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Abstract

A systematic approach to joint state and time-varying patanmestimation for nonlin-
ear systems is proposed in this paper. Applying the sectuin@arity transformation
to both the system nonlinearities and the time-varying ipatars, the original system
is equivalently rewritten as a Takagi-Sugeno system witlhegsurable premise vari-
ables. A joint state and parameter observer whose paravatedesigned by solving
an LMI optimization problem is then proposed. The targetliapfion is a realistic
model of an activated sludge wastewater treatment plaimgtza uncertain nonlinear
system affected by a time-varying parameter.

Keywords: Time-varying nonlinear system, Takagi-Sugeno model} jstate and
parameter observer, waste water treatment plant.

1. INTRODUCTION

Since most of the control law and fault detection residualgte[3], [6] are based
on estimated state variables, the observer design formearlisystems can be viewed
as the heart of system control and model-based diagnosiertunately, the introduc-
tion of time-varying parameters in the system models, né¢ol@ccurately represent
the system behaviour, leads to more challenging problerastimation. In this case,
conventional observers, essentially developped for timariant systems cannot be di-
rectly used, and so-called adaptive observers developéairiv state and unknown pa-
rameter estimation are needed [21]. The main difficulty timeting the state of such
systems comes from the lack of knowledge on the parametéutsr In the present
work, the authors focus on the nonlinear time-varying pat@msystems where the
parameters are inaccessible (non measurable) and may sid@@d as model distur-
bances, uncertainties or faults acting on the system éwnlut
Some results have been published on the time-varying sgqteoblem. For example,
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the state estimation of linear systems with unknown comstatime-varying param-
eter is respectively addressed in [21] and [11]. Extenstonsonlinear systems are
proposed in [1], [4], [16] and [22], but in those works, thegraeter is assumed to be
constant. Only [9] considers time-varing parameter.

Numerous approaches were proposed in order to deal withneamnlsystem estima-
tion or diagnosis [1], [5]. An efficient way consists in reting the original nonlinear
system in a simplier form, like the Takagi-Sugeno (T-S) nio@#iginaly introduced
by [18], the T-S representation allows to exactly describelinear systems, under the
condition that the nonlinearities are bounded. This isarable since state variables
as well as parameters of physical systems are bounded [[§]and the references
therein). The T-S model is a time-varying convex interpgotabetween linear submod-
els:

B) = D mlE(®) (A (t) + Biult)
B @
w(O) = D w(E)(Cia(t) + Diu(t)

wherez(t) € R"= is the system state,t) € R~ is the control input ang(¢) € R™ is

the system output(¢) € R is the decision variable assumed to be either measurable
(as the system output), known (as the system input) or unime@gas the system
state). The weighting functions; (£(t)) satisfy the convex sum property:

Zﬂi(f(t)) =1
6? wi(Et) <1, i=1,...,r

)

The representation (1), along with the property (2), alltavextend to nonlinear sys-
tems the use of some tools developed in the linear frameviorkhe stability study,
the controller design, the observer synthesis and the d&giil5], [19]. A systematic
and exact transformation of a nonlinear system into a T-8 favithout any loss of
informations, is known as the Sector Nonlinearity Transfation (SNT) [19], [14].
Even if SNT leads to T-S models with unmeasurable premisablas, most of the
works on T-S systems are devoted to models with known prewmaisables, since the
estimation or diagnosis is obviously easier when the prewésiables are accessible.
In the following, T-S systems with unmeasurable premis@atées (UPM) are studied
since they naturaly appear when applying the SNT.

In the present paper, a systematic procedure is presentdeiatovith the state and
parameter estimation for nonlinear time-varying systethsonsists in transforming
the original system into a T-S system with unmeasurable {gerariables using the
SNT. Then a joint state and parameter observer is desigmetidor-S system with
unknown premise variables. Up to the author’'s knowledgs, iththe first contribu-
tion where the joint parameter and state estimation proldeaddressed is such a way
for the nonlinear systems. Moreover, most of the works deldd joint parameter
and state estimation for nonlinear systems only considestent parameters, whereas
time-varying parameters are here studied. The main restdt €stablish the conver-
gence conditions of the joint state and parameter estimati®rs. The observer gains



will be derived by solving an LMI optimization problem ohtad from the Lyapunov
theory. The minimized criterion is thé,-gain of the transfer from the exogeneous in-
puts to the state and parameter estimation errors. Usirgptiagned theoretical results,
the joint estimation is performed for a wastewater treatrpescess (WWTP) modeled
by an Activated Sludge Model (ASM1 model) [20]. The data nuees used for pro-
cess simulation are those of the European Program Benchowatk624 [2]. Indeed,
on a practical point of view, it is shown how to estimate thetesbf the process using
the available measurements and how to estimate a paramtdr is varying due to
external or internal disturbances. The choice of the knawyents, the time-varying pa-
rameter (modeling error), the measures and the operatmjtaans are made by taking
into account the specific features of the Bleesbruck treatistation from Luxemburg.
The different steps from the process description as a T{&sy® the implementation
of time-varying parameter and state estimation are clehatgiled.

The paper is organized as follows. Section 2 introduces {Baf@presentation of the
nonlinear time-varying parameter systems. In sectione8d#sign of a joint state and
parameter observer for T-S system with UPM is presentedultion results of the
application of the proposed approach to an activated slteklyEtor model are given in
section 4. Conclusions are detailed in section 5.

2. Polytopic modelling of nonlinear time-varying parameter systems

The first contribution of this work is to model nonlinear timarying systems using
the T-S or polytopic representation. For that, each tinmgiag parameter is rewritten
under a particular form.

Let us consider the nonlinear time-varying T-S system rgred by equation (3) with
n time-varying paramete; (¢)

P 3)
y(t) = Cux(t)
with (1) = [ 0:(t) 6, (t) |7 and
Ai(6(1) = A + i 0;(t)Aij
) 4)
Bi(0(t)) = Bi+ ) 0;(1)By;

Remark 1. With no loss of generality, it is supposed that the matride@(t)) and
B;(0(t)) depend on the same time-varying parametgfg). If a given matrixA;
(resp.B;) does not depend on a givép(t), thenA;; (resp.B;;) is null in (4).

For example, if the matriced;(0,(t)) (resp. B;(0,(¢))) depend o9, € R™= (resp
0, € R™), they can be defined as in (4) witht) = [ 07 (¢), 07 (t) 17, n = ng + no,
A;j=0forj=mn,+1,...,nandB;; =0forj=1,...,n,.



According to the SNT [19], each parametg(t) is expressed as a function of its upper
and lower bounds, respectively denoegldandef- such that:

0;(t) = i (0;(£))0] + 5 (6;(t))63 (5)
wherefi} (0;(t)) andfi3 (6;(t)) are defined by
0;(t) — 62
o, = 20
1_g 7 (6)
o) - 2o
o =7

and satisfy the convex sum property:

L (60;()) + FE2(0;(1) = 1, Wt
4 ()
0 < m5(0;(t) <1
Replacing (5) in (4), it becomes:
n 2
AO() = A+ > i (0;(0)05 Ay
j=1k=1 (8)
J— n 2 J—
Bi(6(t)) = Bi+ Y _ Y 15 (6,(1))65Bi,
J=1k=1

The time-varying matriced;(6(¢)) andB;(6(¢)) can now be written as polytopic ma-
trices. Firstly, due to (7), it follows that

D05y = [ (05(0)6] + 753 (0())03) A
=, = . ©)
=3 [[(ﬁ;wj ()0} + [12(0;(£))6%)A;5] [ 1D ﬁmu»”

j=1 k=1,k#j m=1

and thus, equations (8) can be written as:

A;(0(1) = Z 1 (0(8)) Asj

(10)
Bi(0(t)) = ) _n;(0(t))Bi;
j=1
with
ai0w) = @ 0c)
k=1 n
Aij = Zi—F GZJZM (ll)
k=1
_ L
B” = B;+ QkJsz
k=1




Then, forn parameters2™ submodels are obtained. It is important to note that an
analytical expression of the time-varying matricég6(t)) and B;(0(t)) is obtained
on

with convex weighting functiong; (6(t)) satisfyingz L (0(t)) = 1, where the in-
=1

dlcesor (j=1,...,2" k=1,...,n), equal tol or 2, indicate which partition of the

Eth parameter[@k or %) is involved in thej*" submodel.

The relation betweenand thea]lC is given by the following equation:

j=2""o; +2" %07+ ...+ 2%} — (2" + 22 + ...+ 2"7) (12)

Finally, using equations (10), the nonlinear time-varylh§ system (3) becomes:

(t) = ;;m (&(8))p;(0(2)) (Aijz(t) + Biju(t)) (13)
y(t) = Cx(t)

3. State and time-varying parameter observer

Considering the obtained T-S model (13), with the weighfingctionsy; andyi;
depending on the system stat&) and on the parametéi(t), a joint state and pa-
rameter observer may be designed and implementedCAattenuation approach is
proposed to minimize the effect of the time-varying pararseon the state and param-
eter error estimations.

The state and parameter observer of system (13) is takee &sllthwing

= 3OS )5 (00)) (Asg(t) + Biyu(t) + Lig (u(t) — 9(1)))
lrlj 1 A A (14)
= 3OS ) (00 (~as008) + Koy (w(t) — 3(1)))

@@)zE&é>

whereL;; € R™*™, K;; € R™™ anda;; € R™*" are the gains to be determined
such that the estimated state and parameter converge tatind aystem state and
parameter.

Let us define the state estimation eregft) as

ea(t) = a(t) — (1) (15)

Its dynamics cannot be easily computed directly from thévdtve of (15) since in the
considered case, the weighting functions depend on the asumable variableé(t)
andz(t) whereas those of the observer (14) depend on their estifi@ieand (t).
In order to overcome this difficulty, taking benefits of (2)etstate derivative (13) is



rewritten as follows [8]

r 2"

-XX L1 (@ ()75 (0(8) (s () + Bigu(t) +

(ui(w(t))ﬁj(ﬁ(t))—m( #(t)ii; (01))) (A () + Bigu(t)| - (26)

This form allows a better comparison oft) with (), sinceui(ﬁz(t))ﬁj(é(t)) not
only appears in (14), but also in (16). Let us define:

r on

MA@ = 3O (i) (00) — A O] Ay g
— ASA(1)Ea
r 2"
ABO = 33 mGORO0) - nEOROD]B; g
= BXg(#)Ep
with
A[[ All Argn },EA( )fdlag(én( ) 71,7~--75r2'”(t)[nx)7
B = 611 . Brzn ] ,EB( ) = d|aq511( ) Mg s 57-2n (t)Inu), 9
EA:[ e oo I | Ep=[Ly, .. L] o)
0ij (t) = pui ()5 (0(2)) — pa(£(2)) 15(0(2))
where diag4,,...,A,) denotes a block diagonal matrix with the square matrices
Ay, ..., A, onits diagonal.

Since p;(z(t)) and fz;(6(t)) satisfy (2) and from the definitions (19), the matrices
Y a(t) andX 5 (t) are bounded:

SAOTat) <1, TL()Tp() <1 (20)

Using (17) and (18), the system (16) is then written as anm@oeT-S system given
by:
r 2"

=D i@l O)((Aij + AAQ@))x(t) + (Bi; + AB(1)u(t))  (21)

1=1 j=1
Let us define the parameter estimation ergit) by
eo(t) = 0(t) — 0() (22)

From (14), (21), (15) and (22) the dynamics of the state angipater estimation errors
are given by

=D > @) (0(t)) (Rijea(t) + i (tw(t) (23)

i=1 j=1



with

(t)
_ (et _| @)
ea(t) = ( eo(t) ) , w(t) = G(t) (24)
u(t)
e & = Aij — Li;C 0
S AA() B AB) (25)
\Ijij(t) - ( 0 Q5 I 0 >

Considering (23), the objective is to design a joint state parameter observer mini-
mizing theL, gain of the transfer fromv(t) to e, (¢). The computation of the observer
gainsKj;;, L;; anda; is detailed in the next theorem.

Theorem 1. There exists a joint robust state and parameter observerftt4 nonlin-
ear time-varying parameter system (3) with&ngain fromw(t) to e, (¢t) bounded by
(6 > 0) if there exists symmetric positive definite matri¢gsc R"=*"=, P € R"*",
matricesl'y € R"=*" Tl € R"*" T2 ¢ R**" T3 € R™*"« and positive scalars
B, A1, A2 > 0 solutions of the optimization problem (26)

min I3 (26)
Py,Py,R;;,Fij,a;j,M1,22,T%

under the following constraints:

Iy < BIfork=0,1,2,3 27)
B —CTFE 0 0 0 0 PRA PB
* * ff’ 0 0 0 0 0
* * x —Ii 0 0 0 0
* * * * —F% 0 0 0 <0 (28)
* * * * * ?jﬁ 0 0
* * * * * * =M1 0
* * * * * 0 —Xaof
fori =1,...,randj = 1,2", with
21]»1 = P()Aij + Az;Po — RijC — CTRZ?; + I"m
22 _ oo —al 47
AR N (29)
Q¥ = T+ MELE,
o =-T5+ MELER
The observer gains are given by
Lij = Py 'Ry
Ki;j = P/ 'Fy (30)

1
aij = Py

Proof 1. The proof of theorem 1 can be found in appendix A.



4. Application to a wastewater treatment plant

4.1. Process description

The considered wastewater treatment plant is issued frOiafad the considered
T-S model without taking into account the time-varying paeger [13].
The activated sludge wastewater treatment consists immixiastewater with a bac-
teria mixture in order to degrade the pollutants contaimethé water. The polluted
water circulates in an aeration basin in which the bactéi@hass degrades the pol-
luted matter. Micro-organisms gather together in colostalctures called flocs and
produce sludges. The mixed liquor is then sent to a clarifieere the separation of
the purified water and the flocs is made by gravity. A fractibthe settled sludges is
recycled towards the reactor to maintain its capacity oifigation. The purified water
is thrown back in the natural environment.
Only a part of the European Program Cost 624 Benchmark isaenesl. Usually, a
configuration with a single tank and a settler/clarifier isdisHowever, the data used
for simulation are generated with the complete ASM1 mddegl = 13) [7], in order
to represent a realistic behavior of a WWTP. In order to eas@4Banodelling, the
observer design is based on a reduced médel= 6) [20]. The simplified model
involves the following six components: the chemical oxygemand (DCOX pco,
oxygenSy, heterotrophic biomask g 7, ammoniaSy g, nitrateSyo and autotrophic
biomassX g 4. Thus, the state vector is defined as:

m(t)Z[cho(t), So(t), XBH, SNH(t), SNo(t), XBA]T (31)

In conformity with the benchmark of the European Programt®24 [2] and with the
real operating condition of the wastewater treatment plBlegesbruck from Luxem-
burg), the considered output and input vectors are:

y(t) = [Xpco(t), So(t), Svu(t), Sno(t)]" (32)
u(t) = [XDcoyin(t)v qa(t)v Qin(t)]T (33)
The variables;,, (t) andg, (t) respectively represent the flowrate input and the air flow

of the bioreactor.
The dynamic equations describing the system are the faolipwi

Xpco(t) = —gler(t) + @20 + (1= ) (0a(t) + (1)) + Da(t)
So(t) = Hten(t) + g Tes(t) + Da(t)
Sxa(t) = —imler(®) + ea(t)] - [ins + 55 ] 0a(t)
+(izb = fiizp)ipa(t) + @5(0)] + Da(?) (34)
Snolt) = Fheea() + soea(t) + Da(t)
Xeu(t) = @u(t) +pa(t) = ealt) + Ds(t)
Xpa(t) = @3(t) = es(t) + De(t)




where Y,

Yo, fp, iz, izp are constant coefficients and

©1(t), -+, p5(t) are given by:

p1(t) =

ws(t) =

Hn KDchD+C)?z§tc)o( ?) Kofﬂr(;z)(t) Xpnu(t)

HRTINOg KDchDvLC)?D(?o(t) KN?YF%SL(U KO§+SO(t) XBH( )

Ha KNHSZfétI\zH(t) Ko i(i—(;)o(t)XBA (t) (35)
brXpH(t)

baXpa(t)

According to the benchmark [2], it is supposed that the dvesboxygen concentration
at the reactor input9p ;») is null, thatSx o i = 0 @andXpa ;» = 0. The input/output
balance is defined by:

Dq(t)
Do (t)
Ds(t)
Dy(t)

Ds(t)

Ds(t)

= Din(t) [Xpco,in(t) — XDco(1)]

= Din(t)[-So®)] + Kqu(t) [So,sat — So(t)]

= Din(t) [Svm,in(t) — Snu ()]

= Din(t)[-Sno(t)]

- [XBH in(t) — Xpu(t) + %XBH@)] %)
= Dinlt) [~Xpalt) + 02 x50 (1)

= [XBH in WXBH( )}

~Xpa(®) = 557 Xpa (0

with D, (1) = @nlt)

4.2. Polytopic T-S representation

Since the transformation of the nonlinear system (34) intleSamodel does not
constitute the main contribution, and for lack of spaceydhk essential points are
given in the following. For further details on this proceduthe reader may refer to

[13], [12].
Considering the

process (34), it is natural to define theofahg premise variables

involved in the system nonlinearities:

in (T

&1(t) = 220
¢ (t) Xpco(t) So(t)

2 Kpco+Xpco(t) Kou+5So(t) 37
é— (t) XDco(t) SNO(t) Kog ( )

3\ — KDCO"FXDCO(t)SKNO(:)‘SNO(t) Kou+So(t)

1 NH

§4<t) " Koa+So(t) Kna,a+SNnH (1) Xpa(t)

9



Then system (34) can be written in a quasi-LPV form

#(t) = A(©)(1) + BEu(r) (38)
with matricesA(¢) and B(£) depending on the premise variables previously defined:
ar1(61) 0 0 0 a1,5(82,83) aie
0 az,2(&1,64) 0 0 as5(&2) 0
A6) = 0 az2(§1)  asz3(&) 0 a3 5(82,€3) as,6
0 as2(&4) 0 as,4(&1) as,5(83) 0
0 0 0 0 as,5(61,62,83) 0
0 ag 2(&4a) 0 0 0 ag6(&1)
b1,1(&1) 0
0 KSO,sat
BO=| | X
0 0
0 0
(39)

wherea; 1(&1) = az3(§1) = asa(&r) = —b1a(&) = =& (t) and:

a1,5(82, €3) = =56+ (1 - fp) ba — F22&5(1)
aie = (1- fp) ba
az2(81,84) = —&(t) - Kgo— 22 2 p, &4(t)
az;5(&2) = %Mh& (t)
as (&) = —(igp+ Y%),ua &4(t)
az5(£2,63) = (ieb — [plap)br — Gab pin E2() — iz tn MINOg E3(t)
az.6 = (Zzb - fp pr) ba
as,2(€4) = y-paba(t)
as,5(&3) = ;/éLT}lhﬂh NNOg &3(1)
a5,5(81,82,83) = pn&a(t) —ba +&i(1) [% - 1} + pnvog €3(t)
ag,2(€4) = malalt)
as(61) = alt) [ 1) -,
The premise variable;(t), ;7 = 1,...,4 are re-written using the convex polytopic
transformation:
&) = Fia(&0) &+ Fj2(8(t)) &2 (40)
where the scalar; 1, £; 2 and the functions?; 1 (§;), Fj2(;) are defined by
§a = max{g(t)} (41)
&2 = min{§(0)} (42)
e &) =&
Fue) = Lo (@3
Fj2(&(1)) E1— &2 (44)

10



In order to obtain the T-S structure from the quasi-LPV sys{88), each variable
4

¢;(t) is decomposed according to (40) and multiplied B[ (Fj.1 + Fj2) = 1.

k=1,7j
Similarly to the procedure described in section 2, the olediweighting functions are

defined by:

1i(€(1) = F1 51 (&1(8)) Fo 62 (§2(1)) F3 63 (§3(2)) Fy 04 (€a(t)) (45)

The matricesd;(6(t)) and B;(6(t)) are obtained by setting;(¢) = ¢; ,,(t) in A(£)
andB(¢), resulting in: '

a1,1(&1 01) 0 0 0 1,5(§2,02+83,03) aie
0 a22(§51,8404) O 0 a2,5(§2,02) 0
A 0 a32(64,09)  ass(éio1) O a3,5(62,02: €5,03) a3,6
o 0 4,2(§4,54) 0 as4(& 1) a4,5(85,03) 0
0 0 0 0 a’575(£1,o'1.17€2,(;?’§3,0'§) 0
0 acalbr) 0O 0 0 as,6(61,01)
b1,1(&,01) 0
0 KSosa
0 0
Bi= 0 0
0 0
0 0
(46)
Thus, the nonlinear model (38) is equivalently written urttie T-S form:
16
@) = Y milw,u) (Ai(t) + Biu(t)) (47a)
=1
y(t) = Cz(t) (47b)

with the output matrix defined as:

(48)

oo o+
o o = O
o O o o
o= OO
_ o o O
o O o o

4.3. Time-varying parameter in the T-S form of the ASM1 model

The T-S model (47) is obtained under the hypothesis thateterdtrophic biomass
is homogenous and then the mortality coefficignis constant and equal to its nominal
valuebg,, = 0.3.

Due to a change of operating condition, the coeffictgptmay vary. In order to take
into account this variation, a bounded time-varying param (¢) is introduced, and
by is defined by

bir(01(t)) = by, + 0.2 0,(2), 01(t) € [0,1] (49)

11



This allows to represent a variation up@6% of the nominal value. Sincky (6:1(¢))
appearsim; 5, a3 5 andas s, the time-varying matriced; (6(t)) are written asi; (6(t))

0.2
0
0.2
0
0.2

0 O

(50)

SO OO OO
o O o oo
o O o oo

OO oo oo
o O o oo

0 0

A; being obtained fromd;(6(t)) consideringd; (t) = 0 (nominal case).
For the following simulations)y () is taken as depicted in figure 3.

4.4, Results and discussions

The data used for simulation are generated with the compistd1l model de-
scribed with 13 state variables [7], in order to represengalistic behaviour of a
WWTP. Even if the observer design is based on a T-S form of thecesti model
(ny = 6) and is fed by the data from the complete ASM1 model, it will bersthat
the estimation results are more than satisfactory.
Applying theorem 1, the joint state and parameter obsed4Yy ié designed by com-
puting all the gaings;;, L;; anda;; (the numerical values are not given here due to
space limitation) such that the convergence LMI conditigiven in theorem 1 hold.
The solution of the optimization problem under LMI congttaiwas obtained with the
use of the SeDuMi solver and Matlab software. Matlab was atsm for the system
simulations.

Remark 2. SeDuMi (for Self-Dual-Minimization) [17] is a free add-onaltlab pack-
age for solving Linear Matrix Inequality (LMI) problems. dtlows to solve optimiza-
tion problems with linear, quadratic and semidefinitenessstraints. Some of SeDuMi
characteristics [10]:

¢ Allows the use of complex or real data and variables.
e Works with both equality and inequality constraints.

e Gives data in sparse format, leading to significant speedfiereduced mem-
ory burden) and low computation time compared to other sslve

e Displays the solution directly in matrix format and indioed show which in-
equality constraints are satisfied.

e Free software.

In order to illustrate the time-varying parameter effectlom system trajectory, figure
1 depicts the state variables in the nominal case (with atanhparametel; = 0.3)
and in the considered case (with the parameter variatiectiiigb ;). Figure 1 clearly
shows that the variation &fy has a significant effect on most of system variables.
Comparisons between the actual state variable, the unktioveavarying parameter
and their respective estimates are depicted in figures 2.and 3

12
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Figure 1: Time-varying parameter effect
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Figure 3: Heterotrophic biomasg; (t) = by, + 0.2601 (¢t) and its estimate

From the depicted figures, one can conclude on the effeesgeof the synthesized
joint state and time-varying parameter observer, sinceithetates are accurately es-
timated with an also really good estimation of the time-uagyparameteby (t). One
can note that the slight degradation at the start of the sitioul of the parameter es-
timation is due to the initialization error since the systand the observer state are
respectively initialized with the following vectors

zo=(30 35 20 1.5 650 11 )"
#o=(27 42 21 14 652 11)",6,=0

The obtained results show that the state and parameteragisti® are good enough
with an attenuation leve? = 2.6 1072,

5. Conclusion

In the present paper, a new systematic procedure is prelsentieal with the state
and parameter estimation for nonlinear time-varying systdt consists in transform-
ing the original system into a Takagi-Sugeno model basedersé¢ctor nonlinearity
approach and the convex polytopic transformation. Thissfiarmation has the major
interest to exactly represent the system without any losafofmation. A new pa-
rameter and state observer for the time-varying T-S systeithaunmeasured premise
variables is proposed based on ffeapproach.

The considered procedure is the following: from the nordiméne-varying equations
of the process, a global T-S model of the system is propodeel pfoposed observer is
then synthetized by solving the LMI optimization problem.

The concrete case of an activated sludge reactor modeldgedtwith modeling er-
rors (function of a time-varying parameter). It was cleathpwn that the variation of
the heterotrophic biomassg; has a significant effect on most of the system variables.
From this observation, one can easily agree with the negdifdrparameter and state
estimation.
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The obtained results from the application example illust@early the proposed ap-
proach performance. Therefore, as a future work, the asitimend to apply this
procedure for fault detection and estimation and use thatsefor a Fault Tolerant
Control (FTC) synthesis.

Appendix A. Proof of theorem 1
In the proof of theorem 1, the following lemma is used:

Lemma Appendix A.l. [23] Consider two matrices and Y with appropriate di-
mensions, a time-varying matrix(¢) and a positive scalat. The following property
is verified

XTATH)Y + YTA)X <eXTX +e71YTY (A1)
for any A(t) satisfyingAT (t)A(t) < I.

The proof of theorem 1 relies on the following steps.
1) Let us consider the following quadratic Lyapunov funitio

V(ea(t)) = eI (t)Peq(t), P=PT >0 (A.2)

Using (23), its time derivative is given by

r 2"
= ZZMz(f(t))ﬁJ(é(t)) [ ( )(‘bTP+P(sz)ea( ) (A.3)

i=1 j=1

+el () PV (t)w(t) + wT ()W () Pea(t)]

It is known thate, () asymptotically converges toward zero wheft) = 0 and that,
whenw(t) # 0, the £, gain fromw(t) to e, (t) is bounded byg if the following
inequality holds )

V(t) + el (t)eq(t) — wh (t)Taw(t) < 0 (A.4)
with

= diagT%), TX < B I, fork =0,1,2,3 (A.5)
Remark 3. Instead of optimizing the matriX, as mentioned in theorem 1, it is also

possible to choosE, in order to attenuate the transfer from some particular comp
nents ofu(t) to ey (¢).

2) According to the expression of the derivative of the Lyagufunction, let us rewrite
the constraint (A.4). Using (A.3), (A.4) becomes:

35 oo (5] )’

(o P ) () =

(A.6)
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The chosen Lyapunov matrik is block diagonal and defined by:
P = diagXPo, Pl) (A7)
From (22), (25), (A.5) and (A.7), (A.6) holds if

, on
DO @) (0(1)) (Qiy + Q1) + Q" (1)) <0 (A8)
i=1j=1

with; "

Qij —CTKiT»Pl 0 0 0 0
* 7P10éij — aijPl + In 0 Plaij Pl 0
* * —Fg 0 0 O
i = A.9
* * * * —F% 0
* * * * * —1"%
611]1 =Py Aij + A5P0 — Py L;;C — CTLZ;PO + 1, (A.10)
0 0 PyAA(t) 0 0 PAB(t)
0 0 0 0 0 0
0 0 0 0 0 0
ot) = 0 0 0 0 0 0 (A.112)
0 0 0 0 0 0
0 0 0 0 0 0

3) At this stage, if (A.8) holds, it implies (A.4) and then pre the theorem 1. How-
ever, (A.8) involves the uncertain ter@(t) which is time-varying. It is then prefer-
able to bound that term using constants. Based on (17) afpgdtEime-varying term
(A.11) can be expressed as:

Py A 0o \" PoB 0o \"
0 0 0 0
0 Ea 0 0
= A.12
Q(t) 0 DFIGN B + P 20N (A.12)
0 0 0 0
0 0 0 Ep
Using lemma 1 and property (20), there exists positive sealaand )., such that
Q(t) + QT(t) < diaqgla 07 AlE,ZE/h 07 07 )‘QEIJB;EB) (A13)
with:
Q' = A\ 'Ry AAT Py + \; ' Py BBT P, (A.14)

fori=1,...,randj =1,...,2".
From inequality (A.13), using the variable changes (30)waitd some Schur comple-
ments on the tern®!, it follows that (28) implies

Qi + Q)+ () <0 (A.15)

4) All the elements are now set up for the conclusion. Singé (¢)) andz;(0(t))
satisfy (2), (28) also implies (A.8) and then (A.4). As a camsence, th&,-gain of
the transfer fromw(¢) to e, (¢) is bounded by3, which achieves the proof.
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