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Problem statement

The overall objective is
» the stabilization of a dynamic nonlinear system

x(t) = f(x(1), u(t))
y(t) = g(x(1), u(1))
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The overall objective is

Bezzaoucha,

Marc. » the stabilization of a dynamic nonlinear system

o x(t) = f(x(1), u(t))
ctmement y(t) = g(x(t), u(t))
Sackaround » by a linear time varying state feedback

u(t) = —K(t)x(t)

» despite a saturated input control

sat(u(t))
Umax, Umax S U(t)
. ) sat(u(t)) = S u(t), Umin < U(t) < Umax
‘ Unax Umin, U(t) S Umin
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The Takagi-Sugeno modeling of a nonlinear system

» Any dynamic nonlinear system
x(t) = f(x(1), u(t))
y(t) = g(x(1), u(t))
with bounded nonlinearities or with x(t) lying in a compact set of R”
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The Takagi-Sugeno modeling of a nonlinear system

» Any dynamic nonlinear system

Bezzaoucha,

iau, x(t) = f(x(1), u(t))
Ragot
? y(t) = 9(x(t), u(t))
o with bounded nonlinearities or with x(t) lying in a compact set of R”
and some
background » can be written as a Takagi-Sugeno (T-S) system

= hi(z(t) (Aix(t) + Biu(t))

i=1
Zh (1)) (Cix(t) + Dyu(t))

where — z(t) is the deC|S|on variable
— hi(z(t)) are the activating functions
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The Takagi-Sugeno modeling of a nonlinear system

» Any dynamic nonlinear system

Bezzaoucha,

iau, x(t) = f(x(1), u(t))
Ragot
? y(t) = 9(x(t), u(t))
o with bounded nonlinearities or with x(t) lying in a compact set of R”
and some
background » can be written as a Takagi-Sugeno (T-S) system

= hi(z(t) (Aix(t) + Biu(t))

i=1
Zh (1)) (Cix(t) + Dyu(t))

where — z(t) is the deC|S|on variable
— hi(z(t)) are the activating functions

» The decision variable is assumed to be measurable
» The activating functions h;(z(t)) satisfy the convex sum properties

0 < hi(z(t)) and Zh (1) =1
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The Takagi-Sugeno modeling of the saturated control

A scalar saturated input

Bezzaoucha,
M“:[ffn. Umax, Umax < U(t)
Ragot sat(u(t)) =< u(t), Umin < U(t) < Umax
Umin, U(t) < Umin
can be putin a T-S (or polytopic) form:
The Takagi-
2%%3?@ of hl (u(t))I
the
saturated _ - % .
control umin umax < V(O u(t)+umm)
sat(u(t))I hz(“(t))T 'ﬂj
umin u@ ] ] N %
Unax Uinin Uinax / (1 u(t)+0>
by T
Oxu(t)+u,
e RO,
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The Takagi-Sugeno modeling of the saturated control

A scalar saturated input

Bezzaoucha,
Marx,

Maguin, Umax, Umax < U(t)
Ragot sat(u(t)) = u(t),  Unmin < U(t) < Umax
Umin, U(t) < Umin

can be putin a T-S (or polytopic) form:

The Takagi-

Sugeno

modeling of Sat U t h U )\ i

med\gf (1) E (u(®))(Niu(t) + i)

saturated

control Wlth
A =0 M = Unin by (u(t)) = =00 tmn)
Ao =1 Yo = 0 hz(U(t)) — S"gn(.u(t)_“min)_25ign(u(t)—“max)
As=0 V8 = Umax ha(u(t)) = 10D tnax)

where the h;(u(t)) functions satisfy the convex sum properties

0< h(u(t) <1 and Zh(u
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The Takagi-Sugeno modeling of the saturated control

» The T-S modeling can be generalized to a saturated vector input

Bezzaoucha,
sat ((u;(t)» _ (SL A O @) +9)
us(t) i B (PO () + )
The Takagi-
Sugeno
modeling of

the
saturated
control
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The Takagi-Sugeno modeling of the saturated control

» The T-S modeling can be generalized to a saturated vector input

oo (6

» Since 3, hl =1and >, h? =1, then sat(u(t)) becomes

sat ((“ (1

u3(t)

1

-

)) (S RN () + )
A\ RPRO) () +4P)

S AW )N U (1) + ) (S RE(A(D))
(S8 Al (1)) Sy B O)OF (0 + )
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The Takagi-Sugeno modeling of the saturated control

» The T-S modeling can be generalized to a saturated vector input

Bezzaoucha,

e, u'(O)) _ (S5 AU ) U (1) + )
o sat ((Uz(t))> = (2?_1 h]z(uz(t))()\/zuz(t) +’7]2))

» Since 3, hl =1and >, h? =1, then sat(u(t)) becomes

e sat((u‘(t))) _ (Z% A (U ()N U (1) + 1) (S5 P(u ())))

wA(®) (S04 Al (0)) S5y BUP() OU(1) +57)

the
control > Or eqUiValently

sat ((40)) = oS riw ey | (3 8)uo+ (7)
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The Takagi-Sugeno modeling of the saturated control

» The T-S modeling can be generalized to a saturated vector input

Bezzaoucha,

e, u'(O)) _ (S5 AU ) U (1) + )
o sat ((Uz(t))> = (2?_1 h]z(uz(t))()\/zuz(t) +’7]2))

» Since 3, hl =1and >, h? =1, then sat(u(t)) becomes

e sat<(5‘(f))) _ (Z% A (U ()N U (1) + 1) (S5 P(u ())))

(0 (S22 AU (1)) S8y BB OREE() +F)
ol » or equivalently

u'(t 2 2( A0 5!

sat (1)) - S Loy (5 ) wo ()

wi(u(t)) \_7\1’_’ \TJ

» More generally, for u(t) € R™, sat(u(t)) can be written under a TS form
3Mu

sat(u Zu, u(t))(Aiu(t) +T7)
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Saturated PDC control (objective)

» Given a saturated nonlinear system
x(t) = Zh 1)) (Aix(t) + Bisat(u(t)))

y(t) = Z hi(z())(Cix(t) + Disat(u(t)))
» determine the gains K; of the PDC state feedback controller
=3~ mz()Kx(t)
j=1

» in order to
— ensure the closed loop stability
— despite the input saturation
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Saturated PDC control
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Bezzaoucha,
Marx,
o » Without input saturation, the closed loop system is
r r
X(t) = m(z2(0))h(2(8))(A - BiK)x(t)
i=1 j=1
— asymptotically stable, if _
AP — BiK; + (AiP — BiK;)" < 0and K; = K;P~"
Saturated
PDC control
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Saturated PDC control
I\

Bezzaoucha,
Marx,

"Regor » Without input saturation, the closed loop system is

X(t) = m(z2(0))h(2(8))(A - BiK)x(t)
=1 j=1
— asymptotically stable, if

AP — BiK; + (AiP — BiK;)" < 0and K; = K;P~"

Saturated

PDC control » With the input saturation, the closed loop system is

X)) = 373 O)AO)u(2(0) (A BAK)X(D) + Br)

i=1 j=1

— asymptotical stability is no longer ensured
— convergence in a ball, to be minimized, is sought
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Saturated PDC control (sketch of the proof)

Bezzaoucha,
Marx,
Magquin,

Reget V(x(t)) = x"(t)Px(t), P=P" >0

» The closed-loop stability is studied with a quadratic Lyapunov function

Saturated
PDC control
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Saturated PDC control (sketch of the proof)

» The closed-loop stability is studied with a quadratic Lyapunov function

V(x(t) = x"(t)Px(t), P=P" >0

» |t can be shown that:

r 3

VL) 5~ 5™ S bz () me(u(®) (x (0 Qux() + Fi)

i=1 j=1 k=1

with Qjx and Rjx depending on P, K; and a slack variable Xy.
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Saturated PDC control (sketch of the proof)

» The closed-loop stability is studied with a quadratic Lyapunov function

V(x(t) = x"(t)Px(t), P=P" >0

» |t can be shown that:

r 3

VL) 5~ 5™ S bz () me(u(®) (x (0 Qux() + Fi)

i=1 j=1 k=1

with Qjx and Rjx depending on P, K; and a slack variable Xy.

» Sufficient LMI convergence conditions into a ball are derived:

Qi <0 avix) g
e=min;jx(A(—Qpx)) = o =x(t)—=B|0 \/E
HA = Vi)l > /2 Ve

6= max; ; k R,'jk
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Saturated PDC control (LMI formulation)
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There exists a PDC controller for a saturated input system such that the
system state converges toward an origin-centered ball of radius bounded by
( if there exists matrices Py = P{ > 0, R;, ¥x = () > 0, solutions of
min
Pi,Rj .k, 8

under the LMI constraints (fori,j=1,...,nand k =1,...,3™)

A,‘P1 — B,‘/\kH/' + (A,‘P1 — B,‘/\kF!'j)T / / 0
/ -2k 0 /
] o [—ar o | <°
0 / 0 -5l

MiB/TkBilk < 3
The gains of the controller u(t) = — Y7, h;(2(t))Kix(t) are given by

K=P'R
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A numerical example: the cart-pendulum system

Bezzaoucha,
Marx,

o . o
foaun v > z(t): cart position
, > 6(t): angle between vertical and
E() v @ £ 42 pendulum
z » M and m: cart and pendulum

Lmk,( masses

» [and In: length and inertia
moment of the pendulum

» f, ks and K: friction coefficients

mg

Numerical > F(t) saturated control inpUt

The system is described by:
(m+ M)2(t) + ksz(t) + f2(t) — mld(t) cos(6(t)) + mI6?(t) sin(8(t)) = F(t)
—miz(t) cos(0(t)) + (M + In)6(t) + kO(t) + mgl sin(6(t)) = 0

with a saturated control input: F(t) € [0 3]
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A numerical example: the cart-pendulum system

Bezzaoueha, » With sin(#) ~ 6 and cos(d) ~ 1, it becomes
Maquin, - .
Ragot (m+ M)z(t) + ksz(t) + fz(t) — mi6(t) + ml6>(£)0(t) = F(t)

—mlz(t) + (M + In)8(t) + kO(t) + mglé(t) = 0

Numerical
example
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A numerical example: the cart-pendulum system

Bezzaoueha, » With sin(#) ~ 6 and cos(d) ~ 1, it becomes
Maquin, - .
Ragot (m+ M)z(t) + ksz(t) + fz(t) — mi6(t) + ml6>(£)0(t) = F(t)

—mlz(t) + (M + In)8(t) + kO(t) + mglé(t) = 0

» Defining the premisse variable by £(t) = 6%(t), with £(t) € [€ €]

b (£(H)) = S0=¢€
_ " {ma» -

£(t) = h(E(D)E + ha(&(1))E, o
ha(£(t) = S50

Numerical
example
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A numerical example: the cart-pendulum system

Botenoucha. » With sin(#) ~ 6 and cos(f) ~ 1, it becomes
Maquin, - .
Ragot (m+ M)z(t) + ksz(t) + fz(t) — mi6(t) + ml6>(£)0(t) = F(t)
—mlz(t) + (M + In)8(t) + kO(t) + mglé(t) = 0
» Defining the premisse variable by £(t) = 6%(t), with £(t) € [€ €]
()= e+ ey, win | "E e
= , Wi o
1 e ha(&(1) = S50
Numerical » the system becomes
example
° 2(t) 0 1 0 0\ /z(t) 0
z(t) —ks —f—Ima —ml K 2(1) 1m+m/a
(G(t)) ( m+M m-6M m-6M 13 ) (G(t)) +( EM )F(t)
o(t) 7ksa —fa —mlaé(t)—(m+M)ga —ksa o(t) a
With 8 = (=
» Using the nonlinear sector transformation, a TS system with r = 2

submodels is derived.

FUZZ'|IEEE’'2013, july 2013, Hyderabad 12/ 16



A numerical example: the cart-pendulum system

The input saturation is defined by: F(t) € [0 3]

Bezzaoucha,

e, Applying the proposed approach, the obtained gains are:

Ragot Ki =[0.012 —15.04 15.88 0.79] K> =[0.008 —19.03 8.77 0.53]
Numerical
example

» nominal control of the unsaturated system
» nominal control applied to the saturated system — unstable !
» proposed PDC control of the saturated system
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Possible improvements and extensions

B » Relaxation of the LMI constraints by applying the relaxation scheme
M;aqg“;f' from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]
Rixk <0
Rk <0 =
" {,_21:‘?:'//( + Rijx + Rjix <0
n(n+ 1)3™

n?3™ LMiIs = LMls

2

Possible im-
provements
and
extensions
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Possible improvements and extensions
0\

Botenoucha. » Relaxation of the LMI constraints by applying the relaxation scheme
e from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]
Rixk <0
Rk <0 =
4 {,_21Riik + Rijx + Rjix <0
Nu
3™ LMis = w LMis
» With the descriptor approach, the saturated closed-loop system can be
written as
I 0\/x(t) i BiN\ [ x(1) Bil;
Possible im- (0 0) (U( t)) Z Z h Z( t))‘ul t))<( _I U( t) * 0
provements i=1 / 1
xiensions n?3™ LMis = n3"™ LMIs
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Possible improvements and extensions
0\

Botenoucha. » Relaxation of the LMI constraints by applying the relaxation scheme
e from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]
Rixk <0
Rk <0 =
4 {,_21Riik + Rijx + Rjix <0
Nu
3™ LMis = w LMis
» With the descriptor approach, the saturated closed-loop system can be
written as
I 0\/x(t) i BiN\ [ x(1) Bil;
Possible im- (0 0) (U( t)) Z Z h Z( t))‘ul t))<( _I U( t) * 0
provements i=1 / 1
xiensions n?3™ LMis = n3"™ LMIs

» The descriptor approach allows to extend these results to static and
dynamic output feedback, see [Bezzaoucha et. al., Contribution to the
constrained output feedback, ACC 2013]
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Conclusion & perspectives

Bezzaoucha,
Mar)g,
ot » Unified T-S representation of
— the nonlinear system

— the input saturation

» LMI formulation of the saturated state feedback controller design for
nonlinear systems

v

Easy extension to both
— static output control
— dynamic output control of arbitrary order

» Perspectives
gzli':;g — state or output tracking control
tives — conservatism reduction of the LMI constraints
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