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Abstract— The main contribution of this paper is to propose
a systematic approach to observer design for nonlinear Takagi-
Sugeno (T-S) time-varying systems. The proposed procedure
is based on the sector nonlinearity approach using the convex
polytopic transformation. The exact writing of the time-varying
nonlinear system as a T-S model allows to provide a state and
parameter estimation.

Index Terms— Time-varying nonlinear systems, Takagi-
Sugeno models, sector nonlinearity approach, convex polytopic
transformation, state and parameter observer, linear matrix
inequality.

I. INTRODUCTION

The observer design for nonlinear systems can be viewed
as the heart of system control and model-based diagnosis [5],
[2]. Unfortunately, the introduction of time-varying param-
eters in the system models, needed to accurately represent
the system behaviour, leads to more challenging problems in
estimation.
In the present work, a focus is made on the time-varying
parameter systems, where the parameter variations are inac-
cessible (non measurable) and may be used as model faults
(acting as disturbances or/and uncertainties). In this case, a
conventional observer cannot be used directly, and so called
adaptive observers developed for joint state and unknown
parameter estimation have to be implemented.
Numerous approaches were proposed in order to deal with
observer design for nonlinear systems [14], [11], [3], [6].An
efficient way consists in rewriting the original nonlinear sys-
tem in a simplier form, like the T-S one. Originaly introduced
by [12], the T-S representation allows to describe the exact
nonlinear behaviour of a system, under the condition that its
nonlinearities are bounded. This is reasonable as variables
of physical systems are real and always bounded. See for
example [1], [8] and the references therein.
The T-S formalism is based on a time-varying interpolation
between linear submodels. The global model is a convex
combination of ther submodels [13]:





ẋ(t) =
r

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) =
r

∑
i=1

µi(ξ (t))(Cix(t)+Diu(t))
(1)

where x(t) ∈ R
nx is the system state variable,u(t) ∈ R

nu

is the control input andy(t) ∈ R
m is the system output.

ξ (t)∈R
q is the decision variable vector assumed to be either
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measurable (as the system output), known (as the system
input) or unmeasurable (as the system state). The weighting
functionsµi(ξ (t)) of the r submodels satisfy the convex sum
property





r

∑
i=1

µi(ξ (t)) = 1

0≤ µi(ξ (t))≤ 1, i = 1, . . . , r
(2)

This representation is very interesting in the sense that
it simplifies the mathematical manipulation compared to
the original nonlinear models. It allows to extend the use
of some tools developed in the linear framework to the
nonlinear systems, for the stability study, the control design
and observer synthesis.
A systematic procedure to transform a nonlinear system by
rewriting it into a T-S form, without any loss of information
is known as the sector nonlinearity transformation (SNT)
[13], [9]. This transformation advantage is to be analytical
and systematic. Based on the nonlinear equations of the
original model, a quasi-Linear Parameter Varying (quasi-
LPV) is written. The local models of this form are state
and control input affine, however, this representation is not
unique. Depending on the objectives, many quasi-LPV forms
may be obtained [9].
Using the convex polytopic transformation, a T-S model is
obtained with all the nonlinearities being transfered intothe
weighting functions. Although the polytopic transformation
leads to T-S models with unmeasurable premisse variables,
most of the works on T-S systems are devoted to T-S models
with known premisse variables, since they are obviously
easier to study.
The present work deals with nonlinear time-varying param-
eter systems described by T-S models with unmeasurable
premise variables. The main difficuly here is the joint state
and parameter estimation, since the premise variables are
unmeasurable and depend on the state that need to be
estimated.
The proposed methods consists in rewriting the varying pa-
rameters and the nonlinearities in a polytopic form allowing
to transform the original nonlinear system into T-S model.
The T-S model obtained with the sector nonlinearity trans-
formation has the major interest to be analytically equivalent
to the original time-varying nonlinear system.
Up to the author’s knowledge, this is the first contribution
where the time-varying parameter and state estimation prob-
lem is addressed in such a way. This allows to design a state
and parameter observer by minimizing theL2-gain from the
parameter to the state and parameter estimation errors. Using



the Lyapunov theory, theL2 gain minimization is expressed
as a minimization problem under LMI constraints.
The paper is organized as follows. Section II introduces the
T-S representation of the nonlinear time-varying parameter
system. In section III, joint state and unknowm time-varying
parameter estimation is proposed for T-S systems with un-
measurable premise variables. An application of the proposed
approach to an activated sludge reactor model with some
simulation results are given in section IV. Conclusions are
detailed in section V.

II. PROBLEM STATEMENT: T-S MODELLING OF

NONLINEAR TIME-VARYING PARAMETER

A first contribution of this work is to model nonlinear
time-varying systems using the T-S representation. For that,
each time-varying parameter is rewritten under a particular
form.

Let us consider the nonlinear time-varying T-S system
represented by equation (3) withn parametersθ j(t)





ẋ(t) =
r

∑
i=1

µi(x(t))(Ai(t)x(t)+Bi(t)u(t))

y(t) = Cx(t)
(3)

with 



Ai(t) = Ai +
n

∑
j=1

θ j(t)Ai j

Bi(t) = Bi +
n

∑
j=1

θ j(t)Bi j

(4)

Remark 1: In (4), it is supposed that the matricesAi(t)
and Bi(t) depend on the same parameters. However, if a
parameterθ j(t) does not affectAi(t) (resp.Bi(t)), then the
corresponding matrix̄Ai j (resp.B̄i j ) is null.
Ai , Ai j , Bi , Bi j are known matrices with suitable dimensions.
θ j(t) are time-varying parameters. They are nonmeasurable
but boundedθ j(t) ∈ [θ 2

j ,θ 1
j ]. Each parameterθ j(t) is ex-

pressed as:

θ j(t) = µ̃1
j (θ j(t))θ 1

j + µ̃2
j (θ j(t))θ 2

j (5)

with 



µ̃1
j (θ j(t)) =

θ j(t)−θ 2
j

θ 1
j −θ 2

j

µ̃2
j (θ j(t)) =

θ 1
j −θ j(t)

θ 1
j −θ 2

j

(6)

µ̃1
j (θ j(t))+ µ̃2

j (θ j(t)) = 1, ∀t

Replacing (5) in (4), it becomes:

Ai(t) = Ai +
n

∑
j=1

2

∑
k=1

µ̃k
j (θ j(t))θ k

j Ai j

Bi(t) = Bi +
n

∑
j=1

2

∑
k=1

µ̃k
j (θ j(t))θ k

j Bi j

(7)

In order to have the same weighting functions for all the
time-varying matricesAi(t) andBi(t), exploiting the convex

sum property of the weighting functions̃µ1
j (t) and µ̃2

j (t) of
each parameterθ j(t), (7) is written as:





Ai(t) = Ai +
n

∑
j=1

[[
(µ̃1

j (θ j(t))θ 1
j + µ̃2

j (θ j(t))θ 2
j )Ai j

]]
×




n

∏
k=1
k6= j

2

∑
m=1

µ̃m
k (θk(t))




= Ai +
2n

∑
j=1

µ̃ j(t)A i j

Bi(t) = Bi +
n

∑
j=1

[[
(µ̃1

j (θ j(t))θ 1
j + µ̃2

j (θ j(t))θ 2
j )Bi j

]]
×




n

∏
k=1
k6= j

2

∑
m=1

µ̃m
k (θk(t))




= Bi +
2n

∑
j=1

µ̃ j(t)Bi j

(8)

with 



µ̃ j(θ(t)) =
n

∏
k=1

µ̃
σk

j
k (θk(t))

A i j =
n

∑
k=1

θ
σk

j
k Aik

Bi j =
n

∑
k=1

θ
σk

j
k Bik

(9)

The indicesσk
j equal to 1 or 2, indicate which partition of the

kth parameter (̃µk
1 or µ̃k

2) is involved in the j th submodel.
The relation between the submodel numberj and theσk

j
indices are given by the following equation

j = 2n−1σ1
j +2n−2σ2

j + . . .+20σn
j − (21+22+ . . .+2n−1)

(10)
Equation (8) presents the advantage to have the same global
convex weighting functions forAi(t) and Bi(t) (see [4] for
calculation details).
In the following,θ(t) is the vector of componentsθ j(t), j =
1, . . . ,n.
Finally, using equations (8) and (4), (3) becomes:




ẋ(t) =
r

∑
i=1

2n

∑
j=1

µi(x(t))µ̃ j(θ(t))(Ai j x(t)+Bi j u(t))

y(t) = Cx(t)
(11)

Ai j = Ai +A i j

Bi j = Bi +Bi j
(12)

III. STATE AND TIME -VARYING PARAMETER OBSERVER

Based on the obtained T-S model, a simultaneous state
and parameter observer may be designed and implemented.
An L2 attenuation approach will be proposed to minimize
the effect of the time-varying parameters on the state and
parameter error estimation.



The state and parameter observer is taken as the following




˙̂x(t) =
r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))

(Ai j x̂(t)+Bi j u(t)+Li j (ŷ(t)−y(t)))

˙̂θ(t) =
r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))

(Ki j (y(t)− ŷ(t))−αi j θ̂(t))
ŷ(t) =Cx̂(t)

(13)
where Li j ∈ R

nx×m, Ki j ∈ R
n×m and αi j ∈ R

n×n are the
gains to be determined such that the estimated state and
parameter converge to the system state and parameter.
Let us define the state estimation errorex(t) as

ex(t) = x(t)− x̂(t) (14)

Its dynamics cannot be easily computed directly from (14)
since in equation (11) the weighting functions of the state
depends on the unmeasurable variables (θ(t) and x(t)).
Because of that, based on the convex sum property of the
weighting functions, the state equation (11) is rewritten as
follow

ẋ(t) =
r

∑
i=1

2n

∑
j=1

[
µi(x̂(t))µ̃ j(θ̂(t))(Ai j x(t)+Bi j u(t))+

(
µi(x(t))µ̃ j(θ(t))−µi(x̂(t))µ̃ j(θ̂(t))

)
(Ai j x(t)+Bi j u(t))

]

(15)

This form allows a better comparison ofx(t) with x̂(t), since
µi(x̂(t))µ̃ j(θ̂(t)) not only appears in (13), but also in (15).
Let us define:

∆A(t) =
r

∑
i=1

2n

∑
j=1

[
µi(x(t))µ̃ j(θ(t))−µi(x̂(t))µ̃ j(θ̂(t))

]
Ai j

= A ΣA(t)EA
(16)

and

∆B(t) =
r

∑
i=1

2n

∑
j=1

[
µi(x(t))µ̃ j(θ(t))−µi(x̂(t))µ̃ j(θ̂(t))

]
Bi j

= BΣB(t)EB
(17)

with

A =
[

A11 . . . Ar2n
]
,ΣA(t) = diag(δ11(t), . . . ,δr2n(t)),

B =
[

B11 . . . Br2n
]
,ΣB(t) = diag(δ11(t), . . . ,δr2n(t)),

EA =
[

Inx . . . Inx

]T
, EB =

[
Inu . . . Inu

]T

δi j (t) = µi(x(t))µ̃ j(θ(t))−µi(x̂(t))µ̃ j(θ̂(t))
(18)

where diag(A1, . . . ,An) refers to a block diagonal matrix with
the square matricesA1, . . . ,An on its diagonal.
Thanks to property (2), we also have

−1≤ δi j (t)≤ 1 (19)

which implies from definition (18)

ΣT
A(t)ΣA(t)≤ I , ΣT

B(t)ΣB(t)≤ I (20)

Using (16) and (17), the system (15) is then written as an
uncertain system given by:

ẋ(t) =
r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))

((Ai j +∆A(t))x(t)+(Bi j +∆B(t))u(t))
(21)

From equations (21), (13) and (14), the dynamics of the state
estimation error is given by

ėx(t) =
r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))

((Ai j −Li jC)ex(t)+∆A(t)x(t)+∆B(t)u(t))

(22)

Let us now define the parameter estimation erroreθ (t) as

eθ (t) = θ(t)− θ̂(t) (23)

From equation (13), the dynamics of this error is given by

ėθ (t) =
r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))
(
θ̇(t)−Ki jCex(t)+αi j θ(t)−αi j eθ (t)

)

(24)
Due to the coupling between the errorseθ (t) andex(t), it is
convenient to consider the augmented vectorsea(t) andω(t)

ea(t) =

(
ex(t)
eθ (t)

)
, ω(t) =




x(t)
θ(t)
θ̇(t)
u(t)


 (25)

From (22), (24) and (25), it follows

ėa(t) =
r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))(Φi j ea(t)+Ψi j (t)ω(t))

(26)
with

Φi j =

(
Ai j −Li jC 0
−Ki jC −αi j

)

Ψi j (t) =

(
∆A(t) 0 0 ∆B(t)

0 αi j I 0

) (27)

Considering (26), our objective is to design joint state and
parameter observer with a minimalL2 gain of the transfer
from ω(t) to ea(t). The computation of the observer gains
is detailed in the next theorem.

Theorem 1:There exists a joint robust state and parameter
observer (13) for a nonlinear time-varying parameter system
(3) with anL2 gain fromω(t) to ea(t) bounded byβ (β > 0)
if there exists matricesP0 =PT

0 > 0, P1 =PT
1 > 0, Γ0

2, Γ1
2, Γ2

2,
Γ3

2 > 0, α i j , Fi j , Ri j and scalarsβ , λ1 and λ2 > 0 solution
of the optimization problem (28) under LMI constraints (29)
and (30)

min
P0,P1,Ri j ,Fi j ,α i j ,λ1,λ2,Γk

2

β (28)

for i = 1, . . . , r and j = 1,2n

Γk
2 < β I for k= 0,1,2,3 (29)






Q11
i j −CTFT

i j 0 0 0 0 P0A P0B

∗ −α i j −αT
i j + In 0 α i j P1 0 0 0

∗ ∗ −Γ0
2+λ1ET

A EA 0 0 0 0 0
∗ ∗ ∗ −Γ1

2 0 0 0 0
∗ ∗ ∗ ∗ −Γ2

2 0 0 0
∗ ∗ ∗ ∗ ∗ −Γ3

2+λ2ET
B EB 0 0

∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −λ2I




< 0 (30)

with

Q11
i j = P0Ai j +A T

i j P0−Ri jC−CTRT
i j + Inx (31)

The observer gains are given by




Li j = P−1
0 Ri j

Ki j = P−1
1 Fi j

αi j = P−1
1 α i j

(32)

For the proof of theorem 1, the following lemma is used:
Lemma 1:Consider two matricesX andY with appropri-

ate dimensions, a time-varying matrice∆(t) and a positive
scalarε. The following property is verified

XT∆T(t)Y+YT∆(t)X ≤ εXTX+ ε−1YTY (33)

for ∆T(t)∆(t)≤ I .
Proof: Let us consider the following quadratic Lya-

punov function

V(ea(t)) = eT
a (t)Pea(t), P= PT

> 0 (34)

Its time derivative is given by

V̇(t) = ∑r
i=1 ∑2n

j=1 µi(x̂(t))µ̃ j(θ̂(t))
[
eT

a (t)(ΦT
i j P+PΦi j )ea(t)

+eT
a (t)PΨi j (t)ω(t)+ωT(t)ΨT

i j (t)Pea(t)
]

(35)
It is known thatea(t) asymptotically converges toward zero
whenω = 0 and that theL2 gain fromω to ea is bounded
by β if the following inequality holds

V̇(t)+eT
a (t)ea(t)−ωT(t)Γ2ω(t)< 0 (36)

with
Γ2 = diag(Γk

2), Γk
2 < β I , for k= 0,1,2,3 (37)

An adequate choice ofΓ2 allows to attenuate the transfer
from some components ofω(t) to ea(t).
From (35), (36) becomes:

r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ j(θ̂(t))
(

ea(t)
ω(t)

)T

((
ΦT

i j P+PΦi j + Inx+n PΨi j (t)
ΨT

i j (t)P −Γ2

))(
ea(t)
ω(t)

)
< 0

(38)
A block diagonal structure for the Lyapunov matrixP is
considered:

P= diag(P0,P1) (39)

From (23), (27), (37) and (39), (38) holds if

r

∑
i=1

2n

∑
j=1

µi(x̂(t))µ̃ j(θ̂(t))
(
Qi j +Q(t)+Q

T(t)
)
< 0 (40)

with:

Qi j =




Q11
i j −CTKT

i j P1 0 0 0 0
∗ −P1αi j −αT

i j P1+ In 0 P1αi j P1 0
∗ ∗ −Γ0

2 0 0 0
∗ ∗ ∗ −Γ1

2 0 0
∗ ∗ ∗ ∗ −Γ2

2 0
∗ ∗ ∗ ∗ ∗ −Γ3

2




(41)

Q11
i j = P0Ai j +A

T
i j P0−P0Li jC−CTLT

i j P0+ Inx (42)

Based on (16) and (17), the time-varying term of (40) can
be expressed as:

Q(t) =




P0A

0
0
0
0
0




ΣA(t)
(

0 0 EA 0 0 0
)

+




P0B

0
0
0
0
0




ΣB(t)
(

0 0 0 0 0 EB
)

(43)

Using lemma 1 and property (19), there exists positive scalars
λ1 andλ2, such that

Q(t)+Q
T(t)<




Q1 0 0 0 0 0
0 0 0 0 0 0
0 0 λ1ET

A EA 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 λ2ET

B EB




(44)

with:
Q

1 = λ−1
1 P0A A

TP0+λ−1
2 P0BB

TP0 (45)

for i = 1, . . . , r and j = 1, . . . ,2n.
From inequality (44), sinceµi(x̂(t)) and µ̃ j(θ̂(t)) satisfy the
convex sum property, with the variable changes (32), the LMI
(30) implies (40) and (36). As a consequence, theL2-gain
of the transfer fromω(t) to ea(t) is bounded byβ , which
achieves the proof.

IV. N UMERICAL EXAMPLE

In this section, the proposed approach is applied to a
biological wastewater treatment plant. A reduced form of
an activated sludge reactor model is considered with only



the carbon pollution and two state variables.
Starting from the nonlinear equations of the system, a T-
S representation is given. Modelling errors (function of a
time-varying parameter) are considered. The objective is to
synthesize an observer in order to simultaneously estimate
the states and the varying parameter.
The process consists in mixing used waters with a rich
mixture of bacteria in order to degrade the organic matter
[10]. Under specific assumptions, some simplifications can
be made and the nonlinear system can be represented with
the following equations [7]:

ẋ1(t) =
a(t)x1(t)x2(t)

x2(t)+b −x1(t)u(t)

ẋ2(t) =−
ca(t)x1(t)x2(t)

x2(t)+b +(d−x2(t))u(t)
(46)

with x1(t) andx2(t), the biomass and substrat concentration
respectively. The inputu(t) represents the dwell-time in the
treatment plant. The output is the biomass concentration
(y(t) = x1(t)).
It is assumed that there is a modelling error on the parameter
a such that:

a(t) = a+∆a(t) (47)

It can also be written as:

a(t) = a+θ(t)a, θ(t) ∈ [θ ,θ ] (48)

with a= 0.5, a= 0.4 andθ =−0.230,θ = 0.213.
Parametersb, c, d have been identified and set tob= 0.07,
c= 0.7 et d = 2.5.
From the system nonlinearities, let us consider the following
premise variables:

z1(t) =−u(t)

z2(t) =
(a+θ(t)a)x1(t)

x2(t)+b
(49)

As in the previous sections, using the so-called sector non-
linearity approach, the bounded parameterθ(t) is described
by equations (5) and (6).
Considering (5), the premise variables (49) become:

z1(t) =−u(t)

z2i(t) =
(a+ai)x1(t)

x2(t)+b
(50)

for i = 1,2 anda1 = θ a anda2 = θ a.
Then, the following quasi-LPV form is obtained:

ẋ(t) =
2

∑
i=1

µ̃i(θ(t))
(

z1(t) z2i(t)
0 −cz2i(t)+z1(t)

)
x(t)+

(
0
d

)
u(t)

(51)
For the considered simulation, the maximum and mini-
mum values of the premisse variables have been computed:
z1(t) ∈ [−1,−0.2], z21(t) ∈ [0.0047,4.3894] and z22(t) ∈
[0.0033,3.0587]. That knowledge allows to deduce a T-S
form. Indeed, using the convex polytopic transformation,
two partitions for each premise variables are constructed as
follows:

{
z1(t) = F11(z1)z1+F12(z1)z1
z2i(t) = F1

2i(z2i)z2i +F2
2i(z2i)z2i , for i = 1,2

(52)

with

F11(z1) =
z1(t)−z1

z1−z1
, F12(z1) =

z1−z1(t)
z1−z1

F1
2i(z2i) =

z2i(t)−z2i

z2i −z2i
, F2

2i(z2i) =
z2i −z2i(t)
z2i −z2i

(53)

where the scalarsz1, z1, z2i andz2i are defined as

z1 = max
u

z1(t), z1 = min
u

z1(t)

z2i = max
x

z2i(t), z2i = min
x

z2i(t)
(54)

The submodels are defined by the pairs(Ai j ,Bi j ) with
i = 1, . . . ,4 and j = 1,2. Due to the choice of premise
variables, all theBi j matrices are equal toBT =

[
0 d

]
.

The matricesAi j are given by:

A11 =

(
z1 z21

0 −cz21+z1

)
, A12 =

(
z1 z22

0 −cz22+z1

)

A21 =

(
z1 z21
0 −cz21+z1

)
, A22 =

(
z1 z22
0 −cz22+z1

)

A31 =

(
z1 z21

0 −cz21+z1

)
, A32 =

(
z1 z22

0 −cz22+z1

)

A41 =

(
z1 z21
0 −cz21+z1

)
, A42 =

(
z1 z22
0 −cz22+z1

)

The T-S model is obtained by an interpolation of the eight
previous submodels:

ẋ(t) =
4

∑
i=1

2

∑
j=1

µi j (z(t))µ̃ j(θ(t))(Ai j x(t)+Bu(t)) (55)

The weighting functions̃µ j(θ(t)) are calculated from equa-
tions (6) andµi j (z(t)) as the following:

µi j (z(t)) = F
σ l

i
1 (z1(t))F

σ l
i

2 j (z2 j(t)) (56)

whereσ l
i represents thel th partition. For example, we have:

µ11(z(t)) = F11(z1(t)) F1
21(z21(t))

µ12(z(t)) = F11(z1(t)) F1
22(z22(t))

(57)

Then, from the nonlinear system (46), an equivalent T-S
model is obtained and given by (55). As mentioned at the
begining of this section, the objective is to synthesize a
robust state and parameter observer applying the proposed
approach. To illustrate the time-varying parameter effect
on the system, figure 1 depicts the states in the nominal
case (witha(t) = a) and in the time-varying case (a(t) =
a+θ(t)a).
The system input, the state variables and their estimates,
the time-varying parameter and its estimate are depicted in
the figures 2, 3 and 4 respectively. The initial conditions
are x0 =

(
0.1 1.5

)
for the system state and ˆxa(0) =(

0.09 2.3 0
)

for the joint state and parameter estimate.

From the depicted figures, one can conclude on the robust-
ness of the synthetized state observer, since the two states
are perfectly estimated as well as the time-varying parameter
θ(t).
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Fig. 1. System states with and withoutθ(t)
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Fig. 3. System states and their estimates
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Fig. 4. Time-varying parameter and its estimate

V. CONCLUSION

In the present paper, a new systematic procedure is pre-
sented to deal with the state and parameter estimation for
nonlinear time-varying systems. It consists in transforming
the original system into a Takagi-Sugeno model, based on
the sector nonlinearity approach and the convex polytopic
transformation. This transformation has the major interest to
exactly represent the system without any loss of informa-
tions. Then a state and parameter observer can be designed
by minimizing the L2 gain from the augmented input
to the estimation errors. The chosen application example
is an activated sludge reactor with modeling uncertainties
represented by an unknown time-varying parameter. From
the nonlinear equations of the system, a T-S model is derived.
The proposed observer is synthetized and the obtained results
illustrate its performance.
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