signals). It appears
that the residual generator is able to provide satisfactory fault estimates. Furthermore, as shown in figures
12 and 13, in the time intervdB0O 39, the system is subjected to simultaneous faéits) and fs(t).

One can clearly observe that the first residual is only sensitive to the figtijtand the second one is

only sensitive tofs(t). This is the result of maximizing of the effect &(t) (resp. fs(t)) with respect to

the first (resp. second) residual signal when minimizing the effecg(of (resp. fa(t)) on that residual
signal.

‘ - - residual detecting the faul f(t) _faultfa(t)‘
1.5 T T T T T T

I I | I I I I I I

5 10 15 20 25 30 35 40 45 50
- .- residual detecting the fault fs(t) _faultfs(t)‘

1.5 T T T T T T

I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
time

Figure 12: Fault estimation

‘ - - residual detecting the fault £(t) _faultfa(t)‘

1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

‘_faultfs(t) - - residual detecting the fault fs(t)‘
T T T T T T

Figure 13: Time-varying fault estimation

8 Illustrative example 3

In order to illustrate the relaxation introduced with Polya’s theorem, consider the Takagi-Sugeno system
(4) defined by:
159 -7.29 —a —4.33

1= ) A2 =
0.01 0 0 005
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F= ,Fy= 2 .Ci=(6 0).C=(6-b —1)

Di=D;=0,G; =G,=05 R=1 Ry=2

wherea andb are scalar parameters for which different values will be further considered. In this simula-
tion, the focus is made on the relaxation introduced by Poly’a theorem, that is why only one RRG design
is studied, namely the fault estimation case, With; = 1. For that purpose, considering the inequality
(31) and using the Polya’s theorem, the following inequalities are obtained with respect to different values

of p (i.e. the number of summations):

e Forp=1
Xi <0, i=12 (62)
Xi+Xij+Xi<0, i,j=12, i#] (63)

e Forp=2
Xi <0,i=1,2 (64)
2Xi +Xj +Xi <0, i,j=1, 2,i#j (65)
Xi +Xj;+2Xj +2X; <0, i,j=1,2, i< (66)

e Forp=3
Xi <0,i=1,2 (67)
3Xi +Xij +Xji <0, i,j=21,2, i#]j (68)
3Xii + Xj; +3%; +3Xi <0, i,j=1,2, i< (69)

Figure 14, shows the solution set, with the parameter$8.5,10] andb € [5, 7], obtained with a classical
approach requiring the negativity of all the teriggsfor all values ofi and j and the solution set obtained
with using Polya’s theorem witp = 1. Note that, in this example= 2, then, the LMIs obtained using
Polya’s theorem wittp = 1 are the same with those obtained with Tuan’s lemma [44] presented in the
first theorem. It can be concluded from this example that both Polya’s theorem and Tuan’s lemma provide
a less conservative LMI conditions compared to the classic method.

A second simulation of the same example (witk 2) is performed in order to illustrate that the
Tuan’s relaxation scheme [44] is a special case of Polya’s theorem and to compare the solutions obtained
using Polya’s theorem witlp € {1,2,3}. For T-S systems with large number of sub-models, Polya’s

theorem provides less conservative LMI conditions due to the fact that in Tuan’s relaxation scheme, the
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Figure 14: Solution sets for classical approashand Polya’s theorem with =1 (.)

first term in the second inequality of (25) is divided py— 1), furthermore, with Polya’s theorem if
there is no solution for a givep, it could be obtained by increasing the valuepof The results are
depicted in the figure 15. Note that for some couples of the parameetandg b, the Tuan’s approach
don’t provide a solution but with the approach based on Polya’s theorem, there exist solutions for the
LMI constraints. Indeed, in this example, as can be seen in equations (62)-(6@)=far the number

of LMIs to solve is 4 and fop = 2,3 it becomes 5. The number of variables is the same for pddh

scalar variables in this example). If we consider a TS system with 3 sub-models, the number of LMIs for
p=1is9and forp= 2 is 12 but the number of scalar variables to solve remains the same fowvhith
consist, in the case of fault estimation problem, on the components of the m&jdgsM andy. As

a conclusion, by increasing the parametehe conservatism decreases. However, the number of LMIs
to solve increases and the number of scalar variables in LMI problems remains the same.fawit

recent high-performance computers, it is possible to solve a great number of LMIs, this will not be affect

the residual generator since the LMIs are solved offline.

9 Conclusion

This paper is dedicated to the design of residual generators for fault detection, isolation and estimation,
in nonlinear systems described by Takagi-Sugeno models. The main idea is the extensiofpf the

formalism developed for nonlinear system control and estimation to the nonlinear robust fault diagnosis.
The residual generator is designed to minimize the sensitivity to the perturbations and to maximize the

sensitivity to the faults. This min/max optimization problem is turned into a simple matching problem by
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Figure 15: Solution sets using Polya’s theorem vt 1 (0), p=2 (%), p=3(+)

introducing a reference transfer from the fault to the residual, which can be a constant matrix or a stable
filter. Furthermore, the adequate choice of this reference parameter allows to shape the residual response
to fault and achieves fault detection, fault isolation or fault estimation. By using the bounded real lemma
(BRL) for this residual generator optimization problem the established constraints are expressed in terms
of linear matrix inequalities. The diagnosis procedure is based on the definition of a threshold in the
fault-free situation. An academic example is given in order to illustrate the proposed diagnosis strategies
for actuator and sensor fault detection, isolation and estimation. The second part of this paper deals with
the conservativeness reduction of the first proposed result. Using Polya’s theorem, more relaxed LMI
conditions are then given, allowing to decrease the attenuation level and obtain a more accurate diagnosis.
It can be noticed from the simulation results that the proposed relaxation, significantly improves the
obtained results.

For future works, two issues are envisaged, the first one will deal with the extension of this approach
to nonlinear Takagi-Sugeno systems with unmeasurable premise variables. The second one will concern
the LMI reduction in order to reduce the complexity of the optimization problem. An application of this

residual generator for sensor fault tolerant control scheme has been already published in [15].
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