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Abstract— In this paper, a Takagi-Sugeno model is used
to represent the nonlinear behaviour of an actuator with
saturation constraint. The control design is based on an output
feedback controller (static or dynamic) depending on the
saturation levels. Stabilization conditions are derived with the
Lyapunov method and expressed in terms of linear matrix
inequalities. Stabilisation conditions are addressed using a
descriptor approach for the system modelling. An academic
example is also presented with a comparison between different
approaches.

Index Terms— Takagi-Sugeno models, nonlinear systems, ac-
tuator saturation, static and dynamic output feedback, linear
matrix inequality, descriptor approach.

I. INTRODUCTION

Actuator saturation or control input saturation are prob-
ably the most usual nonlinearities encountered in control
engineering because of the physical impossibility of applying
unbounded control signals and/or safety constraints. Classical
examples of such limits are the deflection limits in aircraft
actuators, the voltage limits in electrical actuators and the
limits on flow volume or rate in hydraulic actuators [12].
Motivated by these practical issues, many approaches have
been developed to deal with actuator saturations in the
existing literature (see, for example, [4], [5], [6], [12],[15]
and the references therein).
The aim of this paper is to present another new treatment
of saturation nonlinearity. A Takagi-Sugeno (T-S) formalism
with sector nonlinearity approach is used to represent the
nonlinear behaviour of a saturated actuator. This model,
initially introduced in [9] is simple and accurate; it allows
to use classical methods to study the nonlinear behaviors.
The idea is to consider a set of linear sub-systems. An
interpolation of all these sub-models with nonlinear functions
satisfying the convex sum property allows to describe the
global behavior of the system in a large operating range
[11]. Our study is motivated by taking into account the
saturation model during the controller design in order to
obtain a controller which parameters depend on the saturation
limits. The proposed representation describes the saturation
as a T-S system with three sub-models and the weighting
functions depend on the control input.
The design of stabilizing controllers for T-S nonlinear sys-
tems with input constraints can be addressed by using either
an observer-based controller or an output feedback controller.
The former approach requires additional dynamics and ob-
sever design [11], [13]. The descriptor approach may also be
envisaged [10], [2], [7] and [8]. The latter uses only measured
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plant output signals [3], [14]. These controllers can be static
or dynamic. Static output feedback control is the simplest
approach since no further dynamics are needed. However, a
dynamic compensator introducing extra dynamics is required
to increase the number of degrees of freedom in the design
and improve the closed-loop transient response.
In this paper, static and dynamic output feedback con-
trollers are proposed. Sufficient linear matrix inequality
(LMI) constraints are derived from the Lyapunov stability
theory. Section II introduces the T-S structure for modeling,
some preliminary results, mathematical notations and a brief
description of the saturation. It is followed by the repre-
sentation of the nonlinear saturation by a T-S structure in
section III. In sections IV and V, static and dynamic output
feedback controllers, depending on the saturation bounds,are
respectively designed. In order to show the effectiveness of
the proposed methods, some simulation results are given in
section VI. Conclusions are detailed in section VII.

II. PRELIMINARIES

The T-S modeling allows the representation of the behav-
ior of nonlinear systems by the interpolation of a set of linear
submodels. Each submodel contributes to the global behav-
ior of the nonlinear system through a weighting function
hi(ξ (t)) [11]. The T-S structure is given by















ẋ(t) =
n

∑
i=1

hi(ξ (t))(Aix(t)+Biu(t))

y(t) =
n

∑
i=1

hi(ξ (t))(Cix(t)+Diu(t))
(1)

wherex(t) ∈ R
nx is the system state,u(t) ∈ R

nu the control
input and y(t) ∈ R

m the system output.ξ (t) ∈ R
q is the

decision variable assumed to be measurable (as the system
output) or known (as the system input). The weighting
functionshi(ξ (t)) satisfy the so-called convex sum property

n

∑
i=1

hi(ξ (t)) = 1, 0≤ hi(ξ (t))≤ 1, i = 1, . . . ,n (2)

In the remaining of the paper, the following lemma is used.
Lemma 1: For any matricesX , Y and G = GT > 0, the

following inequality holds

XTY +Y T X ≤ XT GX +Y T G−1Y (3)
The following notations are used throughout the paper: a

block diagonal matrix with the square matricesA1, . . . ,An

on its diagonal is denoted diag(A1, . . . ,An). The smallest
and largest eigenvalues of the matrixM are respectively
denotedλmin(M) and λmax(M). The saturation function for



a signalν(t) is defined as (4), whereνmax and νmin denote
the saturation levels.

sat(ν(t)) :=







ν(t) if νmin ≤ ν(t)≤ νmax

νmax if ν(t)> νmax

νmin if ν(t)< νmin

(4)

III. PROBLEM STATEMENT

A first contribution of this work is to model the nonlinear
actuator saturation using the Takagi-Sugeno representation.
For that, it is proposed to re-write thejth component of
the saturated control input (denotedu j

sat(t), for j = 1, . . . ,nu)
under a particular form of thejth component of the control
input (denotedu j(t), for j = 1, . . . ,nu), as follows:

u j
sat(t) = sat(u j(t)), j = 1, . . . ,nu

=
3

∑
i=1

µ j
i (t) (λ

j
i u j(t)+ γ j

i )
(5)

with: λ j
1 = 0, λ j

2 = 1, λ j
3 = 0; γ j

1 = u j
min, γ j

2 = 0, γ j
3 = u j

max
(6)

and the weighting functions














µ j
1(t) =

1−sign(u j(t)−u j
min)

2

µ j
2(t) =

sign(u j(t)−u j
min)−sign(u j(t)−u j

max)
2

µ j
3(t) =

1+sign(u j(t)−u j
max)

2

(7)

Based on the convex sum property (2) of the weighting
functions (7), equation (5) can be written in order to have the
same activation functions for all the input vector components:

u j
sat(t) =

3

∑
i=1

µ j
i (t)(λ

j
i u j(t)+ γ j

i )(
nu

∏
ℓ=1
ℓ 6= j

3

∑
i=1

µℓ
i (t)) (8)

For nu inputs, 3nu submodels are obtained. It is important to
note that the saturated control is directly expressed in terms
of the control variableu(t). Equation (8) is equivalent to

usat(t) =
3nu

∑
i=1

µi(t)(Λiu(t)+Γi) (9)

where the global weighting functionsµi(t), the matricesΛi ∈
R

nu×nu and vectorsΓi ∈ R
nu×1 are defined as follow























µi(t) =
nu

∏
j=1

µ j

σ j
i

(u j(t))

Λi = diag(λ 1
σ1

i
, . . . ,λ nu

σnu
i
)

Γi =
(

γ1
σ1

i
. . . γnu

σnu
i

)T

(10)

The indexesσ j
i (i = 1, . . . ,3nu and j = 1, . . . ,nu), equal to

1,2 or 3, indicate which partition of thej th input (µ j
1,µ

j
2 or

µ j
3) is involved in thei th submodel.

The relations between the submodel numberi and theσ j
i

indices are given by the following equation

i= 3nu−1σ1
i +3nu−2σ2

i + . . .+30σnu
i −(31+32+ . . .+3nu−1)

For more details, see [1].

Let us now consider a T-S nonlinear system subject to ac-
tuator saturation represented by the following state equation



















ẋ(t) =
n

∑
j=1

h j(ξ (t))(A jx(t)+B jusat(t))

y(t) =
n

∑
j=1

h j(ξ (t))(C jx(t)+D jusat(t))
(11)

According to the T-S writting of the saturation developed
above, equation (11) can be written as






















ẋ(t) =
3nu

∑
i=1

n

∑
j=1

µi(t)h j(ξ (t))(A jx(t)+B j(Λiu(t)+Γi))

y(t) =
3nu

∑
i=1

n

∑
j=1

µi(t)h j(ξ (t))(C jx(t)+D j(Λiu(t)+Γi))

(12)

IV. STATIC OUTPUT FEEDBACK CONTROLLER: A

DESCRIPTOR APPROACH

The objective is to design a stabilizing static output
feedback control ensuring the stability of the system, even
in the presence of control input saturation. The solution is
obtained by representing the saturation as a T-S system and
by solving an optimization problem under LMI constraints.
In order to highlight the interest of considering the saturation
when computing the controller, the controller design is
envisaged without (section IV-A) and with (section IV-B) a
priori taking into account the input saturation. A comparaison
of the obtained results is made in section VI.

A. Nominal control law

In order to stabilize the system at the origin, let us consider
a linear output feedback controller given by (13)

u(t) =
n

∑
j=1

h j(ξ (t))Ks
jy(t) (13)

To reduce the number of LMIs to obtain the gainsKs
j , a

descriptor approach is applied. This approach is well known
to avoid the coupling terms between the feedback gains and
the Lyapunov matrices. As a consequence, the number of
LMI decreases and relaxed conditions are obtained [2]. The
control law (13) and the output signal of system (1) are
written as follows


















0.u̇(t) =
n

∑
j=1

h j(ξ (t))Ks
jy(t)−u(t)

0.ẏ(t) =
n

∑
j=1

h j(ξ (t))(C jx(t)+D ju(t))− y(t)
(14)

With the augmented statexa(t) =
(

xT (t) uT (t) yT (t)
)T

and from equations (1) and (14), we can write

Esẋa(t) =
n

∑
j=1

h j(ξ (t))A s
j xa(t) (15)

with

Es =





Inx 0 0
0 0 0
0 0 0



 , A
s
j =





A j B j 0
0 −Inu Ks

j
C j D j −Im



 (16)



Let us consider the following Lyapunov function

V (t) = xT
a (t)(E

s)T Pxa(t) (17)

with the condition

(Es)T P = PT Es ≥ 0 (18)

and where the matrixP is taken as diag(P1,P2,P3) with
P1 = PT

1 ,P2 > 0. One can note thatV (t) is quadratic in the
system state, since (17) reduces toV (t) = xT (t)P1x(t). The
time derivative of the Lyapunov function is given by

V̇ (t) =
n

∑
j=1

h j(ξ (t))xT
a (t)((A

s
j )

T P+PT
A

s
j )xa(t) (19)

To ensure the stability of (15), developing (19) with (16),
the conditions to solve with regard toP1, P2, P3 and R j,
j = 1, . . . ,n for the nominal case, are the following




AT
j P1+P1A j P1B j CT

j P3

∗ −P2−PT
2 R j +DT

j P3

∗ ∗ −P3−PT
3



< 0, j = 1, . . . ,n

(20)
The output feedback gains are deduced fromK j = (PT

2 )−1R j.

B. Saturated T-S control law

The objective is to adapt the gainsK j of the controller
(13) to the saturation limits and guarantee the stability ofthe
closed loop system. The system (12) is written as a descriptor
system using the augmented statexa(t) already defined

Esẋa(t) =
3nu

∑
i=1

n

∑
j=1

µi(t)h j(ξ (t))(A s
i jxa(t)+B

s
i j) (21)

with Es given by (16) and

A
s

i j =





A j B jΛi 0
0 −Inu Ks

j
C j D jΛi −Im



 ,Bs
i j =





B jΓi

0
D jΓi



 (22)

Theorem 1: There exists a static feedback controller (13)
for a saturated input system (12) such that the system
state converges toward an origin-centered ball of radius
bounded byβs if there exists matricesPs

1 = (Ps
1)

T > 0,Ps
2 >

0,Ps
3,R

s
j,Σ1s

i j = (Σ1s
i j )

T > 0, Σ3s
i j = (Σ3s

i j )
T > 0, solutions of

the following optimization problem (fori = 1, . . . ,3nu and
j = 1, . . . ,n)

min
Ps

1, Ps
2, Ps

3, Rs
j , Σ1s

i j , Σ3s
i j

βs (23)

s.t. (24)(see next page) with

ΓT
i BT

j Σ1s
i j B jΓi +ΓT

i DT
j Σ3s

i j D jΓi < βs (25)

The gains of the controller are given byKs
j = ((Ps

2)
T )−1Rs

j

Proof: Let us define the quadratic Lyapunov function

V (t) = xT
a (t)(E

s)T Psxa(t) (26)

with the condition

(Es)T Ps = (Ps)T Es ≥ 0 (27)

From (16) and (27), the matrixPs is chosen as follows, with
Ps

1 = (Ps
1)

T > 0

Ps = diag(Ps
1,P

s
2,P

s
3) (28)

From equations (21) and (26), the time derivative of the
Lyapunov function is given by

V̇ (t) =
3nu

∑
i=1

n

∑
j=1

µi(t)h j(ξ (t))((Bs
i j)

T Psxa(t)

+ xT
a (t)(P

s)T
B

s
i j + xT

a (t)((A
s

i j)
T Ps +(Ps)T

A
s

i j)xa(t)) (29)

Using Lemma 1, it follows that

(Bs
i j)

T Psxa(t)+ xT
a (t)(P

s)T
B

s
i j ≤

ΓT
i DT

j Σ3s
i j D jΓi +ΓT

i BT
j Σ1s

i j B jΓi

+ xT
a (t)diag(Ps

1(Σ
1s
i j )

−1Ps
1,0,(P

s
3)

T (Σ3s
i j )

−1Ps
3)xa(t) (30)

Using (30), (29) is bounded as follows

V̇ (t)≤
3nu

∑
i=1

n

∑
j=1

µi(t)h j(ξ (t))(ΓT
i BT

j Σ1s
i j B jΓi +ΓT

i DT
j Σ3s

i j D jΓi

+ xT
a (t)((A

s
i j)

T Ps +(Ps)T
A

s
i j+

diag(Ps
1(Σ

1s
i j )

−1Ps
1,0,P

s
3(Σ

3s
i j )

−1Ps
3))xa(t)) (31)

Let us define

Q
s
i j =(A

s
i j)

T Ps+(Ps)T
A

s
i j +diag(Ps

1(Σ
1s
i j )

−1Ps
1,0,P

s
3(Σ

3s
i j )

−1Ps
3)

(32)
εs = min

i=1:3nu , j=1:n
λmin(−Q

s
i j) (33)

δ s = max
i=1:3nu , j=1:n

(ΓT
i BT

j Σ1s
i j B jΓi +ΓT

i DT
j Σ3s

i j D jΓi) (34)

SinceΣ1s
i j and Σ3s

i j > 0, from equation (31) with the convex
sum property (2),V̇ (t) < −εs ‖ xa ‖2

2 +δ s. It follows that
V̇ (t)< 0 for

Qs
i j < 0 and ‖ xa ‖

2
2>

δ s

εs (35)

which means thatxa(t) is uniformly bounded and converges

to the origin-centered ball of radius
√

δ s

εs according to
Lyapunov stability theory [16].

The objective is now to minimize the radius
√

δ s

εs . Firstly δ s

(34) is bounded byβs from LMIs (25). Secondly, it can be
shown that 1/εs < βs. From (24), with a Schur’s complement
and the variable change

Rs
j = (Ps

2)
T Ks

j (36)

it follows that

−Q
s
i j > (1/βs) I, i = 1, . . . ,3nu , j = 1, . . . ,n (37)

meaning that all eigenvalues of (−Qs
i j), including εs, are

bigger then 1/βs. Thus 1/εs < βs and the radius
√

δ s

εs is
bounded byβs.

Remark 1: It is important to highlight that the saturation
may causes a performance degradation of the nonlinear
system and even destabilize it. However, with the proposed



























AT
j Ps

1 +Ps
1A j Ps

1B jΛi CT
j Ps

3 Ps
1 0 I 0 0

∗ −Ps
2 − (Ps

2)
T Rs

j +ΛiDT
j Ps

3 0 0 0 I 0
∗ ∗ −Ps

3 − (Ps
3)

T 0 Ps
3 0 0 I

∗ ∗ ∗ −Σ1s
i j 0 0 0 0

∗ ∗ ∗ ∗ −Σ3s
i j 0 0 0

∗ ∗ ∗ ∗ ∗ −βsI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −βsI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −βsI

























< 0 (24)

static controller its stability is ensured.
Note that if the submodels are initially unstable, the proposed
approach is not suitable for this case since the LMI condition
can not be fulfiled. In order to improve the obtained results
and relax the sabilization constraint, the dynamic output
feedback control is proposed in the following section.

V. DYNAMIC OUTPUT FEEDBACK CONTROLLER: A

DESCRIPTOR APPROACH

The objective is now to design a stabilizing dynamic
output feedback control ensuring the stability of the system,
even in the presence of control input saturation. The solution
is obtained by representing the saturation as a T-S system and
by solving an optimization problem under LMI constraints.

A. Nominal control law

In order to stabilize the system (1) at the origin, let us
consider a dynamic output feedback controller defined by:



















ẋc(t) =
n

∑
j=1

h j(ξ (t))(Ac
jxc(t)+Bc

jy(t))

u(t) =
n

∑
j=1

h j(ξ (t))(Cc
jxc(t)+Dc

jy(t))
(38)

Once again, the descriptor approach is applied.
Considering the augmented state vectorxa(t) =
(

xT (t) xT
c (t) uT (t) yT (t)

)T
, from equations (1)

and (38), it follows

Ed ẋa(t) =
n

∑
j=1

h j(ξ (t))A d
j xa(t) (39)

with Ed = diag(I2nx ,0nu+m) and

A
d
j =









A j 0 B j 0
0 Ac

j 0 Bc
j

0 Cc
j −Inu Dc

j
C j 0 D j −Im









(40)

Let us consider the following Lyapunov function

V (t) = xT
a (t)(E

d)T Pxa(t) (41)

with the condition

(Ed)T P = PT Ed ≥ 0 (42)

From (42) and (40), the matrixP is chosen as

P =









P11 0 0 0
0 P22 0 0
0 0 P33 0

P41 P42 P43 P44









(43)

with
P11 = PT

11 > 0, P22 = PT
22 > 0,P33 > 0

The time derivative of the Lyapunov function is given by

V̇ (t) =
n

∑
j=1

h j(ξ (t))xT
a (t)((A

d)T
j P+PT

A
d
j )xa(t) (44)

To ensure the stability of (39), the conditions to satisfy, for
the nominal case, are given by (46) (forj = 1, . . . ,n) with

{

Ac
j = P−1

22 A
c
j Bc

j = P−1
22 B

c
j

Cc
j = (PT

33)
−1C

c
j Dc

j = (PT
33)

−1D
c
j

(45)

B. Saturated T-S control law

The objective is now to design the dynamic controller
(38) to guarantee the stability of the saturated system (12)
according to the saturation limits. Considering the previous
augmented state vectorxa(t), from equations (12) and (38),
the closed loop system is given by:

Ed ẋa(t) =
3nu

∑
i=1

n

∑
j=1

µi(t)h j(ξ (t))(A d
i j xa(t)+B

d
i j) (47)

with Ed = diag(I2nx ,0nu+m) and

A
d

i j =









A j 0 B jΛi 0
0 Ac

j 0 Bc
j

0 Cc
j −Inu Dc

j
C j 0 D jΛi −Im









,Bd
i j =









B jΓi

0
0

D jΓi









(48)

Theorem 2: There exists a dynamic feedback controller
(38) for a saturated input system (12) such that the system
state converges toward an origin-centered ball of radius
bounded by βd if there exists Pd

11 = (Pd
11)

T > 0,Pd
22 =

(Pd
22)

T > 0, Pd
33> 0, Pd

41, Pd
42, Pd

43, Pd
44, A

c
j, B

c
j, C

c
j, D

c
j, Σ1d

i j =

(Σ1d
i j )

T > 0, andΣ2d
i j = (Σ2d

i j )
T > 0, solutions of the following

optimization problem (fori = 1, . . . ,3nu and j = 1, . . . ,n)

min
Pd

11,P
d
22,P

d
33,P

d
41,P

d
42,P

d
43,P

d
44,A

c
j ,B

c
j ,C

c
j ,D

c
j ,Σ1d

i j ,Σ
2d
i j

βd (49)

s.t. (50) (see next page) with

ΓT
i BT

j Σ1d
i j B jΓi +ΓT

i DT
j Σ2d

i j D jΓi < βd (51)

The gains of the controller (38) are given by
{

Ac
j = (Pd

22)
−1A

c
j Bc

j = (Pd
22)

−1B
c
j

Cc
j = ((Pd

33)
−1)TC

c
j Dc

j = ((Pd
33)

−1)T D
c
j

(52)











AT
j P11+P11A j +CT

j P41+PT
41C j CT

j P42 P11B j +CT
j P43+PT

41D j CT
j P44−PT

41
∗ (A

c
j)

T +A
c
j (C

c
j)

T +PT
42D j Bc

j −PT
42

∗ ∗ PT
43D j +(PT

43D j)
T −P33−PT

33 Dc
j −PT

43+DT
j P44

∗ ∗ ∗ −P44−PT
44









< 0 (46)



































Q1
i j CT

j Pd
42 Pd

11B jΛi +CT
j Pd

43+(Pd
41)

T D jΛi CT
j Pd

44− (Pd
41)

T Pd
11 PT

41 I 0 0 0
∗ A

c
j +(A

c
j)

T (C
c
j)

T +(Pd
42)

T D jΛi Bc
j − (Pd

42)
T 0 PT

42 0 I 0 0
∗ ∗ Q3

i j Dc
j − (Pd

43)
T +ΛT

i DT
j Pd

44 0 PT
43 0 0 I 0

∗ ∗ ∗ −Pd
44− (Pd

44)
T 0 PT

44 0 0 0 I
∗ ∗ ∗ ∗ −Σ1d

i j 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Σ2d

i j 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −βdI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −βdI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −βdI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −βdI



































< 0

Q1
i j = AT

j Pd
11+Pd

11A j +CT
j Pd

41+(Pd
41)

TC j and Q3
i j =−Pd

33− (Pd
33)

T +(Pd
43)

T D jΛi +ΛT
i DT

j Pd
43

(50)

Proof: Let us define the Lyapunov functionV (t) =
xT

a (t)(E
d)T Pdxa(t) with Ed defined as (40) and the condition

(Ed)T Pd = (Pd)T Ed ≥ 0.
To satisfy this condition, the matrixPd is then chosen

Pd =









Pd
11 0 0 0
0 Pd

22 0 0
0 0 Pd

33 0
Pd

41 Pd
42 Pd

43 Pd
44









(53)

with Pd
11= (Pd

11)
T > 0, Pd

22= (Pd
22)

T > 0 andPd
33> 0. Apply-

ing the same development as for the static controller with
the variable changes

{

A
c
j = Pd

22Ac
j B

c
j = Pd

22Bc
j

C
c
j = (Pd

33)
TCc

j D
c
j = (Pd

33)
T Dc

j
(54)

and definingεd andδ d by

εd = min
i=1:3nu , j=1:n

λmin(−Q
d
i j)

δ d = max
i=1:3nu , j=1:n

ΓT
i (B

T
j Σ1d

i j B j +DT
j Σ2d

i j D j)Γi
(55)

with Qd
i j defined in the same way asQs

i j was.
The stabilizing conditions are linearized and given by (50).
As the weighting functions satisfy (2) andΣ1d

i j ,Σ2d
i j > 0, if

(50) holds, and‖ xa ‖
2
2>

δ d

εd , thenV̇ (x(t))< 0, implying that

xa(t) converges to an origin centered ball of radius
√

δ d

εd .
Similarily to what is done in the proof of theorem 1, the
radius of the ball is bounded byβ d due to (50) and (49).

VI. N UMERICAL EXAMPLE

This section is devoted to the comparison of the results
obtained with the nominal controller and with the proposed
controller, both in the static (13) and dynamic cases (38).

Let us consider system (11) withn = 2, D1 = D2 =

(

0
0

)

and

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 −2
5 −3 0
1 2 −4





B1 =





1
5
1



 , B2 =





3
1
−1



 , C1 =C2 =

(

1 1 1
1 0 0

)

(56)
The input is subject to the following saturationsumax =
0.3, umin = −0.3. The weighting functions depend on the
output and are defined as follows

µ1(x(t)) =
(1− tanh(y1(t)+ y2(t)))

2
; µ2(x(t)) = 1−µ1(x(t))

(57)
The figures 3 and 4 depict the system outputs and the control
input of the nominal closed loop system without saturation
(respectively denotedy1n, y2n andun), those of the nominal
closed loop system with saturation (respectively denoted
y1sat , y2sat and unsat), those obtained by the static T-S con-
troller (respectively denotedys

1, ys
2 andus) and those obtained

with the dynamic T-S controller (respectively denotedyd
1, yd

2
andud). For this example, the nominal controller is

Kn
1 =

(

0.05 0.12
)

, Kn
2 =

(

−0.13 −0.18
)

The static controller gains from Theorem 1 are equal to

Ks
1 =

(

0.03 0.06
)

, Ks
2 =

(

0.03 −0.43
)

The dynamic controller from Theorem 2 is given by

Ac
1 =





−11.34 −9.11 −9.11
−9.11 −11.34 −9.11
−9.11 −9.11 −11.34



 ,(Cc
1)

T =





−0.56
−0.56
−0.56





Ac
2 =





−2.31 −0.08 −0.08
−0.08 −2.31 −0.08
−0.08 −0.08 −2.31



 ,(Cc
2)

T =





−0.31
−0.31
−0.31





Bc
1 =





−0.15 −0.16
−0.15 −0.16
−0.15 −0.16



 ,Bc
2 =





−0.068 −0.029
−0.068 −0.029
−0.068 −0.029




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Fig. 1. System outputs
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Fig. 2. Control input

Dc
1 =

(

−0.33 −0.27
)

,Dc
2 =

(

−0.13 −0.89
)

For the proposed example, the control goal is to ensure
the state trajectory convergence to the origin in spite of the
input saturation. One can observe from the depicted figures
that the results are slightly better for the dynamic controller
with the proposed T-S approach. It can be noted that using
the dynamic controller allows to decrease the radius of the
ball in which the state convergence is ensured. Moreover, the
numerical results areβs = 15.09 andβd = 9.46. To analyse
the results in the four situations, the following comparison
criteria are selected: the fall time of the state variables
x1 and x2 denoted t1 and t2 respectively that are to be
minimised, the energy of each output denotedEy1 and Ey2

respectively (Eyi =
∫ t

0 y2
i (t)dt) to be minimized; the contol

input energy denotedEu (Eu =
∫ t

0 uT (t)u(t)dt)). The results
are displayed in the following table, where case 1 refers to
the nominal closed loop system without saturation, case 2
refers to nominal closed loop system with saturation, case
3 and case 4 respectively refer to the proposed static and
dynamic T-S approach. The proposed T-S controller design

case 1 case 2 case 3 case 4
t1 2 s 2.8 s 2.1 s 1.6 s
t2 1 s 1.8 s 1.4 s 0.91 s

Ey1 278.06 394.65 382.12 369.04
Ey2 21.57 31.05 29.22 28.70
Eu 8.17 3.64 3.99 5.11

approach not only ensures the stability of the closed-loop
system, but also compensate the saturation effect by adding
more energy to the control input.

VII. C ONCLUSIONS

Using the T-S approach to describe both the nonlinearities
and the input saturation, a nonlinear system with saturated
actuator(s) can be represented with a T-S model. This unified
representation allows to deal with these difficulties and to
synthesize an output feedback controller which gains depend
on the saturation bounds. The solution of this problem is
based on the Lyapunov theory using the descriptor approach
and is expressed in terms of LMI. Two output feedback
controllers were synthetized, a static controller and a dy-
namic one. The dynamic controller was considered in order
to increase the number of degrees of freedom in the design
and improve the control performances.
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