Stabilization of nonlinear systems subject to actuator saturation

S. Bezzaoucha, B. Marx, D. Maquin, J. Ragot

Research Centre for Automatic Control, Nancy, France (Centre de Recherche en Automatique de Nancy)

Université de Lorraine

Outline of the talk

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

statement and some backgroun

The Takagi-Sugeno modeling of the saturated control

The Takag Sugeno modeling of the saturated

Saturated PDC control

Saturated PDC contr

Numerical example

Possible in provement and

Possible improvements and extensions

Conclusio & perspe

Conclusion & perspectives

Problem statement

The overall objective is

the stabilization of a dynamic nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi Sugeno modeling o the saturated

Saturated PDC contro

Numerical

Possible improvements and extensions

Conclusion & perspec-

Problem statement

Bezzaoucha, Marx, Maguin,

Problem statement and some

statement and some background

Sugeno modeling of the saturated control

Saturated PDC control

Numerical example

Possible im provements and extensions

Conclusion & perspec-

The overall objective is

the stabilization of a dynamic nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

▶ by a linear time varying state feedback

$$u(t) = -K(t)x(t)$$

Problem statement

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

Saturated PDC contr

Numerical example

Possible im provements and extensions

Conclusion & perspectives

The overall objective is

the stabilization of a dynamic nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

by a linear time varying state feedback

$$u(t) = -K(t)x(t)$$

despite a saturated input control

$$sat(u(t)) = \begin{cases} u_{max}, & u_{max} \le u(t) \\ u(t), & u_{min} \le u(t) \le u_{max} \\ u_{min}, & u(t) \le u_{min} \end{cases}$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi Sugeno modeling o the saturated control

Saturated PDC contri

Numerical example

Possible im provements and extensions

Conclusion & perspec► Any dynamic nonlinear system

$$\dot{x}(t)=f(x(t),u(t))$$

$$y(t)=g(x(t),u(t))$$

with bounded nonlinearities or with x(t) lying in a compact set of \mathbb{R}^n

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

Saturated PDC control

Numerical example

provements and extensions

Conclusion & perspectives Any dynamic nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

with bounded nonlinearities or with x(t) lying in a compact set of \mathbb{R}^n

can be written as a Takagi-Sugeno (T-S) system

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(z(t)) (A_i x(t) + B_i u(t))$$

$$y(t) = \sum_{i=1}^{r} h_i(z(t)) (C_i x(t) + D_i u(t))$$

where -z(t) is the decision variable $-h_i(z(t))$ are the activating functions

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling o the saturated control

Saturated PDC contro

Numerical example

provements and extensions

Conclusion & perspectives Any dynamic nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

with bounded nonlinearities or with x(t) lying in a compact set of \mathbb{R}^n

► can be written as a Takagi-Sugeno (T-S) system

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(z(t)) (A_i x(t) + B_i u(t))$$

$$y(t) = \sum_{i=1}^{r} h_i(z(t)) (C_i x(t) + D_i u(t))$$

where -z(t) is the decision variable $-h_i(z(t))$ are the activating functions

▶ The decision variable is assumed to be measurable

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

Saturated PDC contro

example

provements and extensions

Conclusion & perspectives Any dynamic nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

with bounded nonlinearities or with x(t) lying in a compact set of \mathbb{R}^n

can be written as a Takagi-Sugeno (T-S) system

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(z(t)) (A_i x(t) + B_i u(t))$$

$$y(t) = \sum_{i=1}^{r} h_i(z(t)) (C_i x(t) + D_i u(t))$$

where -z(t) is the decision variable $-h_i(z(t))$ are the activating functions

- ▶ The decision variable is assumed to be measurable
- ▶ The activating functions $h_i(z(t))$ satisfy the convex sum properties

$$0 \le h_i(z(t)) \le 1$$
 and $\sum_{i=1}^r h_i(z(t)) = 1$

Bezzaoucha. Marx.

> Maguin, Ragot

The Takagi-Sugeno modeling of the saturated control

A scalar saturated input

$$sat(u(t)) = \begin{cases} u_{max}, & u_{max} \le u(t) \\ u(t), & u_{min} \le u(t) \le u_{max} \\ u_{min}, & u(t) \le u_{min} \end{cases}$$

$$sat(u(t)) = \begin{cases} u(t), & u_{min} \leq u(t) \leq u \\ u_{min}, & u(t) \leq u_{min} \end{cases}$$
 can be put in a T-S (or polytopic) form:

The Takagi-Sugeno modeling of the saturated control

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some

The Takagi-Sugeno modeling of the saturated control

Saturated PDC control

Numerio

Possible im provements and extensions

Conclusion & perspectives A scalar saturated input

$$sat(u(t)) = \begin{cases} u_{max}, & u_{max} \leq u(t) \\ u(t), & u_{min} \leq u(t) \leq u_{max} \\ u_{min}, & u(t) \leq u_{min} \end{cases}$$

can be put in a T-S (or polytopic) form:

$$sat(u(t)) = \sum_{i=1}^{3} h_i(u(t))(\lambda_i u(t) + \gamma_i)$$

with

$$\begin{cases} \lambda_1 = 0 \\ \lambda_2 = 1 \\ \lambda_3 = 0 \end{cases} \begin{cases} \gamma_1 = u_{min} \\ \gamma_2 = 0 \\ \gamma_3 = u_{max} \end{cases} \begin{cases} h_1(u(t)) = \frac{1 - sign(u(t) - u_{min})}{2} \\ h_2(u(t)) = \frac{sign(u(t) - u_{min}) - sign(u(t) - u_{max})}{2} \\ h_3(u(t)) = \frac{1 + sign(u(t) - u_{max})}{2} \end{cases}$$

where the $h_i(u(t))$ functions satisfy the convex sum properties

$$0 \le h_i(u(t)) \le 1$$
 and $\sum_{i=1}^3 h_i(u(t)) = 1$

► The T-S modeling can be generalized to a saturated vector input

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

Saturated PDC contr

Numerical

Possible im provements and extensions

Conclusion & perspectives

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

PDC control

example

Possible im provements and extensions

Conclusion & perspectives ▶ The T-S modeling can be generalized to a saturated vector input

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \begin{pmatrix} \sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))(\lambda_{i}^{1}u^{1}(t) + \gamma_{i}^{1}) \\ \sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))(\lambda_{j}^{2}u^{2}(t) + \gamma_{j}^{2}) \end{pmatrix}$$

► Since $\sum_i h_i^1 = 1$ and $\sum_j h_j^2 = 1$, then sat(u(t)) becomes

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \begin{pmatrix} \sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))(\lambda_{i}^{1}u^{1}(t) + \gamma_{i}^{1})\left(\sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))\right) \\ \left(\sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))\right)\sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))(\lambda_{j}^{2}u^{2}(t) + \gamma_{j}^{2}) \end{pmatrix}$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

Saturated PDC control

example

provements and extensions

Conclusion & perspectives ▶ The T-S modeling can be generalized to a saturated vector input

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \begin{pmatrix} \sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))(\lambda_{i}^{1}u^{1}(t) + \gamma_{i}^{1}) \\ \sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))(\lambda_{j}^{2}u^{2}(t) + \gamma_{j}^{2}) \end{pmatrix}$$

► Since $\sum_i h_i^1 = 1$ and $\sum_j h_j^2 = 1$, then sat(u(t)) becomes

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \begin{pmatrix} \sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))(\lambda_{i}^{1}u^{1}(t) + \gamma_{i}^{1})\left(\sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))\right) \\ \left(\sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))\right)\sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))(\lambda_{j}^{2}u^{2}(t) + \gamma_{j}^{2}) \end{pmatrix}$$

or equivalently

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \underbrace{h_{i}^{1}(u^{1}(t))h_{j}^{2}(u^{2}(t))}_{\mu_{i}(u(t))} \left(\underbrace{\begin{pmatrix} \lambda_{i}^{1} & 0 \\ 0 & \lambda_{j}^{2} \end{pmatrix}}_{\Lambda_{i}} u(t) + \underbrace{\begin{pmatrix} \gamma_{i}^{1} \\ \gamma_{j}^{2} \end{pmatrix}}_{\Gamma_{i}}\right)$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

PDC contr

example

provements and extensions

Conclusior & perspectives ▶ The T-S modeling can be generalized to a saturated vector input

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \begin{pmatrix} \sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))(\lambda_{i}^{1}u^{1}(t) + \gamma_{i}^{1}) \\ \sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))(\lambda_{j}^{2}u^{2}(t) + \gamma_{j}^{2}) \end{pmatrix}$$

▶ Since $\sum_i h_i^1 = 1$ and $\sum_j h_j^2 = 1$, then sat(u(t)) becomes

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \begin{pmatrix} \sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))(\lambda_{i}^{1}u^{1}(t) + \gamma_{i}^{1})\left(\sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))\right) \\ \left(\sum_{i=1}^{3} h_{i}^{1}(u^{1}(t))\right)\sum_{j=1}^{3} h_{j}^{2}(u^{2}(t))(\lambda_{j}^{2}u^{2}(t) + \gamma_{j}^{2}) \end{pmatrix}$$

or equivalently

$$sat\left(\begin{pmatrix} u^{1}(t) \\ u^{2}(t) \end{pmatrix}\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \underbrace{h_{i}^{1}(u^{1}(t))h_{j}^{2}(u^{2}(t))}_{\mu_{i}(u(t))} \underbrace{\begin{pmatrix} \lambda_{i}^{1} & 0 \\ 0 & \lambda_{j}^{2} \end{pmatrix}}_{\Lambda_{i}} u(t) + \underbrace{\begin{pmatrix} \gamma_{i}^{1} \\ \gamma_{j}^{2} \end{pmatrix}}_{\Gamma_{i}}$$

▶ More generally, for $u(t) \in \mathbb{R}^{n_u}$, sat(u(t)) can be written under a TS form

$$sat(u(t)) = \sum_{i=1}^{3^{n_u}} \mu_i(u(t))(\Lambda_i u(t) + \Gamma_i)$$

Saturated PDC control (objective)

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

The Takagi-Sugeno modeling of the saturated control

Saturated PDC control

example

provements and extensions

Conclusion & perspectives ► Given a saturated nonlinear system

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(z(t))(A_ix(t) + B_isat(u(t)))$$

$$y(t) = \sum_{i=1}^{r} h_i(z(t))(C_ix(t) + D_isat(u(t)))$$

 \triangleright determine the gains K_j of the PDC state feedback controller

$$u(t) = -\sum_{j=1}^{r} h_j(z(t)) K_j x(t)$$

- in order to
 - ensure the closed loop stability
 - despite the input saturation

Saturated PDC control

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling o the saturated control

Saturated PDC control

Numerical example

Possible im provements and extensions

Conclusion & perspectives Without input saturation, the closed loop system is

$$\dot{x}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_i(z(t)) h_j(z(t)) (A_i - B_i K_j) x(t)$$

$$ightarrow$$
 asymptotically stable, if $A_iP - B_i\bar{K}_j + (A_iP - B_i\bar{K}_j)^T < 0$ and $K_j = \bar{K}_jP^{-1}$

Saturated PDC control

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling o the saturated control

Saturated PDC control

example

provements and extensions

Conclusion & perspectives Without input saturation, the closed loop system is

$$\dot{x}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_i(z(t)) h_j(z(t)) (A_i - B_i K_j) x(t)$$

$$ightarrow$$
 asymptotically stable, if $A_iP - B_i\bar{K}_j + (A_iP - B_i\bar{K}_j)^T < 0$ and $K_j = \bar{K}_jP^{-1}$

With the input saturation, the closed loop system is

$$\dot{x}(t) = \sum_{i=1}^r \sum_{i=1}^r h_i(z(t))h_j(z(t))\mu_k(z(t))\left((A_i - B_i\Lambda_k K_j)x(t) + B_i\Gamma_k\right)$$

- → asymptotical stability is no longer ensured
- → convergence in a ball, to be minimized, is sought

Saturated PDC control (sketch of the proof)

Bezzaoucha, Marx, Maquin, Ragot ► The closed-loop stability is studied with a quadratic Lyapunov function

$$V(x(t)) = x^{T}(t)Px(t), \quad P = P^{T} > 0$$

statement and some background

Sugeno modeling of the saturated control

Saturated PDC control

Numerical example

Possible im provements and extensions

Conclusion & perspectives

Saturated PDC control (sketch of the proof)

Bezzaoucha, Marx, Maquin, Ragot ► The closed-loop stability is studied with a quadratic Lyapunov function

$$V(x(t)) = x^{T}(t)Px(t), \quad P = P^{T} > 0$$

It can be shown that:

$$\frac{dV(x(t))}{dt} \leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{3^{n_u}} h_i(z(t)) h_j(z(t)) \mu_k(u(t)) \left(x^T(t) Q_{ijk} x(t) + R_{ijk} \right)$$

with Q_{ijk} and R_{ijk} depending on P, K_j and a slack variable Σ_k .

Ragot
Problem

The Takagi-Sugeno modeling of the saturated

Saturated PDC control

Numerical example

Possible improvements and extensions

Conclusion & perspec-

Saturated PDC control (sketch of the proof)

Bezzaoucha, Marx, Maquin, Ragot

The Takagi-

► The closed-loop stability is studied with a quadratic Lyapunov function

$$V(x(t)) = x^{\mathsf{T}}(t)Px(t), \quad P = P^{\mathsf{T}} > 0$$

It can be shown that:

$$\frac{dV(x(t))}{dt} \leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{3^{nu}} h_i(z(t)) h_j(z(t)) \mu_k(u(t)) \left(x^{T}(t) Q_{ijk} x(t) + R_{ijk} \right)$$

with Q_{ijk} and R_{ijk} depending on P, K_i and a slack variable Σ_k .

with Q_{ijk} and H_{ijk} depending on T, H_j and a stack variable Z_k

Sufficient LMI convergence conditions into a ball are derived:

$$\begin{cases} Q_{ijk} < 0 \\ \varepsilon = \min_{i,j,k} (\underline{\lambda}(-Q_{ijk})) \\ \delta = \max_{i,j,k} R_{ijk} \end{cases} \Rightarrow \begin{cases} \frac{dV(x(t))}{dt} < 0 \\ \forall ||x(t)|| \ge \sqrt{\frac{\delta}{\varepsilon}} \end{cases} \Rightarrow x(t) \to \mathcal{B}\left(0, \sqrt{\frac{\delta}{\varepsilon}}\right)$$

Possible in provement and extensions

Saturated PDC control

& perspectives

Saturated PDC control (LMI formulation)

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some

Sugeno modeling of the saturated control

Saturated PDC control

example Possible i

provements and extensions

& perspetives

There exists a PDC controller for a saturated input system such that the system state converges toward an origin-centered ball of radius bounded by β if there exists matrices $P_1 = P_1^T > 0$, P_i ,

$$\min_{P_1,R_j,\Sigma_k,\beta} \beta$$

under the LMI constraints (for i, j = 1, ..., n and $k = 1, ..., 3^{n_u}$)

$$\left(\begin{array}{c|cc|c} A_{i}P_{1} - B_{i}\Lambda_{k}R_{j} + (A_{i}P_{1} - B_{i}\Lambda_{k}R_{j})^{T} & I & I & 0 \\ \hline I & -\Sigma_{k} & 0 & I \\ \hline I & 0 & -\beta I & 0 \\ 0 & I & 0 & -\beta I \end{array} \right) < 0$$

$$\Gamma_k^T B_i^T \mathbf{\Sigma}_k B_i \Gamma_k < \beta$$

The gains of the controller $u(t) = -\sum_{j=1}^{r} h_j(z(t))K_jx(t)$ are given by

$$K_i = P_1^{-1} R_i$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling of the saturated control

PDC contr

Numerical example

provemer and extension

Conclusion & perspectives

- z(t): cart position
- θ(t): angle between vertical and pendulum
- M and m: cart and pendulum masses
- ► I and I_m: length and inertia moment of the pendulum
- f, k_s and k: friction coefficients
- ► *F*(*t*): saturated control input

The system is described by:

$$(m+M)\ddot{z}(t) + k_s z(t) + f\dot{z}(t) - ml\ddot{\theta}(t)\cos(\theta(t)) + ml\dot{\theta}^2(t)\sin(\theta(t)) = F(t)$$
$$-ml\ddot{z}(t)\cos(\theta(t)) + (ml^2 + l_m)\ddot{\theta}(t) + k\dot{\theta}(t) + mal\sin(\theta(t)) = 0$$

with a saturated control input: $F(t) \in [0 \ 3]$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling of the saturated control

Saturated PDC contro

Numerical example

Possible improvements and extensions

Conclusion & perspectives • With $sin(\theta) \approx \theta$ and $cos(\theta) \approx 1$, it becomes

$$(m+M)\ddot{z}(t) + k_{s}z(t) + f\dot{z}(t) - ml\ddot{\theta}(t) + ml\dot{\theta}^{2}(t)\theta(t) = F(t)$$
$$-ml\ddot{z}(t) + (ml^{2} + l_{m})\ddot{\theta}(t) + k\dot{\theta}(t) + mgl\theta(t) = 0$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling of the saturated control

PDC contro

Numerical example

provements and extensions

Conclusion & perspectives • With $sin(\theta) \approx \theta$ and $cos(\theta) \approx 1$, it becomes

$$(m+M)\ddot{z}(t) + k_s z(t) + f \dot{z}(t) - ml\ddot{\theta}(t) + ml\dot{\theta}^2(t)\theta(t) = F(t)$$

 $-ml\ddot{z}(t) + (ml^2 + l_m)\ddot{\theta}(t) + k\dot{\theta}(t) + mgl\theta(t) = 0$

▶ Defining the premisse variable by $\xi(t) = \dot{\theta}^2(t)$, with $\xi(t) \in [\underline{\xi} \ \overline{\xi}]$

$$\xi(t) = h_1(\xi(t))\overline{\xi} + h_2(\xi(t))\underline{\xi}, \quad \text{with} \quad \begin{cases} h_1(\xi(t)) = \frac{\xi(t) - \underline{\xi}}{\overline{\xi} - \underline{\xi}} \\ h_2(\xi(t)) = \frac{\overline{\xi} - \underline{\xi}(t)}{\overline{\xi} - \underline{\xi}} \end{cases}$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling o the saturated control

PDC contro

Numerical example

provements and extensions

Conclusion & perspectives • With $sin(\theta) \approx \theta$ and $cos(\theta) \approx 1$, it becomes

$$(m+M)\ddot{z}(t) + k_s z(t) + f \dot{z}(t) - ml\ddot{\theta}(t) + ml\dot{\theta}^2(t)\theta(t) = F(t)$$

 $-ml\ddot{z}(t) + (ml^2 + l_m)\ddot{\theta}(t) + k\dot{\theta}(t) + mgl\theta(t) = 0$

▶ Defining the premisse variable by $\xi(t) = \dot{\theta}^2(t)$, with $\xi(t) \in [\underline{\xi} \ \overline{\xi}]$

$$\xi(t) = h_1(\xi(t))\overline{\xi} + h_2(\xi(t))\underline{\xi}, \quad \text{with} \quad \begin{cases} h_1(\xi(t)) = \frac{\xi(t) - \underline{\xi}}{\overline{\xi} - \underline{\xi}} \\ h_2(\xi(t)) = \frac{\overline{\xi} - \xi(t)}{\overline{\xi} - \underline{\xi}} \end{cases}$$

the system becomes

$$\begin{pmatrix} \dot{z}(t) \\ \dot{z}(t) \\ \dot{\theta}(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{-k_s}{m+M} & \frac{-t-lma}{m+M} & \frac{-ml}{m+M} & ka \\ 0 & 0 & 0 & 1 \\ -k_s a & -fa & -mla\xi(t)-(m+M)ga & -k_s a \end{pmatrix} \begin{pmatrix} z(t) \\ \dot{z}(t) \\ \dot{\theta}(t) \\ \dot{\theta}(t) \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1+mla}{m+M} \\ 0 \\ a \end{pmatrix} F(t)$$

with
$$a = \frac{1}{(I + I_m/(mI))(m+M) - mI}$$

▶ Using the nonlinear sector transformation, a TS system with r = 2 submodels is derived.

Bezzaoucha. Marx. Maguin, Ragot

Numerical

example

The input saturation is defined by: $F(t) \in [0 \ 3]$ Applying the proposed approach, the obtained gains are:

$$K_1 = [0.012 -15.04 \ 15.88 \ 0.79]$$

$$K_1 = \begin{bmatrix} 0.012 & -15.04 & 15.88 & 0.79 \end{bmatrix}$$
 $K_2 = \begin{bmatrix} 0.008 & -19.03 & 8.77 & 0.53 \end{bmatrix}$

- nominal control of the unsaturated system
 - nominal control applied to the saturated system \rightarrow unstable!

 - - proposed PDC control of the saturated system 4 D > 4 A > 4 B >

Possible improvements and extensions

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling of the saturated control

Saturated PDC control

Numerical

Possible improvements and extensions

Conclusion & perspectives Relaxation of the LMI constraints by applying the relaxation scheme from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]

$$R_{ijk} < 0 \Rightarrow \begin{cases} R_{iik} < 0 \\ rac{2}{r-1}R_{iik} + R_{ijk} + R_{jik} < 0 \end{cases}$$
 $n^2 3^{n_u} LMIs \Rightarrow rac{n(n+1)3^{n_u}}{2} LMIs$

Possible improvements and extensions

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling o the saturated

Saturated PDC contri

Numerica example

Possible improvements and extensions

Conclusion & perspectives Relaxation of the LMI constraints by applying the relaxation scheme from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]

$$R_{ijk} < 0 \Rightarrow \begin{cases} R_{iik} < 0 \\ rac{2}{r-1}R_{iik} + R_{ijk} + R_{jik} < 0 \end{cases}$$
 $n^2 3^{n_u} LMIs \Rightarrow rac{n(n+1)3^{n_u}}{2} LMIs$

 With the descriptor approach, the saturated closed-loop system can be written as

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \end{pmatrix} = \sum_{i=1}^{r} \sum_{j=1}^{3^{n_u}} h_i(z(t)) \mu_i(u(t)) \begin{pmatrix} A_i & B_i \Lambda_j \\ -K_j & -I \end{pmatrix} \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} + \begin{pmatrix} B_i \Gamma_j \\ 0 \end{pmatrix}$$

$$\rho^2 3^{n_u} IMIs \Rightarrow \rho 3^{n_u} IMIs$$

Possible improvements and extensions

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some backgroun

Sugeno modeling o the saturated control

PDC contr

example

Possible improvements and extensions

Conclusion & perspectives Relaxation of the LMI constraints by applying the relaxation scheme from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]

$$R_{ijk} < 0 \Rightarrow \begin{cases} R_{iik} < 0 \\ rac{2}{r-1}R_{iik} + R_{ijk} + R_{jik} < 0 \end{cases}$$
 $n^2 3^{n_u} LMIs \Rightarrow rac{n(n+1)3^{n_u}}{2} LMIs$

 With the descriptor approach, the saturated closed-loop system can be written as

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \end{pmatrix} = \sum_{i=1}^{r} \sum_{j=1}^{3^{n_u}} h_i(z(t)) \mu_i(u(t)) \begin{pmatrix} A_i & B_i \Lambda_j \\ -K_j & -I \end{pmatrix} \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} + \begin{pmatrix} B_i \Gamma_j \\ 0 \end{pmatrix}$$

$$n^2 3^{n_u} IMIs \Rightarrow n 3^{n_u} IMIs$$

► The descriptor approach allows to extend these results to static and dynamic output feedback, see [Bezzaoucha et. al., Contribution to the constrained output feedback, ACC 2013]

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some backgroun

The Takag Sugeno modeling of the saturated control

Saturated PDC contro

Numerical

Possible improvements and extensions

Conclusion & perspectives

- Unified T-S representation of
 - the nonlinear system
 - the input saturation

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling of the saturated control

Saturated PDC contri

Numerical example

Possible improvements and extensions

Conclusion & perspectives

- Unified T-S representation of
 - the nonlinear system
 - the input saturation
- LMI formulation of the saturated state feedback controller design for nonlinear systems

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some backgroun

Sugeno modeling of the saturated control

Saturated PDC control

Numerical example

Possible improvements and extensions

Conclusion & perspectives

- Unified T-S representation of
 - the nonlinear system
 - the input saturation
- LMI formulation of the saturated state feedback controller design for nonlinear systems
- Easy extension to both
 - static output control
 - dynamic output control of arbitrary order

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Sugeno modeling of the saturated control

Saturated PDC control

Numerical example

Possible improvements and extensions

Conclusion & perspectives

- Unified T-S representation of
 - the nonlinear system
 - the input saturation
- LMI formulation of the saturated state feedback controller design for nonlinear systems
- Easy extension to both
 - static output control
 - dynamic output control of arbitrary order
- Perspectives
 - state or output tracking control
 - conservatism reduction of the LMI constraints

Stabilization of nonlinear systems subject to actuator saturation

S. Bezzaoucha, B. Marx, D. Maquin, J. Ragot

Research Centre for Automatic Control, Nancy, France (Centre de Recherche en Automatique de Nancy)

Université de Lorraine

