
Nonlinear Joint State and Parameter Estimation :
Application to a Wastewater Treatment Plant

S. Bezzaouchaa,b, B. Marxa,b, D. Maquina,b, J. Ragota,b

aUniversit́e de Lorraine, CRAN, UMR 7039, 2 avenue de la Forêt de Haye Vandoeuvre-les-Nancy, Cedex
54516, France.

bCNRS, CRAN, UMR 7039, France.

Abstract

A systematic approach to joint state and time-varying parameter estimation for nonlin-
ear systems is proposed in this paper. Applying the sector nonlinearity transformation
to both the system nonlinearities and the time-varying parameters, the original system
is equivalently rewritten as a Takagi-Sugeno system with unmeasurable premise vari-
ables. A joint state and parameter observer whose parameters are designed by solving
an LMI optimization problem is then proposed. The target application is a realistic
model of an activated sludge wastewater treatment plant, being an uncertain nonlinear
system affected by a time-varying parameter.

Keywords: Time-varying nonlinear system, Takagi-Sugeno model, joint state and
parameter observer, waste water treatment plant.

1. INTRODUCTION

Since most of the control law and fault detection residual design [3], [6] are based
on estimated state variables, the observer design for nonlinear systems can be viewed
as the heart of system control and model-based diagnosis. Unfortunately, the introduc-
tion of time-varying parameters in the system models, needed to accurately represent
the system behaviour, leads to more challenging problems inestimation. In this case,
conventional observers, essentially developped for time invariant systems cannot be di-
rectly used, and so-called adaptive observers developed for joint state and unknown pa-
rameter estimation are needed [21]. The main difficulty in estimating the state of such
systems comes from the lack of knowledge on the parameter evolution. In the present
work, the authors focus on the nonlinear time-varying parameter systems where the
parameters are inaccessible (non measurable) and may be considered as model distur-
bances, uncertainties or faults acting on the system evolution.
Some results have been published on the time-varying systems problem. For example,
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the state estimation of linear systems with unknown constant or time-varying param-
eter is respectively addressed in [21] and [11]. Extensionsto nonlinear systems are
proposed in [1], [4], [16] and [22], but in those works, the parameter is assumed to be
constant. Only [9] considers time-varing parameter.
Numerous approaches were proposed in order to deal with nonlinear system estima-
tion or diagnosis [1], [5]. An efficient way consists in rewriting the original nonlinear
system in a simplier form, like the Takagi-Sugeno (T-S) model. Originaly introduced
by [18], the T-S representation allows to exactly describe nonlinear systems, under the
condition that the nonlinearities are bounded. This is reasonable since state variables
as well as parameters of physical systems are bounded ([15],[19] and the references
therein). The T-S model is a time-varying convex interpolation between linear submod-
els: 




ẋ(t) =

r∑

i=1

µi(ξ(t))(Aix(t) +Biu(t))

y(t) =

r∑

i=1

µi(ξ(t))(Cix(t) +Diu(t))

(1)

wherex(t) ∈ R
nx is the system state,u(t) ∈ R

nu is the control input andy(t) ∈ R
m is

the system output.ξ(t) ∈ R
q is the decision variable assumed to be either measurable

(as the system output), known (as the system input) or unmeasured (as the system
state). The weighting functionsµi(ξ(t)) satisfy the convex sum property:





r∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1, i = 1, . . . , r

(2)

The representation (1), along with the property (2), allowsto extend to nonlinear sys-
tems the use of some tools developed in the linear framework,for the stability study,
the controller design, the observer synthesis and the diagnosis [15], [19]. A systematic
and exact transformation of a nonlinear system into a T-S form, without any loss of
informations, is known as the Sector Nonlinearity Transformation (SNT) [19], [14].
Even if SNT leads to T-S models with unmeasurable premise variables, most of the
works on T-S systems are devoted to models with known premisevariables, since the
estimation or diagnosis is obviously easier when the premise variables are accessible.
In the following, T-S systems with unmeasurable premise variables (UPM) are studied
since they naturaly appear when applying the SNT.
In the present paper, a systematic procedure is presented todeal with the state and
parameter estimation for nonlinear time-varying systems.It consists in transforming
the original system into a T-S system with unmeasurable premise variables using the
SNT. Then a joint state and parameter observer is designed for the T-S system with
unknown premise variables. Up to the author’s knowledge, this is the first contribu-
tion where the joint parameter and state estimation problemis addressed is such a way
for the nonlinear systems. Moreover, most of the works devoted to joint parameter
and state estimation for nonlinear systems only consider constant parameters, whereas
time-varying parameters are here studied. The main result is to establish the conver-
gence conditions of the joint state and parameter estimation errors. The observer gains
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will be derived by solving an LMI optimization problem obtained from the Lyapunov
theory. The minimized criterion is theL2-gain of the transfer from the exogeneous in-
puts to the state and parameter estimation errors. Using theobtained theoretical results,
the joint estimation is performed for a wastewater treatment process (WWTP) modeled
by an Activated Sludge Model (ASM1 model) [20]. The data measures used for pro-
cess simulation are those of the European Program BenchmarkCost 624 [2]. Indeed,
on a practical point of view, it is shown how to estimate the state of the process using
the available measurements and how to estimate a parameter which is varying due to
external or internal disturbances. The choice of the known inputs, the time-varying pa-
rameter (modeling error), the measures and the operating conditions are made by taking
into account the specific features of the Bleesbruck treatment station from Luxemburg.
The different steps from the process description as a T-S system to the implementation
of time-varying parameter and state estimation are clearlydetailed.
The paper is organized as follows. Section 2 introduces the T-S representation of the
nonlinear time-varying parameter systems. In section 3, the design of a joint state and
parameter observer for T-S system with UPM is presented. Simulation results of the
application of the proposed approach to an activated sludgereactor model are given in
section 4. Conclusions are detailed in section 5.

2. Polytopic modelling of nonlinear time-varying parameter systems

The first contribution of this work is to model nonlinear time-varying systems using
the T-S or polytopic representation. For that, each time-varying parameter is rewritten
under a particular form.
Let us consider the nonlinear time-varying T-S system represented by equation (3) with
n time-varying parametersθj(t)





ẋ(t) =

r∑

i=1

µi(ξ(t))(Ai(θ(t))x(t) +Bi(θ(t))u(t))

y(t) = Cx(t)

(3)

with θ(t) = [ θ1(t) . . . θn(t) ]T and

Ai(θ(t)) = Ai +

n∑

j=1

θj(t)Aij

Bi(θ(t)) = Bi +

n∑

j=1

θj(t)Bij

(4)

Remark 1. With no loss of generality, it is supposed that the matricesAi(θ(t)) and
Bi(θ(t)) depend on the same time-varying parametersθj(t). If a given matrixAi

(resp.Bi) does not depend on a givenθj(t), thenAij (resp.Bij) is null in (4).
For example, if the matricesAi(θa(t)) (resp. Bi(θb(t))) depend onθa ∈ R

na (resp
θb ∈ R

nb ), they can be defined as in (4) withθ(t) = [ θTa (t), θ
T
b (t) ]T , n = na + nb,

Aij = 0 for j = na + 1, . . . , n andBij = 0 for j = 1, . . . , na.
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According to the SNT [19], each parameterθj(t) is expressed as a function of its upper
and lower bounds, respectively denotedθ1j andθ2j such that:

θj(t) = µ̃1
j (θj(t))θ

1
j + µ̃2

j (θj(t))θ
2
j (5)

whereµ̃1
j (θj(t)) andµ̃2

j (θj(t)) are defined by

µ̃1
j (θj(t)) =

θj(t)− θ2j

θ1j − θ2j

µ̃2
j (θj(t)) =

θ1j − θj(t)

θ1j − θ2j

(6)

and satisfy the convex sum property:




µ̃1
j (θj(t)) + µ̃2

j (θj(t)) = 1, ∀t

0 ≤ µ̃i
j(θj(t)) ≤ 1

(7)

Replacing (5) in (4), it becomes:

Ai(θ(t)) = Ai +

n∑

j=1

2∑

k=1

µ̃k
j (θj(t))θ

k
jAij

Bi(θ(t)) = Bi +
n∑

j=1

2∑

k=1

µ̃k
j (θj(t))θ

k
jBij

(8)

The time-varying matricesAi(θ(t)) andBi(θ(t)) can now be written as polytopic ma-
trices. Firstly, due to (7), it follows that

n∑

j=1

θj(t)Aij =

n∑

j=1

[
(µ̃1

j (θj(t))θ
1
j + µ̃2

j (θj(t))θ
2
j )Aij

]

=

n∑

j=1


[(µ̃1

j (θj(t))θ
1
j + µ̃2

j (θj(t))θ
2
j )Aij

]



n∏

k=1,k 6=j

2∑

m=1

µ̃m
k (θk(t))






(9)

and thus, equations (8) can be written as:

Ai(θ(t)) =

2n∑

j=1

µ̃j(θ(t))Aij

Bi(θ(t)) =

2n∑

j=1

µ̃j(θ(t))Bij

(10)

with 



µ̃j(θ(t)) =

n∏

k=1

µ̃
σk
j

k (θk(t))

Aij = Ai +

n∑

k=1

θ
σk
j

k Aik

Bij = Bi +

n∑

k=1

θ
σk
j

k Bik

(11)
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Then, forn parameters,2n submodels are obtained. It is important to note that an
analytical expression of the time-varying matricesAi(θ(t)) andBi(θ(t)) is obtained

with convex weighting functions̃µj(θ(t)) satisfying
2n∑

i=1

µ̃j(θ(t)) = 1, where the in-

dicesσk
j (j = 1, . . . , 2n, k = 1, . . . , n), equal to1 or 2, indicate which partition of the

kth parameter (̃µ1
k or µ̃2

k) is involved in thejth submodel.
The relation betweenj and theσk

j is given by the following equation:

j = 2n−1σ1
j + 2n−2σ2

j + . . .+ 20σn
j − (21 + 22 + . . .+ 2n−1) (12)

Finally, using equations (10), the nonlinear time-varyingT-S system (3) becomes:





ẋ(t) =

r∑

i=1

2n∑

j=1

µi(ξ(t))µ̃j(θ(t))(Aijx(t) + Biju(t))

y(t) = Cx(t)

(13)

3. State and time-varying parameter observer

Considering the obtained T-S model (13), with the weightingfunctionsµi andµ̃j

depending on the system statex(t) and on the parameterθ(t), a joint state and pa-
rameter observer may be designed and implemented. AnL2 attenuation approach is
proposed to minimize the effect of the time-varying parameters on the state and param-
eter error estimations.
The state and parameter observer of system (13) is taken as the following




˙̂x(t) =

r∑

i=1

2n∑

j=1

µi(x̂(t))µ̃j(θ̂(t)) (Aij x̂(t) + Biju(t) + Lij(y(t)− ŷ(t)))

˙̂
θ(t) =

r∑

i=1

2n∑

j=1

µi(x̂(t))µ̃j(θ̂(t))(−αij θ̂(t) +Kij(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t)

(14)

whereLij ∈ R
nx×m, Kij ∈ R

n×m andαij ∈ R
n×n are the gains to be determined

such that the estimated state and parameter converge to the actual system state and
parameter.
Let us define the state estimation errorex(t) as

ex(t) = x(t)− x̂(t) (15)

Its dynamics cannot be easily computed directly from the derivative of (15) since in the
considered case, the weighting functions depend on the unmeasurable variablesθ(t)
andx(t) whereas those of the observer (14) depend on their estimatesθ̂(t) andx̂(t).
In order to overcome this difficulty, taking benefits of (2), the state derivative (13) is
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rewritten as follows [8]

ẋ(t) =
r∑

i=1

2n∑

j=1

[
µi(x̂(t))µ̃j(θ̂(t))(Aijx(t) + Biju(t))+

(
µi(x(t))µ̃j(θ(t))− µi(x̂(t))µ̃j(θ̂(t))

)
(Aijx(t) + Biju(t))

]
(16)

This form allows a better comparison ofx(t) with x̂(t), sinceµi(x̂(t))µ̃j(θ̂(t)) not
only appears in (14), but also in (16). Let us define:

∆A(t) =
r∑

i=1

2n∑

j=1

[
µi(x(t))µ̃j(θ(t))− µi(x̂(t))µ̃j(θ̂(t))

]
Aij

= AΣA(t)EA

(17)

∆B(t) =

r∑

i=1

2n∑

j=1

[
µi(x(t))µ̃j(θ(t))− µi(x̂(t))µ̃j(θ̂(t))

]
Bij

= BΣB(t)EB

(18)

with

A =
[
A11 . . . Ar2n

]
,ΣA(t) = diag(δ11(t)Inx

, . . . , δr2n(t)Inx
),

B =
[
B11 . . . Br2n

]
,ΣB(t) = diag(δ11(t)Inu

, . . . , δr2n(t)Inu
),

EA =
[
Inx

. . . Inx

]T
, EB =

[
Inu

. . . Inu

]T

δij(t) = µi(x(t))µ̃j(θ(t))− µi(x̂(t))µ̃j(θ̂(t))

(19)

where diag(A1, . . . , An) denotes a block diagonal matrix with the square matrices
A1, . . . , An on its diagonal.
Sinceµi(x(t)) and µ̃j(θ(t)) satisfy (2) and from the definitions (19), the matrices
ΣA(t) andΣB(t) are bounded:

ΣT
A(t)ΣA(t) ≤ I, ΣT

B(t)ΣB(t) ≤ I (20)

Using (17) and (18), the system (16) is then written as an uncertain T-S system given
by:

ẋ(t) =
r∑

i=1

2n∑

j=1

µi(x̂(t))µ̃j(θ̂(t))((Aij +∆A(t))x(t) + (Bij +∆B(t))u(t)) (21)

Let us define the parameter estimation erroreθ(t) by

eθ(t) = θ(t)− θ̂(t) (22)

From (14), (21), (15) and (22) the dynamics of the state and parameter estimation errors
are given by

ėa(t) =

r∑

i=1

2n∑

j=1

µi(x̂(t))µ̃j(θ̂(t)) (Φijea(t) + Ψij(t)ω(t)) (23)
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with

ea(t) =

(
ex(t)
eθ(t)

)
, ω(t) =




x(t)
θ(t)

θ̇(t)
u(t)


 (24)

and

Φij =

(
Aij − LijC 0
−KijC −αij

)

Ψij(t) =

(
∆A(t) 0 0 ∆B(t)

0 αij I 0

) (25)

Considering (23), the objective is to design a joint state and parameter observer mini-
mizing theL2 gain of the transfer fromω(t) to ea(t). The computation of the observer
gainsKij , Lij andαij is detailed in the next theorem.

Theorem 1. There exists a joint robust state and parameter observer (14) for a nonlin-
ear time-varying parameter system (3) with anL2 gain fromω(t) toea(t) bounded byβ
(β > 0) if there exists symmetric positive definite matricesP0 ∈ R

nx×nx , P1 ∈ R
n×n,

matricesΓ0
2 ∈ R

nx×nx , Γ1
2 ∈ R

n×n, Γ2
2 ∈ R

n×n, Γ3
2 ∈ R

nu×nu and positive scalars
β, λ1, λ2 > 0 solutions of the optimization problem (26)

min
P0,P1,Rij ,Fij ,αij ,λ1,λ2,Γk

2

β (26)

under the following constraints:

Γk
2 < βI for k = 0, 1, 2, 3 (27)




Q11
ij −CTFT

ij 0 0 0 0 P0A P0B

∗ Q22
ij 0 αij P1 0 0 0

∗ ∗ Q33
ij 0 0 0 0 0

∗ ∗ ∗ −Γ1
2 0 0 0 0

∗ ∗ ∗ ∗ −Γ2
2 0 0 0

∗ ∗ ∗ ∗ ∗ Q66
ij 0 0

∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −λ2I




< 0 (28)

for i = 1, . . . , r andj = 1, 2n, with

Q11
ij = P0Aij +AT

ijP0 −RijC − CTRT
ij + Inx

Q22
ij = −αij − αT

ij + In
Q33

ij = −Γ0
2 + λ1E

T
AEA

Q66
ij = −Γ3

2 + λ2E
T
BEB

(29)

The observer gains are given by




Lij = P−1
0 Rij

Kij = P−1
1 Fij

αij = P−1
1 αij

(30)

Proof 1. The proof of theorem 1 can be found in appendix A.
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4. Application to a wastewater treatment plant

4.1. Process description

The considered wastewater treatment plant is issued from [20] and the considered
T-S model without taking into account the time-varying parameter [13].
The activated sludge wastewater treatment consists in mixing wastewater with a bac-
teria mixture in order to degrade the pollutants contained in the water. The polluted
water circulates in an aeration basin in which the bacterialbiomass degrades the pol-
luted matter. Micro-organisms gather together in colonialstructures called flocs and
produce sludges. The mixed liquor is then sent to a clarifier where the separation of
the purified water and the flocs is made by gravity. A fraction of the settled sludges is
recycled towards the reactor to maintain its capacity of purification. The purified water
is thrown back in the natural environment.
Only a part of the European Program Cost 624 Benchmark is considered. Usually, a
configuration with a single tank and a settler/clarifier is used. However, the data used
for simulation are generated with the complete ASM1 model(nx = 13) [7], in order
to represent a realistic behavior of a WWTP. In order to ease theT-S modelling, the
observer design is based on a reduced model(nx = 6) [20]. The simplified model
involves the following six components: the chemical oxygendemand (DCO)XDCO,
oxygenSO, heterotrophic biomassXBH , ammoniaSNH , nitrateSNO and autotrophic
biomassXBA. Thus, the state vector is defined as:

x(t) = [XDCO(t), SO(t), XBH , SNH(t), SNO(t), XBA]
T (31)

In conformity with the benchmark of the European Program Cost 624 [2] and with the
real operating condition of the wastewater treatment plant(Bleesbruck from Luxem-
burg), the considered output and input vectors are:

y(t) = [XDCO(t), SO(t), SNH(t), SNO(t)]
T (32)

u(t) = [XDCO,in(t), qa(t), qin(t)]
T (33)

The variablesqin(t) andqa(t) respectively represent the flowrate input and the air flow
of the bioreactor.
The dynamic equations describing the system are the following























































































ẊDCO(t) = − 1
Yh

[ϕ1(t) + ϕ2(t)] + (1− fp)(ϕ4(t) + ϕ5(t)) +D1(t)

ṠO(t) = Yh−1
Yh

ϕ1(t) +
Ya−4.57

Ya
ϕ3(t) +D2(t)

ṠNH(t) = −ixb[ϕ1(t) + ϕ2(t)]−
[

ixb +
1
Ya

]

ϕ3(t)

+(ixb − fp ixp)[ϕ4(t) + ϕ5(t)] +D3(t)

ṠNO(t) = Yh−1
2.86Yh

ϕ2(t) +
1
Ya

ϕ3(t) +D4(t)

ẊBH(t) = ϕ1(t) + ϕ2(t)− ϕ4(t) +D5(t)

ẊBA(t) = ϕ3(t)− ϕ5(t) +D6(t)

(34)
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where Ya, Yh, fp, ixb, ixp are constant coefficients and
ϕ1(t), · · · , ϕ5(t) are given by:



























































ϕ1(t) = µh
XDCO(t)

KDCO+XDCO(t)
SO(t)

KOH+SO(t)
XBH(t)

ϕ2(t) = µhηNOg
XDCO(t)

KDCO+XDCO(t)
SNO(t)

KNO+SNO(t)
KOH

KOH+SO(t)
XBH(t)

ϕ3(t) = µa
SNH (t)

KNH,A+SNH (t)
SO(t)

KO,A+SO(t)
XBA(t)

ϕ4(t) = bHXBH(t)

ϕ5(t) = bAXBA(t)

(35)

According to the benchmark [2], it is supposed that the dissolved oxygen concentration
at the reactor input (SO,in) is null, thatSNO,in

∼= 0 andXBA,in
∼= 0. The input/output

balance is defined by:

D1(t) = Din(t) [XDCO,in(t)−XDCO(t)]

D2(t) = Din(t) [−SO(t)] +Kqa(t) [SO,sat − SO(t)]

D3(t) = Din(t) [SNH,in(t)− SNH(t)]

D4(t) = Din(t) [−SNO(t)]

D5(t) = Din(t)
[

XBH,in(t)−XBH(t) + fr(1−fw)
fr+fw

XBH(t)
]

D6(t) = Din(t)
[

−XBA(t) +
fr(1−fw)
fr+fw

XBA(t)
]

D5(t) = Din(t)
[

XBH,in(t)−
fw(1+fr)
fr+fw

XBH(t)
]

D6(t) = Din(t)
[

−XBA(t)−
fw(1+fr)
fr+fw

XBA(t)
]

(36)

with Din(t) =
qin(t)

V

4.2. Polytopic T-S representation
Since the transformation of the nonlinear system (34) into aT-S model does not

constitute the main contribution, and for lack of space, only the essential points are
given in the following. For further details on this procedure, the reader may refer to
[13], [12].
Considering the process (34), it is natural to define the following premise variables
involved in the system nonlinearities:

ξ1(t) =
qin(t)

V

ξ2(t) =
XDCO(t)

KDCO+XDCO(t)
SO(t)

KOH+SO(t)

ξ3(t) =
XDCO(t)

KDCO+XDCO(t)
SNO(t)

KNO+SNO(t)
KOH

KOH+SO(t)

ξ4(t) =
1

KOA+SO(t)
SNH(t)

KNH,A+SNH(t)XBA(t)

(37)
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Then system (34) can be written in a quasi-LPV form

ẋ(t) = A(ξ)x(t) +B(ξ)u(t) (38)

with matricesA(ξ) andB(ξ) depending on the premise variables previously defined:

A(ξ) =




a1,1(ξ1) 0 0 0 a1,5(ξ2, ξ3) a1,6
0 a2,2(ξ1, ξ4) 0 0 a2,5(ξ2) 0
0 a3,2(ξ4) a3,3(ξ1) 0 a3,5(ξ2, ξ3) a3,6
0 a4,2(ξ4) 0 a4,4(ξ1) a4,5(ξ3) 0
0 0 0 0 a5,5(ξ1, ξ2, ξ3) 0
0 a6,2(ξ4) 0 0 0 a6,6(ξ1)




B(ξ) =




b1,1(ξ1) 0
0 K SO,sat

0 0
0 0
0 0
0 0




(39)
wherea1,1(ξ1) = a3,3(ξ1) = a4,4(ξ1) = −b1,1(ξ1) = −ξ1(t) and:

a1,5(ξ2, ξ3) = −µh

Yh
ξ2(t) + (1− fp) bH −

µh ηNOg

Yh
ξ3(t)

a1,6 = (1− fp) ba
a2,2(ξ1, ξ4) = −ξ1(t)−K qa −

4.57−Ya

Ya
µa ξ4(t)

a2,5(ξ2) = Yh−1
Yh

µhξ2(t)

a3,2(ξ4) = −(ixb +
1
Ya

)µa ξ4(t)

a3,5(ξ2, ξ3) = (ixb − fpixp)bH − ixb µh ξ2(t)− ixb µh ηNOg ξ3(t)
a3,6 = (ixb − fp ixp) bA
a4,2(ξ4) = 1

Ya
µAξ4(t)

a4,5(ξ3) = Yh−1
2.86Yh

µh ηNOg ξ3(t)

a5,5(ξ1, ξ2, ξ3) = µh ξ2(t)− bH + ξ1(t)
[
fw(1+fr)
fr+fw

− 1
]
+ µh ηNOg ξ3(t)

a6,2(ξ4) = µa ξ4(t)

a6,6(ξ1) = ξ1(t)
[
fw(1+fr)
fr+fw

− 1
]
− bA

The premise variablesξj(t), j = 1, . . . , 4 are re-written using the convex polytopic
transformation:

ξj(t) = Fj,1(ξj(t)) ξj,1 + Fj,2(ξj(t)) ξj,2 (40)

where the scalarsξj,1, ξj,2 and the functionsFj,1(ξj), Fj,2(ξj) are defined by

ξj,1 = max
x,u

{ξj(t)} (41)

ξj,2 = min
x,u

{ξj(t)} (42)

Fj,1(ξj(t)) =
ξj(t)− ξj,2

ξj,1 − ξj,2
(43)

Fj,2(ξj(t)) =
ξj,1 − ξj(t)

ξj,1 − ξj,2
(44)
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In order to obtain the T-S structure from the quasi-LPV system (38), each variable

ξj(t) is decomposed according to (40) and multiplied by
4∏

k=1, 6=j

(Fj,1 + Fj,2) = 1.

Similarly to the procedure described in section 2, the obtained weighting functions are
defined by:

µi(ξ(t)) = F1,σ1

i
(ξ1(t))F2,σ2

i
(ξ2(t))F3,σ3

i
(ξ3(t))F4,σ4

i
(ξ4(t)) (45)

The matricesAi(θ(t)) andBi(θ(t)) are obtained by settingξj(t) = ξ
j,σ

j
i
(t) in A(ξ)

andB(ξ), resulting in:

Ai=



















a1,1(ξ1,σ1

i
) 0 0 0 a1,5(ξ2,σ2

i
, ξ3,σ3

i
) a1,6

0 a2,2(ξ1,σ1

i
, ξ4,σ4

i
) 0 0 a2,5(ξ2,σ2

i
) 0

0 a3,2(ξ4,σ4

i
) a3,3(ξ1,σ1

i
) 0 a3,5(ξ2,σ2

i
, ξ3,σ3

i
) a3,6

0 a4,2(ξ4,σ4

i
) 0 a4,4(ξ1,σ1

i
) a4,5(ξ3,σ3

i
) 0

0 0 0 0 a5,5(ξ1,σ1

i
, ξ2,σ2

i
, ξ3,σ3

i
) 0

0 a6,2(ξ4,σ4

i
) 0 0 0 a6,6(ξ1,σ1

i
)



















Bi =

















b1,1(ξ1,σ1

i
) 0

0 K SO,sat

0 0
0 0
0 0
0 0

















(46)
Thus, the nonlinear model (38) is equivalently written under the T-S form:

ẋ(t) =

16∑

i=1

µi(x, u) (Aix(t) +Biu(t)) (47a)

y(t) = Cx(t) (47b)

with the output matrix defined as:

C =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


 (48)

4.3. Time-varying parameter in the T-S form of the ASM1 model

The T-S model (47) is obtained under the hypothesis that the heterotrophic biomass
is homogenous and then the mortality coefficientbH is constant and equal to its nominal
valuebHn = 0.3.
Due to a change of operating condition, the coefficientbH may vary. In order to take
into account this variation, a bounded time-varying parameter θ1(t) is introduced, and
bH is defined by

bH(θ1(t)) = bHn + 0.2 θ1(t), θ1(t) ∈ [0, 1] (49)
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This allows to represent a variation up to66% of the nominal value. SincebH(θ1(t))
appears ina1,5, a3,5 anda5,5, the time-varying matricesAi(θ(t)) are written asAi(θ(t))
= Ai + θ1(t)Ai1 with

Ai1 =




0 0 0 0 0.2 0
0 0 0 0 0 0
0 0 0 0 0.2 0
0 0 0 0 0 0
0 0 0 0 0.2 0
0 0 0 0 0 0




(50)

Ai being obtained fromAi(θ(t)) consideringθ1(t) = 0 (nominal case).
For the following simulations,bH(t) is taken as depicted in figure 3.

4.4. Results and discussions
The data used for simulation are generated with the completeASM1 model de-

scribed with 13 state variables [7], in order to represent a realistic behaviour of a
WWTP. Even if the observer design is based on a T-S form of the reduced model
(nx = 6) and is fed by the data from the complete ASM1 model, it will be seen that
the estimation results are more than satisfactory.
Applying theorem 1, the joint state and parameter observer (14) is designed by com-
puting all the gainsKij , Lij andαij (the numerical values are not given here due to
space limitation) such that the convergence LMI conditionsgiven in theorem 1 hold.
The solution of the optimization problem under LMI constraints was obtained with the
use of the SeDuMi solver and Matlab software. Matlab was alsoused for the system
simulations.

Remark 2. SeDuMi (for Self-Dual-Minimization) [17] is a free add-on Matlab pack-
age for solving Linear Matrix Inequality (LMI) problems. Itallows to solve optimiza-
tion problems with linear, quadratic and semidefiniteness constraints. Some of SeDuMi
characteristics [10]:

• Allows the use of complex or real data and variables.

• Works with both equality and inequality constraints.

• Gives data in sparse format, leading to significant speed benifits (reduced mem-
ory burden) and low computation time compared to other solvers.

• Displays the solution directly in matrix format and indicators show which in-
equality constraints are satisfied.

• Free software.

In order to illustrate the time-varying parameter effect onthe system trajectory, figure
1 depicts the state variables in the nominal case (with a constant parameterbH = 0.3)
and in the considered case (with the parameter variation affectingbH ). Figure 1 clearly
shows that the variation ofbH has a significant effect on most of system variables.
Comparisons between the actual state variable, the unknowntime-varying parameter
and their respective estimates are depicted in figures 2 and 3.

12



0 1 2 3 4 5 6
0

5

10

15

 

 

0 1 2 3 4 5 6
2

4

6

8

10

 

 

0 1 2 3 4 5 6
12

14

16

18

20

22

 

 

0 1 2 3 4 5 6
0

2

4

6

 

 

0 1 2 3 4 5 6
650

700

750

800

850

900

 

 

0 1 2 3 4 5 6
2

4

6

8

10

12

 

 

X
dco

(b
Hn

)

X
dco

(b
H
(t))

S
O

(b
Hn

)

S
O

(b
H
(t))

S
nh

(b
Hn

)

S
nh

(b
H
(t))

S
no

(b
Hn

)

S
no

(b
H
(t))

X
bh

(b
Hn

)

X
bh

(b
H
(t))

X
ba

(b
Hn

)

X
ba

(b
H
(t))

Figure 1: Time-varying parameter effect
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From the depicted figures, one can conclude on the effectiveness of the synthesized
joint state and time-varying parameter observer, since thesix states are accurately es-
timated with an also really good estimation of the time-varying parameterbH(t). One
can note that the slight degradation at the start of the simulation of the parameter es-
timation is due to the initialization error since the systemand the observer state are
respectively initialized with the following vectors

x0 =
(
30 3.5 20 1.5 650 11

)T

x̂0 =
(
27 4.2 21 1.4 652 11

)T
, θ̂0 = 0

The obtained results show that the state and parameter estimations are good enough
with an attenuation levelβ = 2.6 10−2.

5. Conclusion

In the present paper, a new systematic procedure is presented to deal with the state
and parameter estimation for nonlinear time-varying systems. It consists in transform-
ing the original system into a Takagi-Sugeno model based on the sector nonlinearity
approach and the convex polytopic transformation. This transformation has the major
interest to exactly represent the system without any loss ofinformation. A new pa-
rameter and state observer for the time-varying T-S systemswith unmeasured premise
variables is proposed based on theL2 approach.
The considered procedure is the following: from the nonlinear time-varying equations
of the process, a global T-S model of the system is proposed. The proposed observer is
then synthetized by solving the LMI optimization problem.
The concrete case of an activated sludge reactor model is studied with modeling er-
rors (function of a time-varying parameter). It was clearlyshown that the variation of
the heterotrophic biomassbH has a significant effect on most of the system variables.
From this observation, one can easily agree with the need forjoint parameter and state
estimation.
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The obtained results from the application example illustrate clearly the proposed ap-
proach performance. Therefore, as a future work, the authors intend to apply this
procedure for fault detection and estimation and use the results for a Fault Tolerant
Control (FTC) synthesis.

Appendix A. Proof of theorem 1

In the proof of theorem 1, the following lemma is used:

Lemma Appendix A.1. [23] Consider two matricesX andY with appropriate di-
mensions, a time-varying matrix∆(t) and a positive scalarε. The following property
is verified

XT∆T (t)Y + Y T∆(t)X ≤ εXTX + ε−1Y TY (A.1)

for any∆(t) satisfying∆T (t)∆(t) ≤ I.

The proof of theorem 1 relies on the following steps.
1) Let us consider the following quadratic Lyapunov function

V (ea(t)) = eTa (t)Pea(t), P = PT > 0 (A.2)

Using (23), its time derivative is given by

V̇ (t) =

r∑

i=1

2n∑

j=1

µi(x̂(t))µ̃j(θ̂(t))
[
eTa (t)(Φ

T
ijP + PΦij)ea(t)

+eTa (t)PΨij(t)ω(t) + ωT (t)ΨT
ij(t)Pea(t)

]
(A.3)

It is known thatea(t) asymptotically converges toward zero whenω(t) = 0 and that,
whenω(t) 6= 0, theL2 gain fromω(t) to ea(t) is bounded byβ if the following
inequality holds

V̇ (t) + eTa (t)ea(t)− ωT (t)Γ2ω(t) < 0 (A.4)

with
Γ2 = diag(Γk

2), Γ
k
2 < β I, for k = 0, 1, 2, 3 (A.5)

Remark 3. Instead of optimizing the matrixΓ2 as mentioned in theorem 1, it is also
possible to chooseΓ2 in order to attenuate the transfer from some particular compo-
nents ofω(t) to ea(t).

2) According to the expression of the derivative of the Lyapunov function, let us rewrite
the constraint (A.4). Using (A.3), (A.4) becomes:

r∑

i=1

2n∑

j=1

µi(x̂(t))µj(θ̂(t))

(
ea(t)
ω(t)

)T

((
ΦT

ijP + PΦij + Inx+n PΨij(t)
ΨT

ij(t)P −Γ2

))(
ea(t)
ω(t)

)
< 0

(A.6)
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The chosen Lyapunov matrixP is block diagonal and defined by:

P = diag(P0, P1) (A.7)

From (22), (25), (A.5) and (A.7), (A.6) holds if

r∑

i=1

2n∑

j=1

µi(x̂(t))µ̃j(θ̂(t))
(
Qij +Q(t) +QT (t)

)
< 0 (A.8)

with:

Qij =




Q
11

ij −CTKT
ijP1 0 0 0 0

∗ −P1αij − αT
ijP1 + In 0 P1αij P1 0

∗ ∗ −Γ0
2 0 0 0

∗ ∗ ∗ −Γ1
2 0 0

∗ ∗ ∗ ∗ −Γ2
2 0

∗ ∗ ∗ ∗ ∗ −Γ3
2




(A.9)

Q
11

ij = P0Aij +AT
ijP0 − P0LijC − CTLT

ijP0 + Inx
(A.10)

Q(t) =




0 0 P0∆A(t) 0 0 P0∆B(t)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(A.11)

3) At this stage, if (A.8) holds, it implies (A.4) and then proove the theorem 1. How-
ever, (A.8) involves the uncertain termQ(t) which is time-varying. It is then prefer-
able to bound that term using constants. Based on (17) and (18), the time-varying term
(A.11) can be expressed as:

Q(t) =




P0A

0
0
0
0
0




ΣA(t)




0
0
EA

0
0
0




T

+




P0B

0
0
0
0
0




ΣB(t)




0
0
0
0
0
EB




T

(A.12)

Using lemma 1 and property (20), there exists positive scalarsλ1 andλ2, such that

Q(t) +QT (t) < diag(Q1, 0, λ1E
T
AEA, 0, 0, λ2E

T
BEB) (A.13)

with:
Q1 = λ−1

1 P0AATP0 + λ−1
2 P0BB

TP0 (A.14)

for i = 1, . . . , r andj = 1, . . . , 2n.
From inequality (A.13), using the variable changes (30) andwith some Schur comple-
ments on the termQ1, it follows that (28) implies

Qij +Q(t) +QT (t) < 0 (A.15)

4) All the elements are now set up for the conclusion. Sinceµi(x̂(t)) and µ̃j(θ̂(t))
satisfy (2), (28) also implies (A.8) and then (A.4). As a consequence, theL2-gain of
the transfer fromω(t) to ea(t) is bounded byβ, which achieves the proof.
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