Contribution to the Constrained Output Feedback Control

Souad Bezzaoucha, Bénhdlarx, Didier Maquin, Jos Ragot

Abstract—In this paper, a Takagi-Sugeno model is used plant output signals [3], [14]. These controllers can béicsta
to represent the nonlinear behaviour of an actuator with or dynamic. Static output feedback control is the simplest
saturation constraint. The control design is based on an output approach since no further dynamics are needed. However, a

feedback controller (static or dynamic) depending on the d . tor introduci tra d . .
saturation levels. Stabilization conditions are derived with the dYNamic compensator introducing extra dynamics is reduire

Lyapunov method and expressed in terms of linear matrix to Increase the number Of degrees Of freedom n the deSIgn
inequalities. Stabilisation conditions are addressed using a and improve the closed-loop transient response.

descriptor approach for the system modelling. An academic |n this paper, static and dynamic output feedback con-
example is also presented with a comparison between different trollers are proposed. Sufficient linear matrix inequality

approaches. . . -
Index Terms— Takagi-Sugeno models, nonlinear systems, ac- (LMI) constraints are derived from the Lyapunov stability

tuator saturation, static and dynamic output feedback, linear theory. Section Il introduces the T-S structure for modglin

matrix inequality, descriptor approach. some preliminary results, mathematical notations andef bri
description of the saturation. It is followed by the repre-
l. INTRODUCTION sentation of the nonlinear saturation by a T-S structure in

Actuator saturation or control input saturation are probsection Ill. In sections IV and V, static and dynamic output
ably the most usual nonlinearities encountered in contrééedback controllers, depending on the saturation bowamds,
engineering because of the physical impossibility of aipgly respectively designed. In order to show the effectivendss o
unbounded control signals and/or safety constraintssicials the proposed methods, some simulation results are given in
examples of such limits are the deflection limits in aircrafsection VI. Conclusions are detailed in section VII.
actuators, the voltage limits in electrical actuators amel t
limits on flow volume or rate in hydraulic actuators [12]. Il. PRELIMINARIES

Motivated by these practical issues, many approaches haverpe 1.5 modeling allows the representation of the behav-
been developed to deal with actuator saturations in thg; of nonlinear systems by the interpolation of a set ofdine
existing literature (see, for example, [4], [3], [6], [1415]  sypmodels. Each submodel contributes to the global behav-

and the references therein). ior of the nonlinear system through a weighting function
The aim of this paper is to present another new treatmeHit(E(t)) [11]. The T-S structure is given by

of saturation nonlinearity. A Takagi-Sugeno (T-S) forraali ]

with sector nonlinearity approach is used to represent the . . _ ' .
nonlinear behaviour of a saturated actuator. This model, Xt = i;h.(f(t))(A.x(t)+B.u(t))
initially introduced in [9] is simple and accurate; it allew n @
to use classical methods to study the nonlinear behaviors. yt) = _Z\hi(f(t))(cix(t)JrDi“(t))
The idea is to consider a set of linear sub-systems. An =

interpolation of all these sub-models with nonlinear fimas ~ wherex(t) € R™ is the system statey(t) € R™ the control
satisfying the convex sum property allows to describe thiput andy(t) € R™ the system outputé(t) € RY is the
global behavior of the system in a large operating rangaecision variable assumed to be measurable (as the system
[11]. Our study is motivated by taking into account theoutput) or known (as the system input). The weighting
saturation model during the controller design in order tdunctionsh;((t)) satisfy the so-called convex sum property
obtain a controller which parameters depend on the satuarati

n
limits. The proposed representation describes the sainrat Zlhi(é(t)) =1 0<h(&) <1 i=1...,n (2
as a T-S system with three sub-models and the weighting =
functions depend on the control input. In the remaining of the paper, the following lemma is used.

The design of stabilizing controllers for T-S nonlinear-sys | amma 1: For any matricesX, Y and G = GT > 0, the
tems with input constraints can be addressed by using eitr\%ﬂowing inequality holds

an observer-based controller or an output feedback cdetrol

The former approach requires additional dynamics and ob- XTY +YTX < XTGX+YTG 1Y (3)
sever design [11], [13]. The descriptor approach may also beThe following notations are used throughout the paper: a
envisaged [10], [2], [7] and [8]. The latter uses only meadur block diagonal matrix with the square matricAs,...,A,

_ N _ on its diagonal is denoted digd,...,A,). The smallest
The authors are with Universide Lorraine, CRAN, UMR 7039, 2 avenue

de la Fobt de Haye, Vandoeuvres-Nancy Cedex, 54516, France. CNRs,@Nd largest eigenvalues of the matiix are reSpe.Ct'Vely
CRAN, UMR 7039, Francef i r st nane. nane@ini v- | orrai ne. fr denotedAmin(M) and Anax(M). The saturation function for



a signalv(t) is defined as (4), wheremnax and vpyin denote
the saturation levels.

v(t) if Vmin < V(1) < Ve
sat(v(t)) = { Vmax  if V() > Viax (4)
Vi if V(t) < Vnin

IIl. PROBLEM STATEMENT

Let us now consider a T-S nonlinear system subject to ac-
tuator saturation represented by the following state eéguiat
n
hj (& (1)) (Ajx(t) + Bjusa (1))
(11)
hj (& (£))(Cjx(t) + Djusa (1))

A first contribution of this work is to model the nonlinearAccording to the T-S Wr|tt|ng of the saturation deve|oped
actuator saturation using the Takagi-Sugeno representati ghove, equation (11) can be written as

For that, it is proposed to re-write thg" component of
the saturated control input (denotey; (t), for j=1,...,ny)
under a particular form of th¢!" component of the control
input (denotedu;(t), for j =1,...,ny), as follows:

ULy (t)

Sit(ui(t)%
> MO Kui®)+)

j:].,...’nu

®)

with: /\1j =0, )\Zj =1 )\3‘; =0; ylj = urjnin, y2j =0, yé = Ul

(6)
and the weighting functions
) N
pit) = %@”mn) |
Ug(t) _ sign(u,-(t)fuﬂnin).;sign(uj(t)fugw) )
py = HEOUO-Um)

3 n

X0 =3 5 HOMED)AXD +B(AuD) +1)
1=1]=
3 n

y(t) = Z leli (O)h; (& (1)) (Cjx(t) + Dy (Au(t) + 1))
1=1)=

12)

IV. STATIC OUTPUT FEEDBACK CONTROLLER A
DESCRIPTOR APPROACH

The objective is to design a stabilizing static output
feedback control ensuring the stability of the system, even
in the presence of control input saturation. The solution is
obtained by representing the saturation as a T-S system and
by solving an optimization problem under LMI constraints.

In order to highlight the interest of considering the saiora
when computing the controller, the controller design is
envisaged without (section IV-A) and with (section IV-B) a

Based on the convex sum property (2) of the weightingriori taking into account the input saturation. A compsoai
functions (7), equation (5) can be written in order to hae thof the obtained results is made in section VI.

same activation functions for all the input vector compdsen

n 3

) 3 ) )
V)= 5 HONGO[] 5 W) @
- =il

For ny inputs, 3v submodels are obtained. It is important to

note that the saturated control is directly expressed imger
of the control variableu(t). Equation (8) is equivalent to

3w
Usar (t) = Zui (t)(Aiu(t) +T7) 9)
i=
where the global weighting functions(t), the matrices\; €
RW>Nu and vectord’; € Rw*1 are defined as follow

W) = K

D gi(uj())
A = diag(Ak,...,AM,) (10)
[ = (Vclfil )Q:ﬁu)T

The indexeso} (i = 1,...,3% and j = 1,...,n,), equal to
1,2 or 3, indicate which partition of th¢'" input (u, 3 or
pd) is involved in thei " submodel. _

The relations between the submodel numbend the o/

indices are given by the following equation

i=3wlgly3n2g2 1 3PgM (314324 43wl

For more details, see [1].

A. Nominal control law

In order to stabilize the system at the origin, let us conside
a linear output feedback controller given by (13)
n
u(t) = 3 hy(E Oy (13)
=1
To reduce the number of LMIs to obtain the gail<i$, a
descriptor approach is applied. This approach is well known
to avoid the coupling terms between the feedback gains and
the Lyapunov matrices. As a consequence, the number of
LMI decreases and relaxed conditions are obtained [2]. The

control law (13) and the output signal of system (1) are
written as follows

ou(t) = 3 hy(&(t)KHyM) —u(t)
o (14)
oy(t) = _Zlhj(f(t))(CiX(t)+DjU(t))—y(t)
=
With the augmented statg(t) = ( x"(t) u'(t) y'(t) )T
and from equations (1) and (14), we can write
E%a(t) = Zlhj(f (1)) Xalt) (15)
=
with
lh, O O Aj B 0
ES=| 0 0 O |, o= 0 —ln, K} (16)
0 0O Ci Dj —Im



Let us consider the following Lyapunov function From (16) and (27), the matriks is chosen as follows, with
PP=(PH)T >0
V(1) = () (B9 Palt) an T

= diagPL,P5, P3 28
with the condition 9P1, P, P3) (28)
From equations (21) and (26), the time derivative of the

Lyapunov function is given by

and where the matribP is taken as diadh, P2, P3) with u

P =P P, > 0. One can note that(t) is quadratic in the V(t) — zlz I (t)hj(f(t))((%ﬁ)TPsxa(t)

system state, since (17) reduceswii) = x' (t)Pyx(t). The i=1j=1

time derivative of the Lyapunov function is given by +x! (t)(PS)Tﬂﬁ +x! (t)((ﬂi?)TPer (pS)T@fijS)xa(t)) (29)

(ES)TP=PTES>0 (18)

i (ﬂS)TPJFPTdS) t (19 Using Lemma 1, it follows that

(25)"Pa(t) +x3 (1)(P°)T 5, <

To ensure the stability of (15), developing (19) with (16),
y of (15) ping (19) (16) rD/=¥Dri+ 1B ZByT;

the conditions to solve with regard @, P, P; and R;,

j=1,...,n for the nominal case, are the following +x (t) diag(PY(Z{®) 'Pf, 0, (P5)T (z?‘f) IPS)xa(t)  (30)
AJPL+PLA| P1B; C/Ps Using (30), (29) is bounded as follows
* -P,—P] RJ+DTF13, <0, j= n .
1)
* * —Ps—P (20) )< ZZH' )(FT B 2B + I D] 23D

i T\-1p.
The output feedback gains are deduced fi= (P, ) °R;. ot )((%’IT)TPS+ (PS)T@%ier
B. Saturated T-S control law diaqpls(ziljS)—lpi 0, P§(Zi3js)‘1P§'))xa(t)) (31)

The objective is to adapt the gai§ of the controller
(13) to the saturation limits and guarantee the stabilitthef
closed loop system. The system (12) is written as a descrrpt@ (gfi?)TPS+ (PS)TJz{i]-S+diaqu(ziljs)_bf7 0, pg(zﬁS)—}:g)

Let us define

system using the augmented stajét) already defined (32)
3w g gszi:l_3mir1j:1_n)\mm(—,@isj) (33)

E%() =3 Y mh(EU) () +45)  (21) T
Q& 5°= max (ITB/Z¥BiIi+ITD]Z¥D;M) (34)

i=1:3u, j=1n
with ES given by (16) and . . _
SlnceziljS and Zﬁs > 0, from equation (31) with the convex
s Aj BiA OS s BjTi sum property (2)V(t) < —¢° | Xa [|3 +3°. It follows that
A= 0 —ln, Kj &y = 0 (22) V(t) <0 for
Ci DiNi —Im Dl
Theorem 1. There exists a static feedback controller (13)
for a saturated input system (12) such that the systemwhich means that,(t) is uniformly bounded and converges
state converges toward an orlgrn centered baII of radiuy the origin- centered ball of rad|u§/8§ according to
0,P5,RS,Zl = (zf9)7 >0, =¥ = (235) > 0 “solutions of
the foIIowrng optrmrzatron problem (foi =1,...,3™ and

25 <0 and | %a 3> & (35)

The objective is now to minimize the radit,{;s/é. Firstly 0%
(34) is bounded by3s from LMIs (25). Secondly, it can be

j=1,...,n
J=L.n shown that Yes < fs. From (24), with a Schur’'s complement
min Bs (23) 7
P, PS, PSR, 3l 5 and the variable change
s.t. (24)(see next page) with R = (P)TKS (36)
rr B-TZil-SBjri +rT7 D-TZi?‘SDjFi < Bs (25) it follows that
The gains of the controller are given b§f = ((P5)T)1R® —25>(1/B) 1 i=1...3% j=1....n (37)

meaning that all eigenvalues of—(Q ), including &5, are

bigger then 1Bs. Thus &% < s and the radrus\/» is

V(t) = %3 (1) (E%) Pa(t) (26)  bounded byps. n
Remark 1: It is important to highlight that the saturation

may causes a performance degradation of the nonlinear

(ES)TPS = (P)TES>0 (27) system and even destabilize it. However, with the proposed

Proof: Let us define the quadratic Lyapunov function

with the condition



AT P+ PPA| PSBjAi C/Ps P$ 0 | 0 0
* ~P5—(P5)T RE+AD]P;| 0 0 0 [ 0
* * -PS—-(P5T | © Ps 0 0 [
% * * * _zif)’js 0 0 0
* * * * * —Lsl 0 0
* * * * * * —psl 0
* * * * * * * —Bsl
static controller its stability is ensured. with
Note that if the submodels are initially unstable, the pesub Pu=P}; >0, Po=P,>0P3>0

approach is not suitable for this case since the LMI condlitio ) o L
can not be fulfiled. In order to improve the obtained resultdN€ time derivative of the Lyapunov function is given by

and relax the sabilization constraint, the dynamic output . n T dnT T d
feedback control is proposed in the following section. V(t) = Zlhi(f(t))xa O PHP )x(t)  (44)
J:

V. DYNAMIC OUTPUT FEEDBACK CONTROLLER A To ensure the stability of (39), the conditions to satisfy, f

o D_ESCRIPTOR AP'_DROACH o _the nominal case, are given by (46) (fpe=1,...,n) with
The objective is now to design a stabilizing dynamic

output feedback control ensuring the stability of the syste A = P{zlﬂ? Bf = Py Ef
even in the presence of control input saturation. The smiuti cr = (P§3)*1Cf Df = (P:}g)*lﬁj9
is obtained by representing the saturation as a T-S systdm an
by solving an optimization problem under LMI constraints.
B. Saturated T-S control law

The objective is now to design the dynamic controller
i38) to guarantee the stability of the saturated system (12)
‘according to the saturation limits. Considering the presio
augmented state vectag(t), from equations (12) and (38),
the closed loop system is given by:

(45)

A. Nominal control law

In order to stabilize the system (1) at the origin, let u
consider a dynamic output feedback controller defined by

) = 3 My EO)AX() +BYO)
o (38) oo r
i = 2 ED)CHEn) + D) Ealt) = 3 5 WO EO) (0 +5) @D
n i=1j=1

Once again, the descriptor approach is applied.. q )
Considering the augmented state vectot(t) = With EY=diag(lzn,, On,m) and

(xXT(t) x(t) u'(t) y'(t) )T, from equations (1) Aj 0 BjA O Bjl
and (38), it follows 0 AS 0 B¢ 0
q n q ”%I?: 0 C(J: I D{: a’@IdJ: 0 (48)
) — . i u i
E™Xa(t) = lehj(f(t))ﬂ{j Xa(t) (39) Ci 0 DA —In DjT;i
with E9 = diag(Izn,, On,m) and Theorem 2: There _exists a dynamic feedback controller
(38) for a saturated input system (12) such that the system
Aj OC Bj OC state converges toward an origin-centered ball of radius
0 A 0 Bj bounded bypfy if there exists P4, = (P9)T > 0,P4 =
o4 — ] ] (40) Y Pd 12\ 7 52
I 0 Cf —ln, Dj (P5,)T >0, P§3> 0, Pfl, Pfh, Py, Piy, EJ: Bj, éJj DJg’ Ziljd =
Ci 0 Dj —lIm (ZIHT >0, andz?! = (23T > 0, solutions of the following
Let us consider the following Lyapunov function optimization problem (foi =1,...,3™ and j=1,...,n)
V(t) = X1 (1) (EY) T Pxqlt 41 min 49
with the condition( eEE o P PS5 Pl Pih P Pl P AT B7.C D 2 2 - )
(Ed)TP P 42) s.t. (50) (see next page) with
B rTBI MBI +ITDIs2D;r; < By (51)
From (42) and (40), the matriR is chosen as LR R
P, O 0O O The gains of the controller (38) are given by
p=| 2 P2 00 (43) A = (P)A B = (P)'B] -
0 0 P3 O ce — ((Pd )—l)TC(? D¢ — ((pd )—1)T5‘_3 (52)
Pax Pz Piz Pas ! 3 ! ! 8 !



A}— P11+ P]_]_Aj + C]r Pa1+ PL_CI‘ C}r P42 P]_]_Bj + C}r Pi3+ PL_DJ' C]r Pas— PIZL
. (R)T+A] (©)" +PiD; Bl Pi

0 46
* * Pé-lr3Dl +(PAT3DJ')T _R’:?:_ng 6(];_PI3+ DTP44 < ( )
i ¥ * —Paa—Pyy
Qili 7CCJ‘TP£1% Plei/L + CjTchljsd+ (Pftjl)TDi/\i CL’?&‘ (del)T PZ(le Piy ' 0 0 0
x  A+A)T )T +(PR)TDA; . Bi~ (PE) 0 P, | O ' 0 0
* * Q} Dj — (P +ATD]PE, | © Pls 0 0 | 0
* * * —P,— (P37 0 P, | O 0 0 |
* * * * —Ziljd 0 0 0 0 0 <0
* * * * * 7zi2jd 0 0 0 0
* * * * * * — Lyl 0 0 0
* * * * * * * —Bql 0 0
* % * * * * * * — LByl 0
* * * * * | x * * —Bgl
Qi =ATPH +PAA +CI P + (PI)TC) and QF = —P;— (Py)T + (P) TDjA +ATD] Py
(50)
Proof: Let us define the Lyapunov functiod(t) = and
XX (t)(E9)TPx,(t) with EY defined as (40) and the condition 2 1 1 3 2 _2
(EHTPY = (PHTEY > 0. A= 1 =3 0o |, m=| 5 -3 0
To satisfy this condition, the matriR? is then chosen 2 1 -8 1 2 -4
1 3
d
Pll C()j 0 0 Bl: 5 ,82: 1 ,Cj_:C2: i1
g 0 P, 0 O 100
IR (56)
Par Pz Paz Py The input is subject to the following saturationga, =

) 0.3, umin = —0.3. The weighting functions depend on the
with P = (Pfy)" >0, P = (P5))T >0 andPg_3 >0. Apply- output and are defined as follows
ing the same development as for the static controller with

the variable changes pa(x(t)) = (1—tanl"(y12(t) +yz(t)));uz(x(t)) =1—p(x(t)
A =pdac B =pipe ) . (57
3t 220 _l 2270 (54) The figures 3 and 4 depict the system outputs and the control
Cj =(Pg) Ci Dy = (Ps3) Dj input of the nominal closed loop system without saturation
o d (respectively denotegs,, yon anduy), those of the nominal
and defininge® and 6% by closed loop system with saturation (respectively denoted
gd min Amin(—g'd') Visat, Yosat and _urm), those obtained by the static T—S_ con-
i=1:3W, j=1n . (55) troller (respectively denotegf, y5 andu®) and those obtained
5= max T (B[ =B; + D] =%'D))r; with the dynamic T-S controller (respectively denotédyd
i=1:3w, j=1n

andu®). For this example, the nominal controller is

with 2} defined in the same way a8, was. K= (005 012), K§=( —0.13 —0.18)

The stabilizing conditions are linearized and given by (50)rhe static controller gains from Theorem 1 are equal o
As the weighting functions satisfy (2) angf, 52! > 0, if 9 q

0 -0.15 -0.16 —0.068 —0.029

(50) holds, and| xa [|3> g;‘, thenV (x(t)) < 0, implying that Ki=(0.03 006 ), Ks=( 003 -043)
Xa(t) converges to an origin centered ball of radi 63. The dynamic controller from Theorem 2 is given by
Similarily to what is done in the proof of theorem 1, the —-1134 —-9.11 —-9.11 —0.56
radius of the ball is bounded k8¢ due to (50) and (49)m AS = -9.11 -11.34 —-911 ,(CE)T —0.56
-9.11 -9.11 -11.34 —0.56
VI. NUMERICAL EXAMPLE —-231 -0.08 —-0.08 -0.31
S=| -0.08 -231 -0.08 T -0.31
This section is devoted to the comparison of the resultsA2 _0.08 -008 —231 (&) _031
obtained with the nominal controller and with the proposed ’ ' ) ’
controller, both in the static (13) and dynamic cases (38). -015 -0.16 —0.068 —0.029
C __ _ _ C __ _ _
Let us consider system (11) with=2, D; =D, = Bi= 015 -016 }.B; 0.068 —0.029
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approach not only ensures the stability of the closed-loop
system, but also compensate the saturation effect by adding
more energy to the control input.

VIl. CONCLUSIONS

Using the T-S approach to describe both the nonlinearities
and the input saturation, a nonlinear system with saturated
actuator(s) can be represented with a T-S model. This unified
representation allows to deal with these difficulties and to
synthesize an output feedback controller which gains d&pen
on the saturation bounds. The solution of this problem is
based on the Lyapunov theory using the descriptor approach
and is expressed in terms of LMI. Two output feedback
controllers were synthetized, a static controller and a dy-
namic one. The dynamic controller was considered in order
to increase the number of degrees of freedom in the design

and improve the control performances.

35 4
15
7y2n
1 Yosat
iy;
0.5 o *Y;
ok S S S
0% 05 I 15 2 25 3 35 3 5 5
Fig. 1. System outputs
= [1]
1 @
(3]
Fig. 2. Control input
(4]
Df=( -0.33 -0.27),D5=( -0.13 -0.89) 5]
(6]

For the proposed example, the control goal is to ensure
the state trajectory convergence to the origin in spite ef th 7]
input saturation. One can observe from the depicted figures
that the results are slightly better for the dynamic coigrol
with the proposed T-S approach. It can be noted that usin&sl
the dynamic controller allows to decrease the radius of the
ball in which the state convergence is ensured. Moreover, th[g]
numerical results ar@s = 15.09 andfq = 9.46. To analyse
the results in the four situations, the following companiso
criteria are selected: the fall time of the state variableB0]
x1 and x; denotedt; and t, respectively that are to be
minimised, the energy of each output denofgg and Ey,
respectively Ey, = féyiz(t)dt) to be minimized; the contol
input energy denote®, (E, = /3 u' (t)u(t)dt)). The results [12]
are displayed in the following table, where case 1 refers to
the nominal closed loop system without saturation, case 2
refers to nominal closed loop system with saturation, ca§1e3]
3 and case 4 respectively refer to the proposed static and
dynamic T-S approach. The proposed T-S controller desig#]

[11]

case 1| case 2| case 3| case 4 [15]
t1 2s 28s 21s 16s
to 1s 18s 14s 091s [16]
E,» | 27806 | 39465 | 38212 | 36904
Ey 2157 31.05 29.22 28.70
Ey 8.17 3.64 3.99 511
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