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Multiple models are recognised by their abilities to actelsadescribe nonlinear dynamic behaviours of a wide waét
nonlinear systems with a tractable model in control engingeproblems. Multiple models are built by the interpabati

of a set of submodels according to a particular aggregatiechanism, among thefreterogeneous multiple modslof
particular interest. This multiple model is characteribsdthe use oheterogeneous submodéfsthe sense that their
state spaces are not the same and consequently they candmooabwimensions. Thanks to this feature, the complexity
of the submodels can be well adapted to the complexity of thdimear system introducing flexibility and generality
in the modelling stage. This paper deals with the off-linenidfication of nonlinear systems based on heterogeneous
multiple model. Three optimisation criteria (global, lbaad combined) are investigated to obtain the submodehpeters
according to the expected modelling performances. Péatiettention is paid to the potential problems encountéréde
identification procedure with a special focus on an undbErphenomenon calleab output tracking effectThe origin of
this problem is explained and an effective solution is setggto overcome this problem in the identification task. The
abilities of this model are finally illustrated via relevadéntification examples showing the effectiveness of ttoppsed
methods.
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1. Introduction oretical modelling on the basis afpriori knowledge on
. . : . . the nature and the intrinsic mechanisms of the systems.
Effectively dealing with many problems in control engi- . .

; ) . : These white-box models are often extensive, complex and
neering, such as modelling, control and diagnosis, gener-

. . heir ility for real-worl lication ntrol
ally needs the use of nonlinear models instead of the stan-t eir usability for real-world applications (control, &2

. o . estimation, etc.) often requires some simplifications. Be-
dard linear time-invariant (LTl) models. These last can _. : ). 9 . P
. . . : sides, thea priori knowledge on relatively complex sys-
be satisfactorily used to represent a mildly nonlinear sys- . . : , .
. N o e 7~ tems is partially or totally unavailable in many practi-
tem in some situations as proposed by Makila and Parting-

ton (2003). However, they have fundamental limitations cgl S|tuat|(_)ns a_nd consequently the thepreﬂcal model]lng
. A O . : fails. In this quite common case, experimental modelling
in their abilities to deal with highly nonlinear behaviours

. . . . identification) from m rements m n
and complex interactions in a large operating range, for(de tification) fro easurements must be used as a

; alternative to the theoretical modelling. Nonlinear sys-
example, when an extended working range of the system g Y

. . : tem identification has been the focus of a great deal of
(global behaviour) must be considered in preference to a L .
: : . attention in the past decades and several models with ade-
reduced operating range in the neighbourhood of an oper- . .
. . : guate algorithms have been proposed, for instance tempo-
ating point (local behaviour).

. . ral Volterra series, kernel estimators, block oriented mod
Nonlinear models are frequently obtained from a the-
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els, radial basis function network, artificial neural net- trol (Rodrigueset al, 2007; Ichalalet al, 2012). From
works, fuzzy models, neuro-fuzzy models, multiple mod- a structural point of view, the aggregation of submod-
els, etc. (Sjobergt al, 1995; BabuSka, 1998; Ljung, els is achieved via a time varying weighted sum of the
1999; Nelles, 2001). Nevertheless, the adequate strucsubmodel parameters (Gregor€i¢ and Lightbody, 2008).
ture selection among these multitude of existing stru¢tura Hence, the system complexity inside each operating zone
nonlinear models is particularly critical for the succebs 0 must be quite similar because the submodels have the
the identification task as well as the model usability. Ide- same dimension and in some cases the number of parame-
ally, as mentioned by Edwards and Hamson (20€Hg, ters needed for system description is inevitably increased
success of a model depends on how easily it can be usedoverparametrization). This fact is known as thase of
and how accurate are its predictions. Note also that any dimensionalitywhere the number of parameters needed
model will have a limited range of validity and should not for an accurate representation increases extremely yapidl|
be applied outside this rangeln summary, an accurate along with the nonlinear system complexity (Leith and
modelling in a large domain of validity must be accom- Leithead, 1999).
plished by models as simple as possible to cope with real- In the second multiple model structure, the submod-
world problems. els do not share the same state space and consequently
Multiple models also known adocal model net-  they are calledtheterogeneous submodelshis feature of-
works are recognised by their abilities to capture highly fers some degrees of freedom of particular interest to cope
nonlinear behaviours in a wide operational range of the with the curse of dimensionality. Indeed, the dimensions
system with an exploitable model (Johansen and Foss,of the submodels can be different and they can be adjusted
1993; Murray-Smith and Johansen, 1997; Leith and Leit- to fit with the system complexity inside each operating
head, 1999). Indeed, multiple models offer good trade-off zone. In this way, the flexibility and the generality of this
between accuracy, complexity and usability. In this mod- multiple model structure are undoubtedly increased. This
elling approach, the operating space of the system is de-kind of multiple model, initially proposed by Filev (1991),
composed in a finite number of possibly overlapping op- is reported in the literature under several designations,
erating zones. The closeness to each of them is quantisuch as local-state local model network (Gawthrop, 1995),
fied by aweighting function Linear modelsgubmodels multiple local models (Gatzke and Doyle IIl, 1999; Venkat
are then able to describe the dynamics of the system in-et al., 2003; Vinsonneaet al., 2005), local model net-
side each operating region. The global modelling of the works by blending the outputs (Gregorci¢ and Light-
system is finally performed by considering the contribu- body, 2000; Gregor€i¢ and Lightbody, 2008), multiple
tion of each submodel according to the operating point of model for models with non common state (Kanev and Ver-
the system. In this way a single complex model which haegen, 2006), neuro-fuzzy decoupling multiple model
parameters are not easily identifiable is replaced by a setscheme (Uppatt al., 2006) and recently decoupled mul-
of submodels judiciously interconnected via an interpola- tiple model (Orjuelaet al., 2006; Orjuelat al., 2008; Or-
tion mechanism. Different structures of multiple models juelaet al., 2009). Despite their different names, these ap-
can be derived according to the interpolation mechanism.proaches share a similar multiple model structure. In the
However, as stated by Filev (1991), two main structures sequel, this multiple model is calléwterogeneous multi-
can be clearly distinguished based on the usaarho- ple model The previously quoted works have illustrated
geneou®r heterogeneous submodels comparison, be-  successful implementations of this structure for mod-
tween these multiple models has been recently proposectlling (Venkatet al., 2003; Vinsonneaet al., 2005; Or-
by Gregorci¢ and Lightbody (2008). juelaet al, 2006), control (Gawthrop, 1995; Gatzke and
In the first one, all the submodels share the same statéDoyle I1l, 1999; Gregorc€ic and Lightbody, 2000), state es
space and consequently they are caliethogeneous sub- timation and diagnostic (Kanev and Verhaegen, 2006; Up-
models A good example of this kind of multiple model palet al,, 2006; Orjueleet al., 2008; Orjuelzet al., 2009)
is given by the well knownTakagi-SugendTS) multi- and have shown its relevance. Hence, this kind of multi-
ple model proposed by Takagi and Sugeno (1985), in aple model can be used as an interesting alternative to the
fuzzy modelling framework, and by Johansen and Fosshomogeneous multiple model.
(1993) in a multiple model modelling framework. This The main contribution of this paper is to provide a
multiple model structure, called hehnemogeneous multi-  supervised off-line identification algorithm for nonlirrea
ple mode| has largely been adopted for nonlinear mod- systems based on the heterogeneous multiple model struc-
elling and its abilities of dealing with highly nonlinear ture. The proposed algorithm is based on a specific anal-
systems are unquestionable (Murray-Smith and Johansenysis (sensitivity function computation) of the parameter
1997; Babuska, 1998; Abonyi and Babuska, 2000; Ver- identification of submodels using different optimisation
dult et al, 2002; Kiriakidis, 2007). That kind of mod- criteria (local, global or combined local/global). Indeed
els has also been largely studied to cope with fault detec-according to the expected model performances three cost
tion and estimation (Xet al., 2012) or fault-tolerant con-  criteria to be minimised are presented and the relation-
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ship between them is discussed. A particular attention isand real-time available. The distance to each operating
paid to the practical implementation and potential prob- zone is quantified with the help of threeighting functions
lems encountered in the identification procedure. Indeed,y;(£(k)) (cf. Sectio2R). The output; (k) of the sub-

an undesirable identification phenomenon, cafiedut- models are unmeasurable internal signals of the mbHel (1),
put tracking effectis clearly revealed and a madification only u(k) andy(k) are available for parameter identifica-
of the multiple model structure is proposed to reduce its tion.

impact on the identification quality. These topics seem It is worth noting from [(1) that each submodel
poorly investigated in the literature related to this kifd o  evolves independently in its own state space depending on
multiple model. the input control and its initial condition. Hence, the stat

The remaining of the paper is organised as follows. space dimensiom; of each submodel can be different
In Section[2, the heterogeneous multiple model is pre- from another and it can be adjusted to correctly describe
sented. The parametric identification problem is stated inthe system behaviour in each operating zone. It can be
Sectior 8 and three cost criteria are proposed. The iden-expected from this feature that some flexibility in the rep-
tification procedure using these criteria is exposed in Sec-resentation of nonlinear systems will be introduced. This
tion[4 and the computation of the sensitivity functions is multiple model is then suited for black-box modelling of
detailed. The Sectidnl 5 is devoted to the explanation of complex systems with variable structure in the operating
the no output tracking effecind a way to overcome this space such as biologic and chemical systems whose state
problem is proposed. Finally, the abilities of this multi- dimension (e.g. the number of products or species) may
ple model to cope with nonlinear system identification are vary according to the operating conditions. This feature
assessed in Secti6h 6 by means of different identificationalso offers the possibility to apply model order reduction
examples. Some concluding remarks and directions fortechniques on the submodels to reduce the global model
future researches are presented in Segfion 7. complexity. It can be noticed that other multiple model
structures can be obtained by blending the inputs of the
submodelsinstead of the outputs (Vinsonnetal., 2005)

2. Heterogeneous multiple model structure
9 P or by blending both of them.

This section is devoted to the description of the hetero-

geneous multiple model structure. A mathematical for- 5 o Weighting function definition. The weighting
mulation of this multiple model is firstly detailed. The functionsy; (£(k)) € [0,1] : R¥ — R! quantify the rel-
weighting function definition employed in this paperis af- ative contribution of each submodel to the global model
terwards proposed. according to the current operating point of the system by
means of the decision variabfee R*. This last vari-
2.1. The heterogeneous multiple model structure. able is a real-time available characteristic variable ef th
The state space structure of the heterogeneous multiplesystem, e.g. the system input.
model used in this work is given by: Here, the weighting functions are obtained from nor-

malised multidimensional Gaussian basis functions:

+ Dulb), wl€k) = e (~(&H) —cp)’/a?) . (2a)
yi(k) = Ci(0;)xi(k), (1b) j=1 )
W) = S (€ E) ag M) = wlE®)/> i), (2b)

where¢; is the j*® component of the decision variable
vector¢, the two parameters; ; ando; are respectively
employed to place the centre and to chose the overlapping
of weighting functions in the operating space. It can be
noted that other mathematical definition can be used. In
every case, the weighting functiops(£(k)) must satisfy

the following convex sum properties:

wherex; € R™ andy; € RP are respectively the state
vector and the output of thd' submodelu € R™ is the
input andy € RP? is the output of the multiple model.
The matrices4; ¢ R"*" B, ¢ R%>*™ D, ¢ R™
andC; € RP*"i of each submodel are constant matrices
whose entrieg; must be determined.

The numberZ of submodels is intuitively given
by the granularity of the operating space decomposition L
needed for an accurate representation of the system un- j; pi(€(k)) =1 vk
der investigation. The complete partition of the operat- .
ing space of the system intb operating zones is per- 0<pleR) <1, V¥j=1---L, vk (3D)
formed using a characteristic variabfék) of the sys- According to the operating space decomposition, the
tem calleddecision variablghat is assumed to be known weighting functions[{2) can be qualified stsongly over-

(3a)
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lappedfor smooth decomposition aveakly overlapped an entry or the complete input vectafk) of the sys-
for hard decomposition as depicted in Higj. 1 and Eig. 2. tem. Indeed, the evolution of the current operating point
The relationship between the functions({(k)) and of the system isa priori driven by the input system sig-
ui(£(k)) is also shown in this figure. The overlapping nal. This choice provides a solution to the first problem
between these functions can be viewed as the overlappingvithout loss of generality. Concerning the second prob-
between the validity regions of the submodels. As it will lem, it is assumed that the operating space decomposition
be pointed out in Sectidn 3.3, these notions play an impor-is a priori known (supervised case). Several ways can be
tant role in the potential interpretation given to the iden- employed to obtain this decomposition. The use of the
tified submodels. Throughout this paper and for the sakestatic regime characteristic of the system is for example a
of simplicity, the weighting functiong, ({(k)) are written simple way to perform this partition. In fact, this charac-
wi(k). teristic provides very helpful informations about the lbca
linear behaviours as well as the operating points (Venkat
o1 =085 et al, 2003). Clustering algorithms (Gustafson-Kessel
Algorithm, Fuzzy c-means, Fuzzy c-varieties, etc.) are
also very useful to deal with the operating space decom-
position in an efficient way (BabuSka, 1998; Dumitrescu

¢ =0.15 c =05 1 =0.85 ¢ =0.15 1
Pt 1

I
o

08" 03|

0.6| 0.6
wi(€) 1)

04 04 et al, 2000). The last quoted problem, but not the least, is
02 / N investigated in the sequel.
] S . The basis of the heterogeneous multiple model iden-
° 0z o4 06 08 10 020 04 06 08 1 tification by minimising the error between the system and

the model outputs is exposed in Grayal (1996). In
Fig. 1. Strongly overlapped weighting functions.; (&) (left) McLoone and Irwin (2003) the identification is achieved
andy; (§) (right) for o; = 0.3. using a heterogeneous structure with a particular class of
submodels known agelocity-basedocal models. The
use of these submodels provides transparency of the over-
o ps0s  anes all network because the submodels are always affine. In
; [ \ ( Venkatet al. (2003) the input/output data for submodel

c; =0.15 ¢ =05 cp =0.85 ¢ =0.15
1

0.8

| identification are generated in one particular small oper-
MZ” F’ ating zone of the nonlinear system, the linearity of the
04 / ‘ submodel associated with each set of data is ensured
o h \ in this way. Hence, the submodel identification can be
. ,/ j \ independently accomplished via standard linear identifi-
ce e b e ed eeee cation techniques. However a great number of experi-
ments are necessary to obtain the independent data se-
Fig. 2. Weakly overlapped weighting functions;(¢) (lefand  quences for submodel identification. In Vinsonneaal.
pi(€) (right) for o; = 0.1. (2005) the identification of heterogeneous multiple model
with blended inputs is performed with a global total least
square technique. In this section, the multiple model iden-
tification mainly deals with the submodel parameter esti-
mationd; in (X). Different optimisation criteria to accom-
The multiple model parametric identification generally plish the identification task are proposed and compared in
deals with three main issues: 1) the decision variable the following sections.
&(k) selection, 2) the choice of the weighting functions
wi(k) for operating space decomposition, 3) the submodel3.1.  Submodel parametric identification problem.
parameter estimation for a given multiple model struc- The set of parameters to be identified can be gathered in a
ture. The model validation constitutes the final stage of partitioned vecto# as follows:
the identification procedure, for example with the help of
appropriated correlation tests (Billings and Zhu, 1994). O = [01---0;---0.]" €RY, (4)
Unfortunately, these issues are not straightforward and
their simultaneous resolution leads to a very hard nonlin-
ear problem. Hence, a systematic procedure for multiple
model identification is not available despite the great ef- 0,
fort made in this direction.
Here, the three mentioned identification problems are whered, ;,, (k = 1---¢;) is a scalar parameter to be es-
tackled as follows. The chosen decision variafile) is timated,q; the number of parameters of tifé submodel

0.6/ !

wle)| !
0.4}

0.2t

3. Parametric identification problem

where each block; is formed by the unknown parameters
of thei*® submodel:

= [fi1--- O 'ei,qi]T € R%, (5)
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andg = Zle q; the total number of parameters of the
multiple model.

The statement of the identification problem, ad-
dressed in this paper, can be formulated as follofes:
given weighting functions and for a given set of in-

‘amcs

The classic least-squares algorithm can be applied for
each submodel identification when a hard operating space
decomposition is considered, i.e. wheitk) are not over-
lapped. In this particular case, the multiple model output
y(k) is given by the submodel outpyt(k) according to

put/output data of a MISO system, the parameters of the Lthe operating point. However, the outputs of the submod-

submodels must be determinékhe relative accuracy of
the identified multiple model is evaluated and quantified
via a cost function/(#) to be minimised, in other words:

J(0). (6)

The optimisation criterion/(#) generally quantifies the
output model quality with respect to the system output.
According to the choice of this criterion and thanks to the
flexibility of the multiple models some modelling specifi-
cations can be introduced (for example, a global represen
tation of the systems and/or its local representation)en th
identification procedure as proposed in the next section.

0

arg mein

3.2. Optimisation criteria. Three optimisation crite-

ria (global, local and combined) to be minimised can be
employed in the parameter identification of multiple mod-
els (Yenet al., 1998; Abonyi and BabuSka, 2000; Johansen
and Babuska, 2003). Obviously, the choice of a criterion

els are simultaneously available and a more general local
criterion can be defined by considering the contribution of
all submodels:

L
TL) = 5 D T6). (9)
1=1

This criterion takes into account the local approximation
provided by the submodels inside each operating zone and
some interpretation can eventually be accorded, e.g. a lo-

cal linearisation of the nonlinear system around operating
points. Hence, each submodel is identified by only con-
sidering data inside its associated validity region accord
ing to the weighting termu; (k) in (@). In comparison to
the global criterion[{]7), a great number of submodels can
be necessary to provide a good global characterisation of
the system.

Combined criterion A trade-off of global and local
criteria can be obtained by the combined criterion defined

is related to the expected performances of the model A%y (Yenet al., 1998):

well as its future applications.
Global criterion. The global criterion is defined by:

Ja(9) (7a)

Ja(0) (y(k) —ys(k))*, (7b)

whereN is the number of training data aa¢k) theglobal
error betweeny(k) the output of the identified multiple
model [1t) and/s (k) the system output given by the data.
This criterion encourages the global approximation be-
tween the nonlinear system and the multiple model be-
haviour across the operating space. This criterion is in-
teresting when the multiple model is used foedictions

Jo(0) = ada(0) + (1 — @) JL(0). (10)

The use of this criterion makes it possible the so-called
multi-objective optimisation in which the two above crite-
ria are more or less taken into account according to the
weight given by the scalar € [0, 1]. The influence

of « on the trade-off between local model interpretabil-
ity and the accurate global approximation is investigated
in (Johansen and Babuska, 2003). Some modelling con-
flicts between the local and the global objectives are also
pointed out in this paper and the way to detect and solve
these conflicts is analysed.

3.3.  Link between the criteria and the operating

without any interpretation of the submodels. Indeed, the SPace decomposition. The weighting functions are used
local behaviours of submodels inside each operating zongOF Zoning the operating space of the system. As previ-

are not considered bi/(7).
Local criterion The following weighting local crite-
rion is firstly introduced for each submodel:

Jri(0:) = %Zm(kf)ef(k), (8a)
1k;1

Jri(b:) = 52%(@(%(’“)*%(@)2, (8b)
k=1

wheree; (k) is thelocal error between the'" submodel
outputy; (k) given by [Ib) and the system outpug (k).

ously mentioned, the operating space decomposition can
be performed in a first step froenpriori knowledge of the
system. The expected results of the identification proce-
dure according to the criterion selection are consequently
conditioned by this partition.

Notice in particular that even if a local criterion is
used, the local behaviour interpretation of the multiple
model cannot be accomplished when the operating zones
are strongly overlapped. Indeed, some submodels have
a large validity zone and consequently a local interpreta-
tion inside a very delimited validity region is not well ad-
equate. In opposition, a global interpretation can always
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be made because the multiple model is built for accom- The Hessian matri¥l () is obtained by differenti-
plishing this objective. The local and global features of ating the gradient vectdr (1L 2) with respecttas follows:
the submodels are conditioned by the appropriate choice

of the weighting functions i.e. by the operating space de- 82J(6)
composition. He(0) = —pap7 (14a)
N N
. e 0?y(k dy(k) oy(k
4. Submodel parametric identification He(9) = e(k) 89?({9(972 +Z ?é—(@ aye(T)' (14b)

=

An analytical solution of the considered identification - ) )
problem given by[{6) is not available because the opti- Remark that the computation of the Hessian malfrix (14)

misation problem remains nonlinear with respect to the PECOMeSs very arduous due to the required computations
submodel parameters. Hence, the proposed parametric oLf both first and second order sensitivity functions. How-

timation of the unknown parameter vectds based onan ~ €Veh the second order sensitivity functions can be ne-
iterative minimisation procedure of a criterioh(global, ~ 9lected thanks to the Gauss-Newton method (Walter and

local or combined) according to the Gauss-Newton al- Pronzato, 1997; Ljung, 1999; Nelles, 2001). In this case,

gorithm associated with the Levenberg and Marquardt the Hessian is computed by only considering the first or-
method given by the following recurrence relation (Walter 9€r Sensitivity functions already employed in the gradient

and Pronzato, 1997; Ljung, 1999: Nelles, 2001): computation. Finally, the approximate Hessida (0) is
given by:
gt = glm) (11) N
e Oy(k) 9y(k)
(m) (11((m) (m) (y=1c(g(m) i _ N ) _ 1
AU H(OM™) + A D TIGOM), a(0) ,; e egT (15)

whered(™) is the estimated parameter vector at the*

iteration, 9™+ is the evaluated vector at the next it- 4.2. Computation of Gr,() and Hy,(6) with a local

eration, H((™)) = 632_0@ is the Hessian ma- criterion. The gradient vectoGy, () and the Hessian
. f=60m matrix Hy,(§) computations considering the local criterion

trix and G(9(™) = 1.(6) comp g

Q .
th {iterati |¢99 J(FO]:GW th? gradrllerllt yec'tlor at_t (@) are similar to the previous case. The local gradient
e current iteration. In the sequel we shall simply write Cu.() is given by:

H(A) = H(6™) andG(0) = G(9(™)). The computation

of G(#) andH(9) is based on the calculation sénsitivity GL() — 9J1(0) (16a)
functionsof the multiple model output with respect to the b a0 7
submodel parameters. The step si¢&) and the regular- L N Ay (k)
isation parametek(" enhance the velocity and conver- GLO) = D) pilk)eilk) 59 0 (160)
gence avoiding some numerical problems, for example a i=1 k=1
bad numerical conditioning of the Hessian matrix (Walter and the approximate of its associated Hessian matrix
and Pronzato, 1997; Ljung, 1999). Hy,(6) by:
el Ay (k) Oyi(k
4.1. Computation of Gg(#) and Hg (9) with a global () = ZZMM yi (k) yz(T)_ 17)
criterion. The global gradienG¢(0) is calculated by =1 k1 a0 00
differentiating the global criterio{7) with respect taeth
parameter vectd: 4.3. Computation of the sensitivity functions. Using
(I6), the sensitivity functions are defined as follows:
dJc(0)
Ga(0) = ; (12a) i=1.---_ L
90 dyi(k)  OC; Ox; (k) T
N o) a0,, oo, WM T Cigg— p=1-, L (18)
Ga() = Y elb) =52, (12b) pa pa PEg=1 g
k=1 whered, , is a scalar parameter to be estimated, already
by using [[ZE), it follows: introduced in Section 3.1. The sensitivity of the localetat
x; with respect to the parameters at the tilme 1 is per-
oulk L A (k formed by the derivation of (1a) with respect to each pa-
% = pi(k) yaé ) (13)  rameten, , to be identified:
1=1
Bysh) _ o . Quilk+1) - O gy 4 4, 2mlk) (19)
The =4~ are the first order sensitivity functions of the 00, 4 00, 4 00, 4
i** submodel output with respect to the unknown parame- 0B; oD;

ters of the multiple model. + aHWU(k) + 20, i=1,--- L.
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A very interesting feature in the heterogeneous multiple Remark that two classic problems can be encoun-
model identification is that the same sensitivity functions tered when using iterative nonlinear algorithms (Ljung,
6748’5—5’“) are used for parametric estimation with a global 1999; Nelles, 2001; Walter and Pronzato, 1997). The first
or a local criterion reducing in this way the computation one concerns theufficiently richinput signal. In the mul-

effort. tiple model framework the whole operating zones of the
system must be excited by the input on the one hand, and
4.4. Parametric estimation algorithm. The identifi-  the decision variablg(k) must be selected to trigger all
cation procedure described so far can be summarised bysuPmodels on the other hand. Let us remember that here
the following identification algorithm. the decision variable is the input of the system and there-
fore the identification can be well accomplished by suffi-
Require: Weighting function definition cient rich input. The second classic problem is related to
Require: Initial parameter vectod(©), initial the appropriate choice of an initial parameter guisw
state vectorz(0), initial state sensitivitieg ensure the algorithm convergence towards a global opti-
66””(;;0) mum solution or to the best local optimum. Indeed, sev-
Requiré? Maximal number of iterationsu,,, . eral local optimal solutions are often available for nonlin
Require: Maximal value of the gradient norm ear optimisation problems. In this particular case, sévera
e>0 choices of initial parameters may be necessary to reach
Require: 0 < o < 1 in the criterionJc(6) the best local optimum solution ensuring in this way the
given by [10) best identitication of the nonlinear system under investi-
Require: m = 1, A ~ 0andA\® >> 0in gation. An interesting procedure to judiciously choose the
@ initial parameters is to perform a first identification con-
1: repeat sidering a hard operating space decomposition by means
2:  Multiple model simulation from evalua- of classic least-square algorithm using the local criterio
tion of (1) (8). The submodel parameters obtained in this way can be
3:  Sensitivity function computation from employed as starting point in the identification algorithm.
(18) and[(ID)
4:  Gradient vectoG computation from[{12 4.5. Link between local and global approaches. The
and [16) aim of this section is to investigate the similarities of the
5:  Hessian matriXl computation from[(15 identification approaches using either a local or a global
and [AT) approach. Some algebraic manipulations are needed to
6. Update the vectad™ from (1) highlight the similarities between the gradient vectors
7: EvaluateJ(cm) G (0) andGy(0). Firstly, the global erroe(k) can be
g if J(Cmfl) < Jém) then rewritten as follows:
9: Go to stage 6, increas€™ and de- L
creaseA ") (k) = Y uilk) (y; (k) —ys(k), (21a)
10: else j=1
11: m<m+1 L
12: IncreaseA ™ and decreas&(™) ek) = > pi(k)e;(k), (21b)
13:  endif j=1
14: until [|G] < € Ormimaz < m using the convex propertids (3) of the weighting functions.

Some practical implementation aspects of this algo- Secondly, the expression efk) given by [2Ib) can be
rithm are discussed in the sequel. It is worth noting that replaced in the equation ([12) 6f; () as follows:
the sensitivity functiond(18) anf@_{{19) are generic forms.
They can be simplified in the algorithm implementation SR dyi(k)
because the parameters of each submodel are completerGG(e) - Zzzﬂi(k)uj(k)gj(k) 00 (22)
independent of the parameters of the other submodels. =ttt
Consequently, the number of sensitivity functions to be The main difference between the gradient vecfork (12) and
computed can be considerably reduced as follows: (18) only comes from the considered estimation error. A

Dys (k) i1 L global errors(k) = y(k) — ys(k) is considered in the
. o (20) first case whereas a local errof(k) = y;(k) — ys(k)

90, p=1L--,L is used in the second one. However, thanks to algebraic

The practical implementation complexity of the proposed manipulations the saan(wlg local error as well as the same
Yi

identification algorithm is largely reduced thanks to these sensitivity functions=5;~ appear in the global gradient

simplifications. vector [22) and in the local ong{|16).

=0, for p=#i
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Now, the limit case where the weighting functions

Considering strongly overlapped weighting func-

are not overlapped (i.e. very hard operating space decom+ions and a large number of operating zones is not always

position) is considered for the sake of clarity. In this imi
case, these two gradient vectors are identical because:

{m(kf)uj(kf) =1 if i=j

wi(k)pi (k) =0 otherwise

Hence, it can be expected th@t,(f) ~ Gg(0) when
weakly overlapped weighting functions are employed.
The same comparison between Hessian matiite&)
andHy, (9), respectively given by (15) and ([17), enables to
show thafty, (0) ~ Hg ().

In conclusion, it can be expected that both optimi-
sation criteria provide similar results when weakly over-

(23)

lapped weighting functions are considered because the

gradient vectors and the Hessian matrices are similar. In
fact, the optimisation directions are also very similar in
these two cases. In other words, local properties of the
submodels can be obtained using a global criterion when
the operating zones are weakly overlapped (cf. Example
[6.7) but global properties of the submodels can not be ex-
pected to be found when weighting functions are weakly
overlapped. For strongly overlapped weighting functions,
it is advisable to choose the combined criteribn] (10) to
weight the submodels interpretation with respect to the
quality of the global model.

5. On the no output tracking effect

In some particular modelling situations, undesirable dis-
continuities arise in the multiple model output (cf. Exam-

ple[6.2). Indeed, an abrupt change of the decision variable

&(k) can cause an abrupt jump from one output submodel
directly to another output introducing a discontinuity in
the multiple model output (Gatzke and Doyle Ill, 1999).
Let us remember that the multiple model output is given
by the weighted sum of the submodel outputs which are

not necessary close in the operating space. Therefore,

their distance may produce a discontinuity in the multi-

ple model output because the submodel outputs do not

instantly respond. This phenomenon, called herenine
output tracking effecthappens when the outputs of the
submodels taken into consideration are far apart. The im-
pact of this phenomenon decreases when the outputs ar
close and it completely vanishes if all the outputs are iden-
tical at the transition time.

an efficient way to avoid this phenomenon. These con-
straints undoubtedly increase the complexity of the mul-
tiple model and reduce some degrees of freedom in the
modelling stage, e.g. local modelling with strongly over-
lapped weighting functions can not be well achieved (see
Section3.B). Furthermore, the previous solutions do not
provide a systematic solution to the output tracking ef-
fectas shown in Example8.2. Here, a modified heteroge-
neous multiple model, depicted on F[d. 3, is proposed to
deal with this problem.

iU Fy(,)

11

Submods
Submodel 2

u(k)

Submodel L

Fig. 3. Modified heterogeneous multiple model structure.

The main idea is to find a way to progressively
take into consideration the contribution of each submodel.
Three filters (with transfer functionsg', F» and F3) are
introduced in the multiple model structure. These filters
respectively act on the input, the decision variaf(g)
and the output of the multiple model. The propogead-
ified heterogeneous multiple modsigiven by:

(k) = Fi(z7",0m )u(k), (24a)
€(k) = B (Z_la OF, )&(k), (24b)
vi(k) = Ci(0i)zi(k), (24d)
glk) = > mi(€(R))yilk), (24e)
y(k) = F3(z7"0r,)y(k), (24f)

wherey(k) is the modified multiple model output; ! is
the one step delay operatdr; (2=, 0r,), Fo(z71,0F,)
@ndFs(271, 5, ) are the three additional filters afg, is
the parameter vector of th# filter to be identified.

These three filters, often first or second order low-

This undesirable phenomenon unavoidably reducesy,ss filters, are integrated in the multiple model structure

the quality of the identified multiple model. It acts in - 54 their parameters should be estimated in the identifica-

the identification procedure as an internal perturbation tj5, procedure. The new augmented unknown parameter
strongly distorting the submodel identification results. \actorg is then given by:

The chosen decision variable, the operating space decom-
position and the dynamics of the submodels play a more g _ [ng
or less important role in theo output tracking effectt is

important to notice that this phenomenon is not systematicwhere each block; has already been defined [d (5) and
and only appears in particular cases. the block9r, , 0, andfdr, are formed by the parameters

o7 of oL 0% 0%]". (25)
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of the three additional filters to be identified. The iden- out using a data set of 750 samples generated by a smooth
tification procedure is achieved as proposed in Se€fion 4input signal with random magnitude k) € [—0.9,0.9].
including the additional sensitivity functions of the nmiult A second data set of 750 samples is employed for the val-
ple model output with respect to the filter parameters. idation purpose.

It can be noticed that a systematic guideline for selec- The identification results are displayed on Hify. 4. In
tion of these three filters cannot be provided in a straight- this figure, the nonlinear system is denoféd.S and the
forward way. Indeed, a systematic use of the additional identified multiple modelM M. The upper part of this
filters is not always needed to overcome i@ output figure shows a comparison between the nonlinear system
tracking effectas shown in Sectidn 6. These filters must and the identified submodels. Clearly, each submodel pro-
be considered as supplementary degrees of freedom to envides a local representation of the system behaviour. In
hance the identification task with few parameters when thefact, the first submodel provides a good approximation for
no output tracking effeds detected. In many cases, the negative input values. In contrast, the second submodel
output tracking effeatan be avoided by only using the fil-  provides good approximation for positive input values.
ter I, (i.e. using filtered decision variablégk)) because  The global modelling of the nonlinear system (bottom of

abrupt jumps of the weighting functions are avoided. the figure) is finally obtained by appropriately considering
the contribution of each submodel via middle overlapped
6. Identification examples weighting functions. The proposed multiple model rep-

resents local as well as global behaviour of the nonlinear
In this section, the developed method is applied to three system and the performance indicators are MSE=0.0012
nonlinear system identification problems allowing to as- and VAF=99.72%.
sess the effectiveness of the method as well as its lim-
its. The performance of the models are assessed using th
Mean Square Erro(MSE) and thevariance-Accounted-
For (VAF) indicators:

I I I I I
N 0 100 200 300 400 500 600 700 800

1
MSE= - g:l(ys(k?) —y(k))?, (26) 1 ]

_ var(ys(k) — y(k)) ] N e
VAF = max {1 ~ varys(h) ,0} x 100, (27)

0 100 200 3(50 4(30 5(50 660 700 800
whereys (k) andy(k) are the system and the model output
and where vdr) denotes the variance of a signal (Verdult ;
etal, 2002). These indicators are computed using the val- s
idation data in the proposed examples.

1

0 100 260 - 360 460 500 600 760 800
6.1. Example 1: identification case. The following
nonlinear system is considered:

yk+1) = (0.6 —0.1a(k))y(k) + a(k)u(k), (28a) ]
06— 0.06y (k) & 100 200 300 200 500 800 700 800
a(k) = Tr02y0h) (28b) i

The operating space is decomposed.in- 2 oper- Fig. 4. System identification results using validation data

ating zones according to the static characteristi¢_af (28).
The decision variable is the system ingt) = wu(k).

The parameters of the weighting functiofd (2) are= 6.2.  Example 2: on the no output tracking effect.
0.9, ¢, = 0.9 ando; = 0.9. This choice ensures the The goal of this identification example is to show the

blending of submodels but it is not however unique and OUtPut tracking effect The following system is consid-
the parameters of the weighting functions could be opti- €r€d:
mised. The structure of the submodels is: 2(k 4+ 1) = ax(k) + sin(vu(k)) (8 — u(k)), (30)

zi(k+1) = azzi (k) + bu(k), (29) with a = 0.95,v = 0.87 andjg = 1.5.
The operating space is intentionally decomposed in
wherea; andb; are scalar parameters to be identified con- L = 6 operating zones using the system input as the de-
sidering a global criterioi{7). The identification is cadti ~ cision variable, i.e£(k) = u(k). The parameters of the
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weighting functions[(R) are; = 0, co = 0.2, c3 = 0.4, seen from Fig.[J6, the modified heterogeneous multiple
¢y = 0.6,c5 = 0.8, c6 = 1 ando; = 0.2. The submodel  model provides an accurate representation of the system
structure is given by: dynamics. The performance indicators are largely im-
proved: MSE=0.0029 and VAF=99.98%. The proposed

zi(k +1) = aizi(k) + biu(k) + di, (1) strategy is an effective way to eliminate the no output

tracking effect and consequently to recover the approxi-

wherea;, b; andd; are scalars to be identified. A global . L X
mation abilities of the multiple model.

criterion [7) can be used for the identification task be-
cause the weighting functions are strongly overlapped.
The identification is carried out using a data set of 5000 20
samples generated by a piecewise input signal with ran-
dom duration and magnitudgk) € [0, 1], a second data 15l
set of 5000 samples is employed for the validation pur-
pose.

The comparison between the nonlinear system and 101
the multiple model behaviours is depicted in Fidl] 5.
Clearly, the system behaviour is not well represented by s
the identified multiple model. The performance indica-
tors are MSE=9.66 and VAF=52.22%. Indeed, the sys-
tem output is not well tracked by the multiple model out- 5000 6000
put, in particular due to “picks” causing a loss of qual-
ity. These “picks” are undesirable and result in the
output tracking effecpreviously presented in Secti@h 5.
One can see on Fid.] 5 that the output tracking effect
remains important despite the large number of submodels
and the strongly overlapped weighting functions voluntary 6.3
employed in this example. o

—NLS
---MM

7000 8000 9000 10000

Fig. 6. The no output tracking effect. System and modified-mul
tiple model output validation.

Example 3: nonlinear system identification.
The following system, firstly proposed by Narendra and
Parthasarathy (1990) for neural networks identification,
% ‘ ‘ ‘ ‘ is considered as a benchmark for black-box identifica-
: tion technique evaluation (Verduwét al., 2002; Nie, 1994,
PRraS ] Boukhriset al., 1999; Weret al., 2007):

I . u(k)

kE+1)= 33
Yk = T T 2 =) (33)
y(B)y(k — Dy(k —2)u(k —1) (y(k —2) — 1)
1+ 92(k—1)+y?(k—2) ’

The identification is achieved by considering a global
criterion and an operating space uniformly partitioned in
L = 4 operating zones. The parameters of the weighting
functions®) are; = —1,co = —0.33,¢c3 = 0.33,¢c4 = 1
Fig. 5. The no output tracking effect. System and multiple @ndeo; = 0.4. The identification task is accomplished us-

model output validation. ing a partially modified multiple model. Indeed, the de-
cision variableu(k) is filtered by the low-pass filtef (3b)

The modified heterogeneous multiple modell(24) and consequently only the filték is employed. The mod-
proposed in Sectiof] 5 is now employed to improve the ified multiple model is composed with four second-order
identification, i.e. to attenuate the output tracking ef-  submodels.

+

—NLS
---MM

5%00 6000 7000 8000 9000 10000
k

fect Here, the structures of the filtefg, F, and F3 are In this benchmark, the identification is carried out
given by: using a data set of 800 samples generated by a piece-
wise input signal with random duration and magnitude
alk+1) = awa(k) + (1 —a)u(k+1), (328) (k) ¢ [~1,1]. The model validation is assessed using
Ek+1) = afk)+(1—a2)é(k+1), (32b) a second data set of 800 samples generated by an input
ylk+1) = asylk)+(1—a3)y(k+1), (32c) signal given by:

wherea;, as andag are supplementary parameters to be {U(k) H(225—7Bk) if k<500,

=si
estimated based on the ideas proposed in setion 5. As| u(k) = 0.8sin(Z5k) + 0.2sin(32k) if & > 500.
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The identification is carried out by successively con- | Model name and reference | MSE | VAF
sidering the noise-free output case and the noisy outpuf Neuro-fuzzy network with 34 rules 0.00028| —
case. In this latter case, a normally distributed random| (nie, 1994) -
signal with zero mean and standard deviation equal to 0n€ Ts MM, with seven 3rd-order models 0.0003 _
is employed to disturb the system output. The obtained| (goukhriset al, 1999) _
identification results in these two cases are respectively| Ts mm. with four 3rd-order models 0.0002 | 99.9%
shown in Fig[¥ and Fid.]8. (Verdultet al., 2002)

BPWARX, with 10 BPWA functions 0.112 97.9%
(Wenet al.,, 2007)

The proposed method (noise-free case) 0.00067 | 99.7%
The proposed method (noise case, SNR=17¢B).0053 | 97.7%

Table 1. Performance indicator comparisons (TS MM: Takagi-
Sugeno Multiple Model (homogeneous model), BP-
WARX: Piecewise-Affine Basis Function AutoRegres-
sive eXogenous models).

heterogeneous submodels with different dimensions ac-
cording to the complexity of the system inside each op-
erating region. The main advantage of this model is the
Fig. 7. Model validation in the noise-free case identifioati flexibility degree in the operating space decomposition of
the system.

An identification algorithm is presented and three
cost criteria (local, global or combined global/local) are
provided according to the expected model performance.
The relationship between these criteria is highlighted. An
effective solution to avoid the undesiralnle output track-
ing effectis also proposed and the results obtained show
the effectiveness of the proposed identification algorithm

The proposed identification algorithm can be ex-
tended in order to optimise the operating space decompo-
sition. Indeed, the weighting functions associated to each
operating region are supposed to be known in this work,
0 100 200 300 400 500 600 700 800 even if they can also be optimised as the submodel param-

k eters using the same optimisation procedure. In this way,
the approximation abilities of the multiple model can be
enhanced but the complexity of the optimisation problem

. increases because the total number of the parameters to be
Table[1 shows a comparison between our results and. P

those found in the literature using other models. Remark|dent|f|ed also increases. A solution to this problem can

- however be found vi level iterative algorithmIn
that the two performance indicators MSE and VAF are oweve be found via awo level ite at. € algo .t m
. . the first level, the proposed parametric identification can
not always computed in these works and the noise cas

. . . . >%e used assuming that the weighting functions are known.
is not considered. It can be pointed out that the identi- o gthatt elghting .
. . . The weighting function identification is performed in the
fied multiple model yields comparable performances to .

. : . second level by assuming that the submodels are known.
those obtained with the other methods with few param- Finally, the perspectives of this study are the extension of
eters (four second-order submodels). The abilities of this Y, persp y

: : . . o the proposed identification procedure to include the opti-
multiple model to cope with nonlinear system identifica- __. " X " .
. misation of the operating space decomposition according
tion are clearly shown.

to the multiple model dimension, i.e. submodel orders and
their number.

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Fig. 8. Model validation in the noise case identification.

7. Conclusion and further directions

In this work, the abilities of heterogeneous multiple model
to deal with the identification of nonlinear systems are in-
vestigated. With respect to classic multiple model struc- Abonyi, J. and Babuska, R. (2000). Local and global identi-
tures, the heterogeneous multiple model enables to use fication and interpretation of parameters in Takagi-Sugeno
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