Reference Model Tracking Control for Nonlinear Systems Described by Takagi-Sugeno Structure

S. Bezzaoucha, B. Marx, D. Maquin, J. Ragot

Research Centre for Automatic Control, Nancy, France (Centre de Recherche en Automatique de Nancy)

Université de Lorraine

Outline of the talk

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerical example

Possible improvements and extensions

Conclusion & perspectives

& perspe tives

Problem statement: reference model tracking control

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numeric example

provements and extensions

Conclusion & perspectives

Let us consider:

a TS nonlinear system

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

$$y(t) = Cx(t)$$

a reference model

$$\dot{x}_r(t) = A_r x_r(t) + B_r u_r(t)$$

Problem statement: reference model tracking control

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

example

provement and extensions

Conclusion
& perspe

Let us consider:

a TS nonlinear system

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

$$v(t) = Cx(t)$$

▶ a reference model

$$\dot{x}_r(t) = A_r x_r(t) + B_r u_r(t)$$

The objective is:

- ▶ to find the control law u(t)
- such that x(t) is closed to $x_r(t)$

Problem statement: TS systems with unmeasurable decision variable

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerica example

provement and extensions

Conclusion & perspectives ► The considered Takagi-Sugeno (T-S) system is defined by

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) \left(A_i x(t) + B_i u(t) \right)$$
$$y(t) = C x(t)$$

where -z(t) is the decision variable $-\mu_i(z(t))$ are the activating functions

Problem statement: TS systems with unmeasurable decision variable

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerica example

Possible in provement and extensions

Conclusion & perspectives ► The considered Takagi-Sugeno (T-S) system is defined by

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) \left(A_i x(t) + B_i u(t) \right)$$
$$y(t) = C x(t)$$

where -z(t) is the decision variable $-\mu_i(z(t))$ are the activating functions

► The decision variable depend on the unmeasurable state

$$\mu_i(z(x(t))) = h_i(x(t))$$

▶ The activating functions $h_i(x(t))$ satisfy the convex sum properties

$$0 \le h_i(x(t)) \le 1$$
 and $\sum_{i=1}^r h_i(x(t)) = 1$

Reference model tracking controller

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerica example

Possible in provement and

Conclusio

The proposed controller structure:

► PDC controller

TS state observer

$$u(t) = -\sum_{i=1}^{r} h_i(\hat{x}(t))K_i(x_r(t) - \hat{x}(t)) \qquad \dot{\hat{x}}(t) = \sum_{i=1}^{r} h_i(\hat{x}(t))(A_i\hat{x}(t) + B_iu(t) + L_i(y(t) - \hat{y}(t)))$$
$$\hat{y}(t) = C\hat{x}(t)$$

Reference model tracking controller

Bezzaoucha. Marx. Maguin, Ragot

Reference model tracking control

The proposed controller structure:

▶ PDC controller

TS state observer

$$u(t) = -\sum_{i=1}^{r} h_i(\hat{x}(t)) K_i(x_r(t) - \hat{x}(t)) \qquad \dot{\hat{x}}(t) = \sum_{i=1}^{r} h_i(\hat{x}(t)) (A_i \hat{x}(t) + B_i u(t) + L_i(y(t) - \hat{y}(t)))$$
$$\hat{y}(t) = C\hat{x}(t)$$

▶ The gains K_i and L_i are determined to minimize the \mathcal{L}_2 -gain from $u_r(t)$ to the tracking error $e_r(t) = x(t) - x_r(t)$

Observer design for TS system with unmeasurable decision variable

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

example

provement and extensions

Conclusion & perspectives

- ► The main difficulty in the observer design is that
 - the activating functions of the system depend on x(t)
 - the activating functions of the observer depend on $\hat{x}(t)$
- The system is then re-written as

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(\hat{x}(t))(A_ix(t) + B_iu(t)) + (h_i(x(t)) - h_i(\hat{x}(t)))(A_ix(t) + B_iu(t))$$

Observer design for TS system with unmeasurable decision variable

Bezzaoucha. Marx. Maguin. Ragot

Reference model tracking control

The main difficulty in the observer design is that

- the activating functions of the system depend on x(t)

- the activating functions of the observer depend on $\hat{x}(t)$

The system is then re-written as

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(\hat{x}(t))(A_i x(t) + B_i u(t)) + (h_i(x(t)) - h_i(\hat{x}(t)))(A_i x(t) + B_i u(t))$$

or equivalently as an uncertain TS system

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(\hat{x}(t))((A_i + \Delta A(t))x(t) + (B_i + \Delta B(t))u(t))$$

with time varying bounded uncertainties defined, for $X \in \{A, B\}$, by

$$\Delta X(t) = \underbrace{\begin{bmatrix} X_1 & \dots & X_r \end{bmatrix}}_{\chi} \underbrace{\begin{bmatrix} h_1(x) - h_1(\hat{x}) & 0 & 0 \\ & \ddots & \\ 0 & 0 & h_r(x) - h_r(\hat{x}) \end{bmatrix}}_{\Sigma_X(t)} \underbrace{\begin{bmatrix} I \\ \dots \\ I \end{bmatrix}}_{E_X}$$

where $\Sigma_X(t)$ satisfies

$$\Sigma_X^T(t)\Sigma_X(t) \leq 1$$

Reference model controller design

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some backgroun

Reference model tracking control

example

provement and extensions

& perspec tives Let us denote:

- the tracking error :
$$e_r(t) = x(t) - x_r(t)$$

- the estimation error : $e_x(t) = x(t) - \hat{x}(t)$
- $X_h = \sum_{i=1}^r h_i(\hat{x}(t))$

The equations of the closed loop system are

$$\dot{e}_{r} = \underbrace{(A_{\hat{h}} + \Delta A)x + (B_{\hat{h}} + \Delta B)u}_{=\dot{x}} - \underbrace{(A_{r}x_{r} + B_{r}u_{r})}_{=\dot{x}_{r}} \\
\dot{e}_{x} = \underbrace{(A_{\hat{h}} + \Delta A)x + (B_{\hat{h}} + \Delta B)u}_{=\dot{x}} - \underbrace{(A_{\hat{h}}\hat{x} + B_{\hat{h}}u + L_{\hat{h}}(y - \hat{y}))}_{=\dot{x}}$$

$$\dot{x}_r = A_r x_r + B_r u_r$$

$$u = -K_{\hat{h}}x_r + K_{\hat{h}}\hat{x}$$

Reference model controller design

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some backgroun

Reference model tracking control

example

provements and extensions

& perspectives

Let us denote:

- the tracking error :
$$e_r(t) = x(t) - x_r(t)$$

- the estimation error : $e_x(t) = x(t) - \hat{x}(t)$
- $X_{\hat{h}} = \sum_{i=1}^r h_i(\hat{x}(t))$

The equations of the closed loop system are

$$\dot{e}_{r} = (A_{\hat{h}} + \Delta A) \underbrace{(e_{r} + x_{r})}_{=x} + (B_{\hat{h}} + \Delta B) u - (A_{r}x_{r} + B_{r}u_{r})$$

$$\dot{e}_{x} = (A_{\hat{h}} + \Delta A) \underbrace{(e_{r} + x_{r})}_{=x} + (B_{\hat{h}} + \Delta B) u - (A_{\hat{h}} \underbrace{(e_{r} + x_{r} - e_{x})}_{=\hat{x}} + B_{\hat{h}}u + L_{\hat{h}} \underbrace{Ce_{x}}_{(y - \hat{y})}$$

$$\dot{x}_{r} = A_{r}x_{r} + B_{r}u_{r}$$

$$X_r = A_r X_r + B_r u_r$$

$$0 = -u - K_{\hat{h}} x_r + K_{=\hat{h}} \underbrace{(e_r + x_r - e_x)}_{-\hat{v}}$$

➤ 3 dynamic equations and 1 static equation → descriptor system

Bezzaoucha, Marx, Maquin, Ragot

The closed loop system can be written as a descriptor TS system

$$E\dot{x}_a(t) = \sum_{i=1}^r h_i(\hat{x}(t)) \left(\bar{A}_i(t)x_a(t) + \bar{B}u_r(t)\right)$$

with

Reference

model tracking control

and extensions

Conclusion & perspectives

$$x_{a}(t) = \begin{bmatrix} e_{r}(t) \\ e_{x}(t) \\ x_{r}(t) \\ u(t) \end{bmatrix} \quad E = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \bar{B} = \begin{bmatrix} -B_{r} \\ 0 \\ B_{r} \\ 0 \end{bmatrix}$$

$$\bar{A}_{i}(t) = \begin{bmatrix} A_{i} + \Delta A(t) & 0 & A_{i} - A_{r} + \Delta A(t) & B_{i} + \Delta B(t) \\ \Delta A(t) & A_{i} - L_{i}C & \Delta A(t) & \Delta B(t) \\ 0 & 0 & A_{r} & 0 \\ K_{i} & -K_{i} & 0 & -I_{n_{u}} \end{bmatrix}$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerica example

provement and extensions

Conclusion & perspectives The closed-loop stability of

$$E\dot{x}_a(t) = \sum_{i=1}^r h_i(\hat{x}(t)) \left(\bar{A}_i x_a(t) + \bar{B}_i u_r(t)\right)$$

is studied with a quadratic Lyapunov function

$$V(x_a(t)) = x_a^{\mathsf{T}}(t)E^{\mathsf{T}}Px_a(t), \quad E^{\mathsf{T}}P = P^{\mathsf{T}}E \geq 0$$

with
$$P = diag(P_1, P_2, P_3, P_4)$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

example

provement and extensions

& perspe tives The closed-loop stability of

$$E\dot{x}_a(t) = \sum_{i=1}^r h_i(\hat{x}(t)) \left(\bar{A}_i x_a(t) + \bar{B}_i u_r(t)\right)$$

is studied with a quadratic Lyapunov function

$$V(x_a(t)) = x_a^T(t)E^T P x_a(t), \quad E^T P = P^T E \ge 0$$

with $P = diag(P_1, P_2, P_3, P_4)$

▶ The \mathcal{L}_2 -gain from $u_r(t)$ to $e_r(t)$ is bounded by η if

$$\dot{V}(x_a(t)) + x_a^T(t)Q_a x_a(t) - \eta^2 u_r^T(t)u_r(t) < 0$$

with $Q_a = diag(Q, 0, 0, 0)$.

Or equivalently if

$$\begin{pmatrix} x_a(t) \\ u_r(t) \end{pmatrix}^T \begin{pmatrix} \bar{A}_{\hat{h}}^T(t)P + P^T \bar{A}_{\hat{h}}(t) + Q_a & P^T \bar{B} \\ \bar{B}^T P & -\eta^2 I \end{pmatrix} \begin{pmatrix} x_a(t) \\ u_r(t) \end{pmatrix} < 0$$

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerica example

provement and extensions

& perspe tives The closed-loop stability of

$$E\dot{x}_a(t) = \sum_{i=1}^r h_i(\hat{x}(t)) \left(\bar{A}_i x_a(t) + \bar{B}_i u_r(t)\right)$$

is studied with a quadratic Lyapunov function

$$V(x_a(t)) = x_a^T(t)E^TPx_a(t), \quad E^TP = P^TE \ge 0$$

with $P = diag(P_1, P_2, P_3, P_4)$

▶ The \mathcal{L}_2 -gain from $u_r(t)$ to $e_r(t)$ is bounded by η if

$$\dot{V}(x_a(t)) + x_a^T(t)Q_ax_a(t) - \eta^2 u_r^T(t)u_r(t) < 0$$

with $Q_a = diag(Q, 0, 0, 0)$.

Or equivalently if

$$\begin{pmatrix} x_a(t) \\ u_r(t) \end{pmatrix}^T \begin{pmatrix} \bar{A}_{\hat{h}}^T(t)P + P^T \bar{A}_{\hat{h}}(t) + Q_a & P^T \bar{B} \\ \bar{B}^T P & -\eta^2 I \end{pmatrix} \begin{pmatrix} x_a(t) \\ u_r(t) \end{pmatrix} < 0$$

 By bounding the time varying terms, sufficient LMI conditions are derived

Design of the reference model tracking controller

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

example

provements and extensions

& perspetives

The \mathcal{L}_2 -gain from the reference input u_r to the tracking error e_r is bounded by η if there exists symmetric positive definite matrices P_1 , P_2 , P_3 , matrices P_4 , F_i and P_i , and positive scalars λ_1^1 , λ_3^1 , λ_5^1 , λ_1^2 , λ_3^2 and λ_4^2 , minimizing $\bar{\eta} = \eta^2$ under the following LMI constraints, for $i = 1, \ldots, r$

with

$$M_{i}^{1} = A_{i}^{T} P_{1} + P_{1} A_{i} + Q + (\lambda_{1}^{1} + \lambda_{1}^{2}) E_{A}^{T} E_{A}$$

$$M_{i}^{2} = P_{2} A_{i} + A_{i}^{T} P_{2} - C^{T} F_{i}^{T} - F_{i} C$$

$$M^{3} = A_{r}^{T} P_{3} + P_{3} A_{r} + (\lambda_{3}^{1} + \lambda_{3}^{2}) E_{A}^{T} E_{A}$$

$$M^{4} = -P_{4} - P_{4}^{T} + (\lambda_{4}^{1} + \lambda_{4}^{2}) E_{B}^{T} E_{B} E_{B}$$

The observer and controller gains are given by

$$K_i = (P_4^T)^{-1}$$
 and $L_i = P_2^{-1}F_i$

A numerical example

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

model tracking control

Numerical example

provement and extensions

Conclusion
& perspectives

▶ Let consider the TS system with r = 2 defined by

$$A_{1} = \begin{pmatrix} -1 & 1 & 0 \\ -6 & -5 & -1 \\ 3 & 0 & -1 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} -1 & 1 & 0 \\ -3 & -5 & -1 \\ -1 & -1 & -2 \end{pmatrix}$$

$$B_{1} = \begin{pmatrix} 0 & 0 \\ 0.4 & 0.1 \\ 0 & 0.2 \end{pmatrix} \qquad B_{2} = \begin{pmatrix} 0 & 0 \\ -0.2 & -1 \\ 1 & 0.5 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ightharpoonup The activating functions, depending on x(t) are defined by

$$h_1(z(t)) = \frac{2 - \sin(x_1(t)) - \tanh(x_2(t))}{2}$$
 $h_2(z(t)) = 1 - h_1(z(t))$

▶ The reference model is defined by

$$A_r = \begin{pmatrix} -1 & 1 & 0 \\ -2 & -8 & -1 \\ -1 & -2 & -5 \end{pmatrix} \qquad B_r = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$

A numerical example

Bezzaoucha. Marx. Maguin, Ragot

Numerica example

Applying the proposed approach, the obtained gains are:

$$K_1 = \begin{pmatrix} 20.63 & -381.4 & -47.24 \\ 10.09 & 00.09 & 107.2 \end{pmatrix}$$

$$L_1^T = \begin{pmatrix} -0.6914 & -3.230 & 3.157 \end{pmatrix}$$
 $L_2^T = \begin{pmatrix} -0.6954 & -0.1777 & -0.8158 \end{pmatrix}$

Estimation result

estimated state $\hat{x}(t)$

$K_1 = \begin{pmatrix} 20.63 & -381.4 & -47.24 \\ 10.08 & -90.82 & -137.3 \end{pmatrix}$ $K_2 = \begin{pmatrix} 13.42 & -320.8 & -859.0 \\ -56.96 & 863.6 & 66.28 \end{pmatrix}$

Tracking result

system state x(t)reference state $x_r(t)$

Possible improvements and extensions

Bezzaoucha. Marx. Maguin. Ragot

Possible improvements and extensions

Measurement noise

If a measurement noise d(t) affects the system output

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(x(t)) \left(A_i x(t) + B_i u(t) \right)$$
$$y(t) = Cx(t) + Gd(t)$$

the closed loop system becomes

$$E\dot{x}_{a}(t) = \bar{A}_{\hat{h}}x_{a}(t) + \underbrace{\begin{pmatrix} -B_{r} & 0 \\ 0 & -L_{\hat{h}}G \\ B_{r} & 0 \\ 0 & 0 \end{pmatrix}}_{\bar{B}_{\hat{h}}}\underbrace{\begin{pmatrix} u_{r}(t) \\ d(t) \end{pmatrix}}_{\bar{u}_{r}(t)}$$

▶ The \mathcal{L}_2 -gain from $\bar{u}_r(t)$ to $e_r(t)$ is minimized by finding $V(x_a)$ satisfying

$$\dot{V}(x_a(t)) + x_a^T(t)Q_ax_a(t) - \eta^2 \bar{u}_t^T(t)\bar{u}_t(t) < 0$$

Solved as previously by LMI optimization

Possible improvements and extensions

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

model tracking control

example

Possible improvements and extensions

& perspe tives

Output tracking

The objective is to minimize the output tracking error defined by $e_y(t) = y(t) - y_r(t)$, with $y_r(t)$ the output of the reference model

$$\dot{x}_r(t) = A_r x_r(t) + B_r u_r(t)$$

$$y_r(t) = C_r x_r(t)$$

► The output tracking error is generated by

$$E\dot{x}_a(t) = \bar{A}_{\hat{h}}x_a(t) + \bar{B}u_r(t)$$

$$e_y(t) = \underbrace{\begin{pmatrix} C & 0 & (C - C_r) & 0 \end{pmatrix}}_{\bar{C}}x_a(t)$$

▶ The \mathcal{L}_2 -gain from $u_r(t)$ to $e_y(t)$ is minimized by finding $V(x_a)$ satisfying

$$\dot{V}(x_a(t)) + x_a^T(t) \overline{C}^T Q_a \overline{C} x_a(t) - \eta^2 u_r^T(t) u_r(t) < 0$$

Solved as previously by LMI optimization

Conclusion & perspectives

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some backgroun

Reference model tracking control

example

provement and extensions

Conclusion & perspectives

Conclusion

- Reference model tracking controller
 - TS state observer
 - PDC controller
- Solution based on
 - descriptor approach
 - LMI formulation
- Easy extension to
 - noise measurement case
 - output tracking control

Conclusion & perspectives

Bezzaoucha, Marx, Maquin, Ragot

Problem statement and some background

Reference model tracking control

Numerica

provement and extensions

Conclusion & perspectives

Conclusion

- Reference model tracking controller
 - TS state observer
 - PDC controller
- Solution based on
 - descriptor approach
 - LMI formulation
- Easy extension to
 - noise measurement case
 - output tracking control

Perspectives

- ▶ State or output tracking control of nonlinear reference model
- Conservatism reduction of the LMI constraints

Reference Model Tracking Control for Nonlinear Systems Described by Takagi-Sugeno Structure

S. Bezzaoucha, B. Marx, D. Maquin, J. Ragot

Research Centre for Automatic Control, Nancy, France (Centre de Recherche en Automatique de Nancy)

Université de Lorraine

