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Problem statement

The overall objective is
I the stabilization of a dynamic nonlinear system

ẋ(t) = f (x(t), u(t))

y(t) = g(x(t), u(t))

I by a linear time varying state feedback

u(t) = −K (t)x(t)

I despite a saturated input control

sat(u(t)) 

u(t) 

umax 

umin sat(u(t)) =


umax , umax ≤ u(t)
u(t), umin ≤ u(t) ≤ umax

umin, u(t) ≤ umin
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ẋ(t) = f (x(t), u(t))

y(t) = g(x(t), u(t))

I by a linear time varying state feedback

u(t) = −K (t)x(t)

I despite a saturated input control

sat(u(t)) 

u(t) 

umax 

umin sat(u(t)) =


umax , umax ≤ u(t)
u(t), umin ≤ u(t) ≤ umax

umin, u(t) ≤ umin

FUZZ’IEEE’2013, july 2013, Hyderabad 3/ 16



Bezzaoucha,
Marx,

Maquin,
Ragot

Problem
statement
and some
background

The Takagi-
Sugeno
modeling of
the
saturated
control

Saturated
PDC control

Numerical
example

Possible im-
provements
and
extensions

Conclusion
& perspec-
tives

The Takagi-Sugeno modeling of a nonlinear system

I Any dynamic nonlinear system

ẋ(t) = f (x(t), u(t))

y(t) = g(x(t), u(t))

with bounded nonlinearities or with x(t) lying in a compact set of Rn

I can be written as a Takagi-Sugeno (T-S) system

ẋ(t) =
r∑

i=1

hi (z(t)) (Aix(t) + Biu(t))

y(t) =
r∑

i=1

hi (z(t)) (Cix(t) + Diu(t))

where – z(t) is the decision variable
– hi (z(t)) are the activating functions

I The decision variable is assumed to be measurable
I The activating functions hi (z(t)) satisfy the convex sum properties

0 ≤ hi (z(t)) ≤ 1 and
r∑

i=1

hi (z(t)) = 1
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The Takagi-Sugeno modeling of the saturated control

A scalar saturated input

sat(u(t)) =


umax , umax ≤ u(t)
u(t), umin ≤ u(t) ≤ umax

umin, u(t) ≤ umin

can be put in a T-S (or polytopic) form:

sat(u(t)) 
u(t) 

umax 

umin 

h1(u(t)) 

umax umin 

h2(u(t)) 

umax umin 

h3(u(t)) 

umax umin 

(0×u(t)+umin) 

(0×u(t)+umax) 

(1×u(t)+0) 
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The Takagi-Sugeno modeling of the saturated control

A scalar saturated input

sat(u(t)) =


umax , umax ≤ u(t)
u(t), umin ≤ u(t) ≤ umax

umin, u(t) ≤ umin

can be put in a T-S (or polytopic) form:

sat(u(t)) =
3∑

i=1

hi (u(t))(λiu(t) + γi )

with
λ1 = 0
λ2 = 1
λ3 = 0


γ1 = umin

γ2 = 0
γ3 = umax


h1(u(t)) = 1−sign(u(t)−umin)

2

h2(u(t)) = sign(u(t)−umin)−sign(u(t)−umax )
2

h3(u(t)) = 1+sign(u(t)−umax )
2

where the hi (u(t)) functions satisfy the convex sum properties

0 ≤ hi (u(t)) ≤ 1 and
3∑

i=1

hi (u(t)) = 1
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The Takagi-Sugeno modeling of the saturated control

I The T-S modeling can be generalized to a saturated vector input

sat
((

u1(t)
u2(t)

))
=

(∑3
i=1 h1

i (u1(t))(λ1
i u1(t) + γ1

i )∑3
j=1 h2

j (u2(t))(λ2
j u2(t) + γ2

j )

)

I Since
∑

i h1
i = 1 and

∑
j h2

j = 1, then sat(u(t)) becomes

sat
((

u1(t)
u2(t)

))
=

∑3
i=1 h1

i (u1(t))(λ1
i u1(t) + γ1

i )
(∑3

j=1 h2
j (u2(t))

)(∑3
i=1 h1

i (u1(t))
)∑3

j=1 h2
j (u2(t))(λ2

j u2(t) + γ2
j )


I or equivalently

sat
((

u1(t)
u2(t)

))
=

3∑
i=1

3∑
j=1

h1
i (u1(t))h2

j (u2(t))︸ ︷︷ ︸
µi (u(t))


(
λ1

i 0
0 λ2

j

)
︸ ︷︷ ︸

Λi

u(t) +

(
γ1

i

γ2
j

)
︸ ︷︷ ︸

Γi


I More generally, for u(t) ∈ Rnu , sat(u(t)) can be written under a TS form

sat(u(t)) =
3nu∑
i=1

µi (u(t))(Λiu(t) + Γi )
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Saturated PDC control (objective)

I Given a saturated nonlinear system

ẋ(t) =
r∑

i=1

hi (z(t))(Aix(t) + Bisat(u(t)))

y(t) =
r∑

i=1

hi (z(t))(Cix(t) + Disat(u(t)))

I determine the gains Kj of the PDC state feedback controller

u(t) = −
r∑

j=1

hj (z(t))Kjx(t)

I in order to
– ensure the closed loop stability
– despite the input saturation
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Saturated PDC control

I Without input saturation, the closed loop system is

ẋ(t) =
r∑

i=1

r∑
j=1

hi (z(t))hj (z(t))(Ai − BiKj )x(t)

→ asymptotically stable, if
AiP − Bi K̄j + (AiP − Bi K̄j )

T < 0 and Kj = K̄jP−1

I With the input saturation, the closed loop system is

ẋ(t) =
r∑

i=1

r∑
j=1

hi (z(t))hj (z(t))µk (z(t)) ((Ai − Bi Λk Kj )x(t) + Bi Γk )

→ asymptotical stability is no longer ensured
→ convergence in a ball, to be minimized, is sought
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ẋ(t) =
r∑

i=1

r∑
j=1

hi (z(t))hj (z(t))(Ai − BiKj )x(t)

→ asymptotically stable, if
AiP − Bi K̄j + (AiP − Bi K̄j )

T < 0 and Kj = K̄jP−1

I With the input saturation, the closed loop system is
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Saturated PDC control (sketch of the proof)

I The closed-loop stability is studied with a quadratic Lyapunov function

V (x(t)) = xT (t)Px(t), P = PT > 0

I It can be shown that:

dV (x(t))

dt
≤

r∑
i=1

r∑
j=1

3nu∑
k=1

hi (z(t))hj (z(t))µk (u(t))
(

xT (t)Qijk x(t) + Rijk

)
with Qijk and Rijk depending on P, Kj and a slack variable Σk .

I Sufficient LMI convergence conditions into a ball are derived:
Qijk < 0
ε = mini,j,k (λ(−Qijk ))

δ = maxi,j,k Rijk

⇒

{ dV (x(t))
dt < 0

∀||x(t)|| ≥
√

δ
ε

⇒ x(t)→ B

(
0,

√
δ

ε

)

FUZZ’IEEE’2013, july 2013, Hyderabad 9/ 16
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I Sufficient LMI convergence conditions into a ball are derived:
Qijk < 0
ε = mini,j,k (λ(−Qijk ))

δ = maxi,j,k Rijk

⇒

{ dV (x(t))
dt < 0

∀||x(t)|| ≥
√

δ
ε

⇒ x(t)→ B

(
0,

√
δ

ε

)
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Saturated PDC control (LMI formulation)

There exists a PDC controller for a saturated input system such that the
system state converges toward an origin-centered ball of radius bounded by
β if there exists matrices P1 = PT

1 > 0, Rj , Σk = (Σk )T > 0, solutions of

min
P1,Rj ,Σk ,β

β

under the LMI constraints (for i, j = 1, . . . , n and k = 1, . . . , 3nu )
AiP1 − Bi Λk Rj + (AiP1 − Bi Λk Rj )

T I I 0
I −Σk 0 I
I 0 −βI 0
0 I 0 −βI

 < 0

ΓT
k BT

i Σk Bi Γk < β

The gains of the controller u(t) = −
∑r

j=1 hj (z(t))Kjx(t) are given by

Kj = P−1
1 Rj
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A numerical example: the cart-pendulum system

I z(t): cart position
I θ(t): angle between vertical and

pendulum
I M and m: cart and pendulum

masses
I l and Im: length and inertia

moment of the pendulum
I f , ks and k : friction coefficients
I F (t): saturated control input

The system is described by:

(m + M)z̈(t) + ksz(t) + f ż(t)−ml θ̈(t) cos(θ(t)) + ml θ̇2(t) sin(θ(t)) = F (t)

−mlz̈(t) cos(θ(t)) + (ml2 + Im)θ̈(t) + k θ̇(t) + mgl sin(θ(t)) = 0

with a saturated control input: F (t) ∈ [0 3]
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A numerical example: the cart-pendulum system

I With sin(θ) ≈ θ and cos(θ) ≈ 1, it becomes

(m + M)z̈(t) + ksz(t) + f ż(t)−ml θ̈(t) + ml θ̇2(t)θ(t) = F (t)

−mlz̈(t) + (ml2 + Im)θ̈(t) + k θ̇(t) + mglθ(t) = 0

I Defining the premisse variable by ξ(t) = θ̇2(t), with ξ(t) ∈ [ξ ξ]

ξ(t) = h1(ξ(t))ξ + h2(ξ(t))ξ, with

h1(ξ(t)) =
ξ(t)−ξ
ξ−ξ

h2(ξ(t)) = ξ−ξ(t)
ξ−ξ

I the system becomesż(t)
z̈(t)
θ̇(t)
θ̈(t)

=

 0 1 0 0
−ks
m+M

−f−lma
m+M

−ml
m+M ka

0 0 0 1
−ksa −fa −mlaξ(t)−(m+M)ga −ksa

z(t)
ż(t)
θ(t)
θ̇(t)

+

 0
1+mla
m+M

0
a

F (t)

with a = 1
(l+Im/(ml))(m+M)−ml

I Using the nonlinear sector transformation, a TS system with r = 2
submodels is derived.
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A numerical example: the cart-pendulum system

The input saturation is defined by: F (t) ∈ [0 3]

Applying the proposed approach, the obtained gains are:
K1 = [0.012 −15.04 15.88 0.79] K2 = [0.008 −19.03 8.77 0.53]
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I nominal control of the unsaturated system
I nominal control applied to the saturated system→ unstable !
I proposed PDC control of the saturated system
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Possible improvements and extensions

I Relaxation of the LMI constraints by applying the relaxation scheme
from [Tuan et. al., IEEE Tr. Fuzzy Syst., 2001]

Rijk < 0 ⇒

{
Riik < 0

2
r−1 Riik + Rijk + Rjik < 0

n23nu LMIs ⇒ n(n + 1)3nu

2
LMIs

I With the descriptor approach, the saturated closed-loop system can be
written as(

I 0
0 0

)(
ẋ(t)
u̇(t)

)
=

r∑
i=1

3nu∑
j=1

hi (z(t))µi (u(t))

((
Ai Bi Λj

−Kj −I

)(
x(t)
u(t)

)
+

(
Bi Γj

0

))
n23nu LMIs ⇒ n3nu LMIs

I The descriptor approach allows to extend these results to static and
dynamic output feedback, see [Bezzaoucha et. al., Contribution to the
constrained output feedback, ACC 2013]
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Conclusion & perspectives

I Unified T-S representation of
– the nonlinear system
– the input saturation

I LMI formulation of the saturated state feedback controller design for
nonlinear systems

I Easy extension to both
– static output control
– dynamic output control of arbitrary order

I Perspectives
– state or output tracking control
– conservatism reduction of the LMI constraints
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