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Abstract— The main contribution of this paper is to propose  measurable (as the system output), known (as the system
a systematic approach to observer design for nonlinear Takagi- input) or unmeasurable (as the system state). The weighting

Sugeno (T-S) time-varying Systems. The proposed procedure f,ctionsyy (€ (t)) of ther submodels satisfy the convex sum
is based on the sector nonlinearity approach using the convex

polytopic transformation. The exact writing of the time-varying property

nonlinear system as a T-S model allows to provide a state and r
parameter estimation. Zl“i(é(t)) =1

Index Terms—Time-varying nonlinear systems, Takagi- i= )
Sugeno models, sector nonlinearity approach, convex polytopic 0<p(é(t) <1, i=1...r
transformation, state and parameter observer, linear matrix

This representation is very interesting in the sense that
it simplifies the mathematical manipulation compared to
. INTRODUCTION the original nonlinear models. It allows to extend the use
. . . of some tools developed in the linear framework to the
The observer design for nonlinear systems can be viewed . " ,
) ; nlinear systems, for the stability study, the controligies
as the heart of system control and model-based diagnosis [Eﬁ .
and observer synthesis.

[2]. Unfortunately, the introduction of time-varying pana : .
. A systematic procedure to transform a nonlinear system by
eters in the system models, needed to accurately represent’.. ~ .~ : . .
rewriting it into a T-S form, without any loss of information

fahsetiriﬁ?gnm behaviour, leads to more challenging problems i{' known as the sector nonlinearity transformation (SNT)

. . . [13], [9]. This transformation advantage is to be analytica
In the present work, a focus is made on the time-varyin . . .
- .dand systematic. Based on the nonlinear equations of the
parameter systems, where the parameter variations are inac . S . .
inal model, a quasi-Linear Parameter Varying (quasi-

. |
cessible (non measurable) and may be used as model fa ) is written. The local models of this form are state

(acting as disturbances or/and uncertainties). In thig,cas and control input affine, however, this representation i no

conventional observer cannot be used directly, and sooballﬁni ue. Depending on the obiectives. many quasi-LPV forms
adaptive observers developed for joint state and unknown que. Lep g ) ' yq

parameter estimation have to be implemented. may be obtained [9].

Numerous approaches were proposed in order to deal wiﬁ.’#wSlng the convex polytopic transformation, a T-S model is

X . obtained with all the nonlinearities being transfered itite

observer design for nonlinear systems [14], [11], [3], [Sh o . . .

- o " > ; weighting functions. Although the polytopic transfornoati
efficient way consists in rewriting the original nonlinegss

tem in a simplier form, like the T-S one. Originaly introdudce leads to T-S models with unmeasurable premisse variables,

. . most of the works on T-S systems are devoted to T-S models
by [12], the T-S representation allows to describe the exact. ; ; . .

. . o .With known premisse variables, since they are obviously
nonlinear behaviour of a system, under the condition tisat 'teasier to study.

nonlinearities are bounded. This is reasonable as vasiab . : . .
I"Iahe present work deals with nonlinear time-varying param-

of physical systems are real and always bounded. See fecz)trer systems described by T-S models with unmeasurable
example [1], [8] and the references therein.

The T-S formalism is based on a time-varying interpolatior?remlse variables. The main difficuly here is the joint state

. . and parameter estimation, since the premise variables are
between linear submodels. The global model is a convex

L ) Uhmeasurable and depend on the state that need to be
combination of thea submodels [13]:

} estimated.
Xt) = ;ui(f(t))(M(tHBiU(t))

inequality.

The proposed methods consists in rewriting the varying pa-
rameters and the nonlinearities in a polytopic form allayin
r @) to transform the original nonlinear system into T-S model.
yt) = ,Zl“i(f(t))(cix(t)+Di“(t)) The T-S model obtained with the sector nonlinearity trans-
= formation has the major interest to be analytically eqeingl
where x(t) € R™ is the system state variable(t) € R™  to the original time-varying nonlinear system.
is the control input andy(t) € R™ is the system output. Up to the author's knowledge, this is the first contribution
¢(t) € R is the decision variable vector assumed to be eithghere the time-varying parameter and state estimation-prob
) o ) lem is addressed in such a way. This allows to design a state
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the Lyapunov theory, th&? gain minimization is expressed sum property of the weighting functiorfﬁl(t) and ﬁjz(t) of
as a minimization problem under LMI constraints. each parameted;(t), (7) is written as:
The paper is organized as follows. Section Il introduces the

T-S representation of the nonlinear time-varying paramete _ _ 1 1, ~2/n. o
system. In section Ill, joint state and unknowm time-vagyin Al = Zl “J (65(1)) 67+ H7(83 (1)) 6))A ] <
parameter estimation is proposed for T-S systems with un-
measurable premise variables. An application of the preghos n 2
approach to an activated sludge reactor model with some kljlngll"k (6(1))
simulation results are given in section IV. Conclusions are k#] R
detailed in section V. 2
= A+ Z Hj
Il. PROBLEM STATEMENT: T-S MODELLING OF
NONLINEAR TIME-VARYING PARAMETER Bi(t) = Bi+ Z Ilj (6;(t) +ﬁj2(6,-(t))6j2)§i,-ﬂ x
A first contribution of this work is to model nonlinear
time-varying systems using the T-S representation. Fdr tha n 2
each time-varying parameter is rewritten under a particula |_| Z 1 (6k(1))
form k=1m=1
. k]
Let us consider the nonlinear time-varying T-S system 2
represented by equation (3) withparameters; (t) = Bi+ zlllj () Zij
J:
X = Zu. KO HBOUD) @
with
yt) = “
with ) ﬂ 3
At)=A+ Y i(t)A; oij = 26 Alk )
=1
2 (4)
Bi(t)ZBi—I—ZGJ(t)Bij Bij = ZGKJB”(
=1
Remark 1:In (4), it is supposed that the matricég(t) The |nd|ceso'< equal to 1 or 2, indicate which partition of the
and B;j(t) depend on the same parameters. However, if gh parameter[@k or [i?) is involved in thejt" submodel.
parameter (t) does not affecty(t) (resp.Bi(t)), then the  The relation between the submodel numfeand the ok
corresponding matrid (resp.By;) is null. indices are given by the following equation
A, A.J, Bi, B.J are known matrices with suitable dimensions.
6;(t) are time-varying parameters. They are nonmeasurablg=2""'o +2" 207 + ...+ 2% — (2! + 22+ ...+ 2" 1)
but bounded®;(t) € [67,6]]. Each paramete®j(t) is ex- (10)
pressed as: Equation (8) presents the advantage to have the same global
~ - convex weighting functions foA(t) and B;(t) (see [4] for
0 (t) = B} (8 (1)) 6] + B (6;(1)) 67 () calculation details).
with In the following, 6(t) is the vector of component§ (t), j =
. gj(t)_ng 1....n
i (65(t)) e Finally, using equations (8) and (4), (3) becomes:
i i
iy 61 6i(1) © NN
Hi(g;(t) = = Xt) = Zlui(X(t))uj(G(t))(ﬂfin(t)+<@ijU(t))
=1j=
~ ~ yt) = Cx(t)
Hi (6 (1) + B (8;() = 1, vt (11)
Replacing (5) in (4), it becomes: i = A+ 12
o Pij = Bi + Bij (12)
A=A+ > ﬁ}((ej (t))e}%j [1l. STATE AND TIME-VARYING PARAMETER OBSERVER
J=1k=1
n2 _, ks (7) Based on the obtained T-S model, a simultaneous state
Bi(t) =Bi+ Y l“j (6;(t))67Bij and parameter observer may be designed and implemented.
j=1k=

An % attenuation approach will be proposed to minimize
In order to have the same weighting functions for all thehe effect of the time-varying parameters on the state and
time-varying matrices\;(t) andB;(t), exploiting the convex parameter error estimation.



The state and parameter observer is taken as the followingsing (16) and (17), the system (15) is then written as an
uncertain system given by:

r 20
AR ERE) W-3 5 o)
X(t) = Ui j(O(t
(AAjX(t )+v@u u(t) +Lij (y(t) —y(t))) i;;l !
r 2 W& () +DAL)X(E) + (i) +AB(I))U(t)()21)
Z Z . A From equations (21), (13) and (14), the dynamics of the state
(Kij (y(t) = y(t)) — aij 6(t)) estimation error is given by
y(t) = CX(t) 13) o
whereLijj € R ™™ K;; € R ™™ and ajj € R ™" are the &l(t) = Zl Zlﬂi(f((t))ﬁj(é(t)) 22)

gains to be determined such that the estimated state and S
parameter converge to the system state and parameter. (oA — LiClex(t) + LAMX(Y) +AB()u(t)
Let us define the state estimation ereg(t) as Let us now define the parameter estimation eggt) as

e(t) = x(t) —X(t) (14) eg(t) = B(t) — B(t) (23)

Its dynamics cannot be easily computed directly from (14from equation (13), the dynamics of this error is given by

since in equation (11) the weighting functions of the state oo

depends on the unmeasurable variabl@st)( and x(t)). 5o (1) — (RO (B(t
Because of that, based on the convex sum property of the S (V) le 1“' ZO)H;(0®)
weighting functions, the state equation (11) is rewrittan a (é(t)_KijCS((t)+aije(t) —Gijee(t))
follow (24)
N Due to the coupling between the erreggt) andey(t), it is
r 2 R . -
X(t) = le [ (RO (B (1)) (A X(1) + i u(t))+ convenient to consider the augmented vecea(s) and w(t)
=1
R X(t)
(1 (X(O)) T (B(1)) — i (R(0)j (B(1))) (Ajx(t) + Biju(t)] at) o (1)
(15) ea(t) = < ee(t) ) ) w(t) = Q(t) (25)
This form allows a better comparison x(ft) with X(t), since u(t)
pi (X(t)) [ (8(t)) not only appears in (13), but also in (15). From (22), (24) and (25), it follows
Let us define: C oo
2z _ o &ty =3 5 HXE)AB() (Pijeat) + Wi (Hw(t)
AA(L) = zlz [ (x(0) {5 (B(1)) — i (X(1)) 115 (B(1)) ] ] ;;1
i=1j=1 (26)
= AZp()EA with
(16)
and o = oj—L;C O
r 2 AA(t)_KijOC o_ZiEja(t) 27
BB(1) = 3 3 [OXOIE(O0) — (KO (B 5 Wilt) = ( o @ I 0 )
= #zp(t)Es 17) Considering (26), our objective is to design joint state and
with parameter observer with a minim&, gain of the transfer
from w(t) to e,(t). The computation of the observer gains
o = a1 ... g |,Za(t) =diagdu(t),...,dn(t)), is detailed in the next theorem.
B=| P11 ... B |, 2p(t)=diagdn(t),. -,5rzn (t)),  Theorem 1:There exists a joint robust state and parameter
Ea=[In - In ]T, =[ Iy - In } observer (13) for a nonlinear time-varying parameter sgste
3 (t) = (X)) [ (0(t)) — ,1 (R (t))u,(é( )) (3) with an_#% gain fromw(t) to e,(t) bounded by3 (8 > 0)

(18) if there exists matriceBy=PJ >0,P,=P] >0,9, T3, 13,
where diadgA, ..., An) refers to a block diagonal matrix with rg > 0, ajj, Fj, Rj and scalarg3, Ay and A2 > 0 solution

the square matricedy,...,A, on its diagonal. of the optimization problem (28) under LMI constraints (29)
Thanks to property (2), we also have and (30)
min 28
-1=g(t)=1 (19) Po,Pl,FﬁjﬁjﬂijJ\lJ\zIEB (8)
which implies from definition (18) fori=1...,randj=12"

SAOZAM) <1, ZE(t)Zp(t) < (20) k< pl fork=0,1,2,3 (29)



Qit C'RT 0 0 o 0 R PR
* =i —0jj+In 0 aij P 0 0 0
% * ~T94+MEfEA O O 0 0 0
* * * —r% 0 0 0 0 <0 (30)
* * * * frg 0 0 0
* * * * * —I'g—i—/\zEgEB 0 0
* * * * * —A1l 0
* * * * * * 0 -l
with with:
Qit = Py} + o] Py — RjC—CTRI +1n, (31) Qf C'kiRh 0 0 0 O
h . . * —Projj — a,JP1+In 0 Pojj PL O
e observer gains are given by . . 90 0 o
Lij = Po-lRij Q=] * « —-T3 0 0 “D)
Kij =P, F” (32) * * * x -2 0
Qij —P al * * x % % _rg
For the proof of theorem 1, tflwe followmg lemma is used:
Lemma 1: Consider two matriceX andY with appropri- Qi =PRodhj +# R —RLjC—C LR +1n, (42

ate dimensions, a time-varying matriegt) and a positive
scalare. The following property is verified

XTATOY +YTAOX <eXTX+e7YTY  (33)

Based on (16) and (17), the time-varying term of (40) can
be expressed as:

Pyt
for AT(DA(t) <. 0
Proof: .Let us consider the following quadratic Lya- 2(t) = 0 ZA(t)( 0 0 Ex OO 0)
punov function 0
0
V(ea(t)) =€l (t)Pey(t), P=P" >0 (34) 0
4
Its time derivative is given by P % (43)
t u t)) |e; (t)( P+ Pd;;)ea(t
V(1) = 3052 i (XW)E (B(1) [l 1) Delt) 75(0 0 0 0 0 Es )

+e] (t)PW; (1)t >+wT< M(t) e (t) ]
(35)
It is known thate,(t) asymptotically converges toward zero
when w = 0 and that the%, gain fromw to e, is bounded Using lemma 1 and property (19), there exists positive sgala

[cNeoNoNoNe]

by B if the following inequality holds A1 and A,, such that
V(t) + €l (t)ea(t) — @' (t)M2w(t) < 0 (36) 2'0 0 00 O
: 00 0 0 O 0
with 0 OMEJEAO O O
M, =diagry), M5 <pl, fork=0,1,23  (37) 20+2"0< 506 00 o (44)
An adequate choice df, allows to attenuate the transfer 00 O OO0 O
from some components @d(t) to ey(t). 00 O O OAEEs

From (35), (36) becomes: with:

ro2 . T 1_ 51 T -1 T
‘Zizﬂi(*(t))uj(e(t)% e:;g; ) D= ARt TR+ A TR BB Ry (45)
= fori=1...,randj=1,...,2"

T - - A
(( P P+'?CD'J Flnen PWi (D) >> ( €a(t) ) <0 From inequality (44), sincgi (X(t)) and f1;(8(t)) satisfy the
¥ ( )P —T2 w(t) convex sum property, with the variable changes (32), the LMI
. (38) (30) implies (40) and (36). As a consequence, Hgegain
A block diagonal structure for the Lyapunov matiXis ¢ {he transfer fromaw(t) to ea(t) is bounded byB, which

considered: _ achieves the proof. n
P = diag Py, P1) (39)
From (23), (27), (37) and (39), (38) holds if V. NUMERICAL EXAMPLE
o oon In this section, the proposed approach is applied to a

i ()T (B (1)) (Qj+2(1)+27(t)) <0 (40) biological wastewater treatment plant. A reduced form of
S an activated sludge reactor model is considered with only



the carbon pollution and two state variables. with

Starting from the nonlinear equations of the system, a T- z(t)-z 21— z(t)
S representation is given. Modelling errors (function of a  F11(z1) = 27 Fi2(z1) = 2z
time-varying parameter) are considered. The objective is t 1 zi(t) :Zm 5 2 _*le t) (53)
synthesize an observer in order to simultaneously estimate  Fai(zi) = ———==, Fi(z2) = ————
the states and the varying parameter. 2" % 2 ki
The process consists in mixing used waters with a ricyhere the scalarg, z), z; andz, are defined as
mixture of bacteria in order to degrade the organic matter 71 =maxz(t), z, = minz(t)
[10]. Under specific assumptions, some simplifications can o — nleaxz (), 2, = l;ninz () (54)
be made and the nonlinear system can be represented with 2 Xzl % x 2
the following equations [7]: The submodels are defined by the pairs(j, %ij) with
. _a(t)xg (t)xa(t) i=1...,4 and j = 1,2. Due to the choice of premise
)_(1('[) R (t)xl(t)u(t) (46) variables, all thez;; matrices are equal 8" =[ 0 d |.
%o(t) = - i - T ([d—x(t)ul) The matricesc; are given by:
with x;(t) andxz(t), the biomass and substrat concentration P ! 21 P | 222
respectively. The inputi(t) represents the dwell-time inthe “1 =\ 0 —cz1+2 )° 727\ 0 —czo+2
treatment plant. The output is the biomass concentration
(y(t) = Xl(t))' _ pal 2 ooy — 7 Zyy
It is assumed that there is a modelling error on the parameter2* — \ 0 —CZ,+2n )’ 2={ o0 —CZy,+21
a such that: 2 21 2 27
alt) = a+ha) @ = (5 2, )= o)
It can also be written as:
_ = ) (4 L1 _( 4 E2y;
at)=a+6(t)a, 6(t)<l6,0) (48) Am= ( 0 —cz,+2 >, Ay = ( 0 —cztz )
with a=0.5,2=0.4 and6 = -0.230 6 = 0.213. The T-S model is obtained by an interpolation of the eight

Parameter$, ¢, d have been identified and setlo=0.07,  previous submodels:
c=0.7 etd=25.

From the system nonlinearities, let us consider the folhgwi X(t) = 2 i i (2(1)) [1;(B(t)) (o X(t) + Bu(t)) (55)
premise variables: i;j:l : : :

z(t) = —u(t) The weighting functiongi;(6(t)) are calculated from equa-
2(t) = (a+6t)a)x(t) (49) tions (6) anduj(z(t)) as the following:
2T T e +b o o

Hij (z(1) = Fy' (za(1)Fyy (225(1)) (56)

As in the previous sections, using the so-called sector non-
linearity approach, the bounded parameiét) is described whereai' represents th&" partition. For example, we have:
by equations (5) and (6).

jLatl ) . ) p11(z(t)) = Fra(z(t)) Fi(za(t))
Considering (5), the premise variables (49) become: La(2(t)) = Fra(z () Fil;(zzz(t)) (57)

a(t) = _;(t) Y (t 50 Then, from the nonlinear system (46), an equivalent T-S
zi(t) = @ta(t) (0 model is obtained and given by (55). As mentioned at the
*(t)+b begining of this section, the objective is to synthesize a
fori=1,2 anday =6 aanda, =6 a robust state and parameter observer applying the proposed
Then, the following quasi-LPV form is obtained: approach. To illustrate the time-varying parameter effect

) () 2a(t) 0 on the ;t);lstetm, figure dl'diﬁi(:t? the sta.tes in the nominal
(1) — N T case (witha(t) = a) and in the time-varying case(t) =
x(t)i;u.(e(t))< 0 —c22i(t)+zl(t>) x(t)+( q )u(t) s Q(t()a). (t)=4a) ying (9

(1)  The system input, the state variables and their estimates,
For the considered simulation, the maximum and Mminie time-varying parameter and its estimate are depicted in
mum values of the premisse variables have been computgge figures 2, 3 and 4 respectively. The initial conditions
a(t) € [-1,-0.2], z(t) € [0.00474.3894 and z2(t) €  are x,— ( 0.1 15 ) for the system state angy(0) =
[0.00333.0587. That knowledge allows to deduce a T-S( 909 23 0 ) for the joint state and parameter estimate.
form. Indeed, using the convex polytopic transformation,
two partitions for each premise variables are constructed a From the depicted figures, one can conclude on the robust-
follows: ness of the synthetized state observer, since the two states
{ 2(t) =Fu(z1)zn +Fi2(z1)z (52) are perfectly estimated as well as the time-varying paramet
zi(t) = F3(zi)2i + F2(zi)z,, fori=1,2 o(t).
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Fig. 2. System input
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Fig. 3. System states and their estimates
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Fig. 4. Time-varying parameter and its estimate

V. CONCLUSION

In the present paper, a new systematic procedure is pre-
sented to deal with the state and parameter estimation for
nonlinear time-varying systems. It consists in transfoigni
the original system into a Takagi-Sugeno model, based on
the sector nonlinearity approach and the convex polytopic
transformation. This transformation has the major intet@s
exactly represent the system without any loss of informa-
tions. Then a state and parameter observer can be designed
by minimizing the .4 gain from the augmented input
to the estimation errors. The chosen application example
is an activated sludge reactor with modeling uncertainties
represented by an unknown time-varying parameter. From
the nonlinear equations of the system, a T-S model is derived
The proposed observer is synthetized and the obtainedsesul
illustrate its performance.
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