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1 Introduction
Dealing with real systems (electrical, mechanical, economic, chemical, . . . ) one is
often urged to use nonlinear representations in order to accurately capture the whole
behavior of the systems under study. The linear modeling of such systems only has
a local validity, but it considerably eases the performance analysis and the controller
supervision module designs. Even if a considerable amount of results have been estab-
lished in the framework of linear systems, it is known that the linearity assumption is
only valid around an operating point; consequently, the natural nonlinear behaviors of
the system inevitably affect the performances of the control laws or supervision mod-
ules designed with the system linearity assumption. In order to enhance the system
performances, it is necessary to take into account the nonlinear behaviors of the system
from the modeling task to the control or diagnosis implementation. This can result
in complex models to be dealt with, requiring heavy mathematical tools. Contrarily
to what exists in the linear framework, the study of generic nonlinear models is too
complex to lead to unified results. Consequently, many classes of nonlinear systems
are studied with specific assumptions (LPV, Lipschitz, bilinear, . . . ). Recently, a lot
of researches on stability, stabilization, observation and control of nonlinear systems
are proposed by using Takagi-Sugeno (T-S) models [45]. This structure offers an effi-
cient representation of nonlinear behaviors while remaining relatively simple compared
to general nonlinear models ẋ = f (x,u). Furthermore, some results developed in the
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linear framework can be extended to T-S models. So, the T-S modeling provides an
alternative and attractive path to nonlinear system study.

Takagi-Sugeno modeling has proved its effectiveness in the study of nonlinear sys-
tems. T-S systems can be understood as polytopic systems, where the blending between
the subsystems is time varying according to the so-called weighting functions. Thanks
to the convexity of the blending and to the linearity of the subsystems defining the
vertices, some results can be established for nonlinear systems, using tools borrowed
from the linear theory. In that sense, the stability study and the controller/observer
design of nonlinear systems is simplified. In [10, 20, 30, 19], the stability and stabi-
lization tools inspired from the study of linear systems have been proposed. In [3, 34],
the authors worked on the problem of state estimation and diagnosis of T-S systems.
The proposed approaches in these last papers rely on the generalization of the classical
observers (Luenberger Observer [32] and Unknown Input Observer (UIO) [13]) to the
nonlinear domain. Most of the proposed results are formulated as optimization under
linear matrix inequalities (LMI, [8]) constraints; these constraints are evaluated at the
polytope vertices, defined by the submodels. The obtained conditions are only suffi-
cient ones since the weighting functions are not explicitly taken into account thanks to
the convexity of the potytope. This leads to some conservatism. Recently, some works
were dedicated to the conservatism relaxation of the stability conditions. In [43], the
Polya’s theorem is used in order to reduce the conservatism related to the negativity
of a polytope of matrix inequalities. In [30], the authors proposed a new approach for
discrete time T-S systems, based on the evaluation of the Lyapunov function variation
between two samples taken at times k and k+m with m > 1.

Due to an increasing demand for higher performances, as well as for higher safety
and reliability, fault detection and isolation (FDI) has been an active field of research
over the past decades. Many techniques have been proposed especially for sensor
and/or actuator faults with application to a wide range of engineering fields. Among
them, model-based approaches to fault diagnosis for dynamic systems have received
a lot of attention. As mentioned in [18], the purpose of FDI is to generate an alarm
and identify the location of the fault as earlier as possible and different approaches
have been proposed [11, 15, 14, 27]. A classification is given in [49] which decom-
poses diagnosis algorithms into quantitative model-based methods including observers,
parity space and extended Kalman filter, and qualitative model-based methods which
include graph approach, fault tree one, probabilistic approaches, etc. The quantitative
approaches are used in order to achieve analytical redundancy. A well-known method
is to generate residuals by comparing outputs of an observer and measured system
outputs. For being usable, these residuals must be completely or as much as possible
decoupled from unknown inputs and uncertainties. Depending on the quality of this
decoupling, fixed or adaptive thresholds have to be determined in order to minimize
false alarms [15, 4, 35]. The threshold can also be generated from statistical classifiers
or neural networks approaches as proposed in [29]. These strategies, initially devel-
oped in the context of linear systems have been extended to the case of nonlinear ones
represented by T-S models [42, 2, 18].

Once the fault have been detected and isolated, it is clearly interesting to minimize
its effect on the concerned system and it is natural to be concerned with the develop-
ment of a fault tolerant control (FTC) law. It consists in computing a new control law
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by taking into account the faults affecting the system in order to maintain acceptable
performances and preserve the system stability even in faulty situations. The existing
strategies are cast into two classes. The first one is the so-called passive fault toler-
ant control or robust control. In this approach, the faults are treated as uncertainties.
Therefore, the control law is designed such that the closed-loop system is robust to
the specified faults. Contrarily to the passive FTC, active FTC requires a FDI block
to detect, isolate and estimate the faults. The information issued from the FDI block
are used by the FTC module to reconfigure the control law in order to compensate the
faults and ensure acceptable system performances. Active fault tolerant control has
been developed essentially for linear systems [16, 44, 38, 36] and descriptor linear sys-
tems [33]. As explained before, it should be preferable to address FTC for nonlinear
models. One can cite some works in FTC field for nonlinear systems, for example
in [17], the authors proposed a method of actuator fault tolerant control for nonlinear
descriptor systems with Lipschitz nonlinearities. Once again T-S model is a mean to
extend some results in FTC to the nonlinear framework: [39] proposed a solution for
FTC of T-S systems only requiring the fault isolation. The controller is driven by a
bank of observers and a switching system is designed to switch from one controller to
another, according to a decision logic based on residual signals.

In the present chapter, two main problems will be addressed: the first one is ob-
server design and the second one is observer-based FTC, both for nonlinear systems
described by T-S models with unmeasurable premise variables (UPV).

Indeed, the T-S models can be cast into two main classes depending whether the
premise variables are measurable or not. It is clear that the choice of measurable
premise variables eases the extension of the methods already developed for linear sys-
tems. The problems of state estimation and diagnosis of nonlinear systems using T-S
model approach have been addressed with different methods, but most of the published
works have considered T-S models with measurable premise variables [2, 42, 34, 3].
These problems become harder when the premise variables are not measurable. How-
ever, T-S systems with UPV are very useful both for the exact representation of nonlin-
ear behaviors by T-S model and for observer based diagnosis for sensor/actuator fault
detection and isolation. The sector nonlinearity transformation leads to T-S model with
weighting functions depending on the state of the system which is partially or com-
pletely unmeasurable. Indeed in this case, the use of measurable premise variables
requires to develop two different models. The first one uses the input u(t) as a premise
variable and allows to detect and isolate sensor faults. The second one, using the output
y(t) of the system as a premise variable, is dedicated to the detection and isolation of
actuator faults. Diagnosis based on a single T-S model with unmeasurable premise vari-
ables allows to detect and isolate both actuator and sensor faults using observer banks
with only one T-S model. Furthermore, the T-S models with unmeasurable premise
variables may represent a larger class of nonlinear systems compared to the T-S model
with measurable premise variables [50]. Only few works are devoted to the case of un-
measurable premise variables: in [41, 6, 7], the authors proposed the Thau-Luenberger
observer which is an extension of the classical Luenberger observer and, in [50], a
filter estimating the state and minimizing the effect of disturbances was proposed. Re-
cently, other approaches for observer design, fault diagnosis and fault tolerant control,
have been proposed for this class of systems in [23, 22, 21, 25, 26] based on Lipschitz
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property, on the mean value theorem or on the modeling of estimation error as model
uncertainties to be robust to.

The overview of this chapter is as follows. A short introduction to T-S systems is
presented in section 2 and some useful results are detailed in section 3. The section 4
is devoted to the design of an observer for continuous time T-S systems with unmea-
surable premise variables. Firstly, the state estimation error dynamics are obtained as
a T-S perturbed system where the considered perturbation depends on the system state
and its estimate. Thanks to the mean value theorem (MVT), this perturbed T-S system
with UPV is rewritten as an autonomous one. Lyapunov stability analysis is then used
to derive sufficient existence conditions of the observer. These conditions are expressed
in terms of LMIs, which can easily be solved by dedicated softwares (LMI toolbox of
Matlab, YALMIP [31],...). A numerical example illustrates the proposed observer de-
sign. The second main result of this chapter, exposed in section 5, is dedicated to the
design of a new active fault tolerant control design for T-S systems with UPV. Both
additive actuator and sensor faults can be handled. In the proposed approach the objec-
tive is twofold: not only the occurring faults are compensated, but trajectory tracking
is also ensured even in the faulty case. The reference state trajectory is a user defined
model. As illustrated in the figure 1, an observer provides fault and state estimations,
required for the control law reconfiguration. The stability of the system with the pro-
posed fault tolerant control is studied via Lyapunov approach. The obtained conditions
are formulated in terms of linear matrix inequalities. In section 6, the control of the
lateral dynamics of a vehicle illustrates the approach.

controller

observer

system

f (t)

u(t)

x(t)

x̂f(t)

f̂ (t)

yf(t)

reference
model

Fault Tolerant Controller

uf(t)

Figure 1: Fault tolerant control scheme

2 Takagi-Sugeno structure for modeling
Consider a nonlinear system described by{

ẋ(t) = fx(x(t),u(t))
y(t) = fy(x(t))

(1)

The T-S modeling allows to represent the behavior of the nonlinear system (1)
by the interpolation of a set of linear sub-models. Each sub-model contributes to the
global behavior of the nonlinear system through a weighting function µi(ξ(t)). The T-S
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structure is given by 
ẋ(t) =

r
∑

i=1
µi(ξ(t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ(t))Cix(t)

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp represents
the output vector. Ai ∈Rn×n, Bi ∈Rn×m, Ci ∈Rp×n and Di ∈Rp×m are known matrices.
The weighting functions µi(ξ(t)) depend on the variables ξ(t) which can be measurable
(as the input or the output of the system) or non measurable variables (as the state of
the system). These functions verify the so-called convex sum property

r
∑

i=1
µi(ξ(t)) = 1

0≤ µi(ξ(t))≤ 1 ∀i ∈ {1,2, ...,r}
(3)

Obtaining a T-S model (2) from (1), which reduces to obtain the matrices Ai, Bi
Ci and the weighting functions µi, can be performed from different methods such as
linearizing the system (1) around some operating points and using adequate weight-
ing functions. It can also be obtained by black-box approaches allowing to identify
the parameters of the model from input-output data. Finally, the most interesting and
important way to obtain a T-S model in the form (2) is the well-known sector nonlin-
earity transformation [47, 37]. Indeed, this transformation allows to obtain an exact
T-S representation of (1) with no information loss on a compact set of the state space.

Thanks to the convex sum property of the weighting functions (3), it is possible to
generalize some tools developed in the linear domain to the nonlinear systems. The
representation (2) is very interesting in the sense that it simplifies the stability studies
of nonlinear systems and the design of control laws and observers. In [10, 20, 30], the
stability and stabilization tools are inspired from the study of linear systems. In [3, 34],
the authors worked on the problem of state estimation and diagnosis of T-S systems.
The proposed approaches in these last papers rely on the generalization of the classical
observers (Luenberger Observer [32] and Unknown Input Observer (UIO) [13]) to the
nonlinear domain.

3 Useful results and notations
In the remaining of the paper, the following notations will be used.

Notation 1. For any square matrix X, S is defined by S(X)=X+XT . The notation X =
diag(X1,X2, . . . ,Xn) defines X as a block diagonal matrix where the square matrices Xi
are the entries on the diagonal of X. In a block matrix, the symbol ∗ denotes the
terms induced by symmetry. In order to shorten the summation in the definitions of T-S
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systems, the following notations are defined

Xµ(t) =
r

∑
i=1

µi(x(t))Xi Xµ̂(t) =
r

∑
i=1

µi(x̂(t))Xi (4)

Xµ f (t) =
r

∑
i=1

µi(x f (t))Xi Xµ̂ f (t) =
r

∑
i=1

µi(x̂ f (t))Xi (5)

Xµµ(t) =
r

∑
i=1

r

∑
j=1

µi(x(t))µ j(x(t))Xi Xµ f µ̂ f (t) =
r

∑
i=1

r

∑
j=1

µi(x f (t))µ j(x̂ f (t))Xi (6)

Lemma 1. Consider two matrices X and Y with appropriate dimensions and Ω a
positive definite matrix. The following property is verified

XTY +Y T X ≤ XT ΩX +Y T Ω−1Y (7)

Proof. For any matrices X , Y and Ω > 0, it obviously holds

(Ω1/2X−Ω
−1/2Y )T (Ω1/2X−Ω

−1/2Y )≥ 0 (8)

Developing the previous inequality (7) is obtained.

Lemma 2. (Congruence) [8] Let two matrices P and Q, if P is positive definite and if
Q is a full column rank matrix, than the matrix QPQT is positive definite.

Lemma 3. (Mean value theorem) Consider g(z) : Rn → R. Let a,b ∈ Rn. If g(z) is
differentiable on [a,b] then there exists a constant vector z̃ ∈Rn satisfying z̃ ∈]a,b[ (i.e.
z̃i ∈]ai,bi[, for i = 1, . . . ,n), such that

g(a)−g(b) =
∂g
∂z

(z̃)(a−b) (9)

Lemma 4. (Sector nonlinearity approach) [47, 37] Any nonlinear function g(z) satis-
fying

g≤ g(z)≤ g, ∀z (10)

can be written as
g(z) = µ1(z)g+µ2(z)g (11)

where

µ1(z) =
g−g(z)

g−g
µ2(z) =

g(z)−g
g−g

(12)

and the functions µi(z) satisfy the convex sum property i.e. µ1(z) + µ2(z) = 1 and
0≤ µi(z)≤ 1, ∀z.
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4 Observer design for T-S systems with unmeasurable
premise variables

In this section, the design of observer for T-S systems with unmeasurable premise vari-
ables is proposed. The main idea of the presented approach is based on the Mean Value
Theorem (MVT) allowing to represent the state estimation error as an autonomous T-S
system. Applying Lyapunov stability analysis, sufficient existence conditions of the
observer are derived and formulated in LMIs that can be solved with dedicated soft-
wares. Using the notations introduced previously, the T-S system to be observed is
defined by {

ẋ(t) = Aµ(t)x(t)+Bµ(t)u(t)
y(t) =Cx(t) (13)

It can be noted that the state variables often correspond to physical growths that are
measured by dedicated sensors. As a consequence it is not so restrictive to consider a
linear measurement equation. The observer is given by{ ˙̂x(t) = Aµ̂(t)x̂(t)+Bµ̂(t)u(t)+Lµ̂(t)(y(t)− ŷ(t))

ŷ(t) =Cx̂(t) (14)

where the gains Li are sought in order to ensure the asymptotic convergence of the state
estimation error towards zero. The state estimation error e(t) = x(t)− x̂(t) is governed
by the following differential equation

ė(t) = g(z(t))−g(ẑ(t))−Lµ̂(t)Ce(t) (15)

where zT (t) =
[
xT (t) uT (t)

]
, ẑT (t) =

[
x̂T (t) uT (t)

]
and

g(z(t)) = Aµ(t)x(t)+Bµ(t)u(t), g(ẑ(t)) = Aµ̂(t)x̂(t)+Bµ̂(t)u(t)

The function g(z(t)) : Rn+m → Rn is assumed to be Lipschitz continuous. Note
that the stability analysis of (15) cannot be directly achieved with the help of the tools
developed for T-S systems with measurable premise variables. Indeed, the fact that
the premise variables are the state variables leads to a more complex form of the state
estimation error (see equation (15)). The key point of the proposed observer design
is to obtain a suitable form of the state estimation error in order to re-use the tools
proposed for stability and relaxed stability analysis of T-S systems with measurable
premise variables.

Let us denote es(i) the vector of Rs×1 with all entries being null, except the ith being
equal to 1 as given below

es(i) =
(

0
1
· · · 0

i−1
1
i

0
i+1

· · · 0
s

)T
(16)

The function g(z(t)), with entries gi(z(t)), can be written as follows

g(z(t)) =
n

∑
i=1

en(i)gi(z(t)) (17)
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Since the function g is differentiable on [z(t) ẑ(t)], applying the lemma 3, there
exists n vectors z̃i(t) ∈ Rn+m, satisfying z̃i(t) ∈]z(t), ẑ(t)[ (i.e. z̃i

j(t) ∈]z j(t), ẑ j(t)[, for
j = 1, . . . ,n+m), such that

g(z(t))−g(ẑ(t)) =
n

∑
i=1

n+m

∑
j=1

en(i)eT
n+m( j)

∂gi

∂z j
(z̃i(t))(z(t)− ẑ(t)) (18)

Due to the definition of z(t), one can note that z j(t)− ẑ j(t)= 0, for j = n+1, . . . ,n+
m. From (18) and (15), it then follows

ė(t) =

(
n

∑
i=1

n

∑
j=1

en(i)eT
n ( j)

∂gi

∂x j
(z̃i(t))−Lµ̂(t)C

)
e(t) (19)

Since the function g is Lipschitz, its derivatives are bounded

gi j ≤
∂gi

∂x j
(z̃i(t))≤ gi j (20)

Using the lemma 4, each derivative can be written as

∂gi

∂x j
(z̃i(t)) = µi j

1 (z(t))gi j +µi j
2 (z(t))gi j (21)

where the functions µi j
1 and µi j

2 satisfy the convex sum property. Factorizing these
weighting functions and using the sector nonlinearity approach, one obtains the fol-
lowing global T-S model [47, 37]

ė(t) =
q

∑
i=1

r

∑
j=1

hi(z(t))µ j(x̂(t))(Ai−L jC)e(t) (22)

= (Ah(t)−Lµ̂(t)C)e(t) (23)

where q ≤ 2n2
. One can note that the functions hi(z(t)) are defined by the products of

some functions µi j
1 (z(t)) and/or µi j

2 (z(t)) and the entries of Ai are given by the upper
or lower bounds of the derivatives of g in (20). An illustration of this transformation is
provided in the beginning of the example in the following subsection.

Based on this transformation, the system describing the state estimation error is
an autonomous T-S system with UPV. The gains L j of the observer are determined in
order to stabilize the system (23). They are obtained by solving the LMI problem given
in the theorem 1.

Theorem 1. The state estimation error asymptotically converges toward zero if there
exist a symmetric positive definite matrix P ∈ Rn×n and matrices M j ∈ Rn×p such that
the following linear matrix inequalities hold ∀i = 1, ...,q, j = 1, ...,r

AT
i P+PAi−M jC−CT MT

j < 0 (24)

The gains of the observer are derived from

L j = P−1M j (25)
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Proof. Considering Lyapunov function candidate

V (e(t)) = eT (t)Pe(t), P = PT > 0 (26)

and equation (23), it is straightforward to obtain

V̇ (e(t)) =
q

∑
i=1

r

∑
j=1

hi(z(t))µ j(x̂(t))eT (t)
(
(Ai−L jC)T P+P(Ai−L jC)

)
e(t) (27)

From (3), the weighting functions are nonnegative. With the change of variables M j =
PL j, if the LMIs (24) hold, the time derivative of the Lyapunov function (27) is negative
and consequently the state estimation error asymptotically converges towards zero.

4.1 Simulation example: Lorenz system
In this example, the proposed method is applied in order to construct an observer which
allows to estimate the states of the chaotic Lorenz system given by ẋ(t) =

−10 10 0
28 −1 0
0 0 − 8

3

x(t)+

 0
−x1(t)x3(t)
x1(t)x2(t)


y(t) =

(
0 1 0

)
x(t)+ω(t)

(28)

The output of the system is noised by the random signal ω(t) which is bounded by
3.5. It is known that all the trajectories of this system come to a ball of finite radius
(bounded trajectories). From this information, an exact T-S model can be obtained
for all the state space of the nonlinear system. The system (28) can be written as a
quasi-LPV (Linear Parameter Varying) system as follows

ẋ(t) = g(x1(t))x(t) (29)

with

g(x1(t)) =

−10 10 0
28 −1 −x1(t)
0 x1(t) − 8

3

 (30)

Let us chose x1(t) as the premise variable. Knowing that x1(t) is bounded, we have
ξmin ≤ x1(t)≤ ξmax. From lemma 4, the function g(x1(t)) can then be written as

g(x1(t)) = µ1(x(t))A1 +µ2(x(t))A2 (31)

where the weighting functions in (31) are defined by

µ1(x(t)) =
x1(t)−ξmin

ξmax−ξmin
, µ2(x(t)) =

ξmax− x1(t)
ξmax−ξmin

(32)

where ξmin = −30 and ξmax = 30 respectively denote the lower and upper bounds of
x1(t). Moreover, the matrices Ai in (31), defining the T-S model, are given by

A1 =

−10 10 0
28 −1 −30
0 30 − 8

3

 , A2 =

−10 10 0
28 −1 30
0 −30 − 8

3


9



Since the weighting functions depend on the unmeasured state x1(t), it is impos-
sible to construct an observer with the classical approaches dedicated to T-S models
with known premise variables. The gains of the observer that satisfy the conditions
expressed in the theorem 1 are given by

L1 = L2 =

10.2971
62.2607
2.1562


That allows to construct the observer (14). The resulting estimated states are de-

picted in the figure 2.
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Figure 2: States x(t) and estimated states x̂(t)

Remark 1. One can note that different quasi-LPV forms can be obtained from (28).
For instance, the function g(x(t)) may not only depend on the first component of the
system state, but on the two lasts (when factorizing the terms x1(t)x3(t) and x1(t)x2(t)).
This would result in two nonlinearities in g(x) leading to four submodels and thus
increasing the number of LMIs to be solved. Choice criteria between the different
possible quasi-LPV forms are given in [37].

Remark 2. Note that the Lorenz system can be written as a Lipschitz model ẋ(t) =
Ax(t)+ g(x(t)). Many approaches have been proposed in literature to construct ob-
servers for such a system [12, 51, 1]. The main problem in these approaches is the
value of the Lipschitz constant of g(x(t)). Indeed, if this constant is greater than an ad-
missible value, there is no solution for LMIs. As discussed in [24], the T-S approach can
overcome this limitation. Describing the Lipschitz model as a T-S one allows to obtain
the gains of the state observer, even for large values of the Lipschitz constant. More-
over, if no solution exists to the LMI existence conditions of the observer for T-S model,
it is possible to take benefits from relaxed conditions proposed in [48, 46, 43, 30].
In the proposed example, the classical approaches fail to provide a solution but after
transformation, a solution is obtained.
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5 Fault tolerant control of T-S systems with UPV
Let us consider the T-S reference model without faults described by (33) ẋ(t) =

r
∑

i=1
µi(x(t))(Aix(t)+Biu(t))

y(t) =Cx(t)
(33)

The system with the fault f (t) ∈ Rn f is described by the following T-S model with
unmeasurable premise variables ẋ f (t) =

r
∑

i=1
µi(x f (t))(Aix f (t)+Biu f (t)+Gi f (t))

y f (t) =Cx f (t)+R f (t)
(34)

The goal is to design the control law u f (t) such that the system state x f (t) con-
verges toward the reference state x(t) given by the reference model (33), as illustrated
by the figure 1.

The following structure is proposed for the fault tolerant control law

u f (t) =
r

∑
i=1

µi(x̂ f (t))
(
−K2i f̂ (t)+K1i(x(t)− x̂ f (t))+u(t)

)
(35)

Analyzing the structure of u f (t) given in (35), the state and fault estimates, namely
x̂ f (t) and f̂ (t), are required, whereas the reference system state x(t) is known and thus
can be used.

There is no loss of generality to assume that the reference and faulty systems (33)
and (34) are stable, compared to assume that they are stabilizable. If the systems (33)
and (34) are stabilizable, there exists a stabilizing control law ustab(t). In this case, the
control input u(t) in (33) and (35) can be substituted by u(t)+ustab(t) and the matrices
Aµ(t) and Aµ f (t) can be replaced by their corresponding matrices in closed-loop.

The faulty state and fault estimates are provided by the following Proportional-
Integral (PI) observer, which can be viewed as an extension to T-S systems of the well
known linear PIO [5, 9, 28]


˙̂x f (t) =

r
∑

i=1
µi(x̂ f (t))(Aix̂ f (t)+Biu f (t)+Gi f̂ (t)+H1i(y f (t)− ŷ f (t)))

˙̂f (t) =
r
∑

i=1
µi(x̂ f (t))H2i(y f (t)− ŷ f (t))

ŷ f (t) = Cx̂ f (t)+R f̂ (t)

(36)

where the gains H1i and H2i are to be determined in order to minimize the faulty state
and fault estimation errors.

The output error between the system (34) and the observer (36) is given by

y f (t)− ŷ f (t) =Cea(t) (37)
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where

C =
(
C R

)
, xa(t) =

(
x f (t)
f (t)

)
, x̂a(t) =

(
x̂ f (t)
f̂ (t)

)
, ea(t) = xa(t)− x̂a(t) (38)

The dynamic of the trajectory tracking error e(t) = x(t)− x f (t) obeys to the differ-
ential equation

ė(t) = Aµ(t)x(t)+Bµ(t)u(t)− (Aµ f (t)x f (t)+Bµ f (t)u f (t)+Gµ f (t) f (t)) (39)

Taking into account the definition (35), (39) leads to

ė(t) =Aµ f (t)e(t)−Gµ f (t) f (t)−Bµ f (t)K2µ̂ f (t) f̂ (t)−Bµ f (t)K1µ̂ f (t)(x f (t)− x̂ f (t))+∆1(t)
(40)

=(Aµ f (t)−Bµ f (t)K1µ̂ f (t))e(t)−Bµ f (t)Kµ̂ f (t)ea(t)+∆1(t) (41)

where K j and ∆1(t) are defined by

K j =
(
K1 j K2 j

)
(42)

∆1(t) =∆1(t)+(Bµ f (t)K2µ̂ f (t)−Gµ f (t)) f (t) (43)

∆1(t) =
r

∑
i=1

(µi(x(t))−µi(x f (t)))(Aix(t)+Biu(t)) (44)

Note that the perturbation term ∆1(t) is bounded since it is assumed that the system
(33) is stable and that its input is bounded.

The dynamic of the fault estimation error is given by

ė f (t) = ḟ (t)− ˙̂f (t) (45)

= ḟ (t)−H2µ̂ f (t)Cea(t) (46)

In order to analyze the evolution of the errors, two cases are considered : in the first
one the faults are supposed to be constant ; in the second one they are assumed to be
under a polynomial form with respect to the time variable.

5.1 Constant faults
In this first approach, it is supposed that ḟ (t) = 0 and, with definition (38), the system
(34) becomes  ẋa(t) =

r
∑

i=1
µi(x f (t))

(
Aixa(t)+Biu f (t)

)
y f (t) =Cxa(t)

(47)

where C is already defined and

Ai =

(
Ai Gi
0 0

)
, Bi =

(
Bi
0

)
(48)
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In a similar way, the observer (36) can be written using the augmented state vector
x̂a(t). The state and fault estimation errors between the system (47) and the observer
(36), defined by ea(t) = xa(t)− x̂a(t) are ruled by

ėa(t) =
r

∑
i=1

µi(x̂ f (t))
(
(Ai−HiC)ea(t)+Γ∆2(t)

)
(49)

where ΓT =
(
In 0

)
, HT

i =
(
HT

1i HT
2i
)

and

∆2(t) =∆2(t)+
r

∑
i=1

(µi(x f (t))−µi(x̂ f (t)))Gi f (t) (50)

∆2(t) =
r

∑
i=1

(µi(x f (t))−µi(x̂ f (t)))(Aix f (t)+Biu f (t)) (51)

Due to the convex sum property, ∆2(t) can also be written as

∆2(t) = ∆2(t)+
r

∑
i=1

r

∑
j=1

(µi(x f (t))µ j(x̂ f (t)))(Gi−G j) f (t) (52)

As explained above, concerning the term ∆1(t) defined by (44), the perturbation
∆2(t) is bounded. From (41) and (49), the concatenation of the state tracking trajectory
error, the state and fault estimation errors allows to write the following augmented
system

˙̃e(t) = Ãµ f µ̂ f (t)ẽ(t)+ Γ̃µ f µ̂ f (t)∆(t) (53)

where K j is defined by (42) and

ẽ(t) =

 x(t)− x f (t)
x f (t)− x̂ f (t)
f (t)− f̂ (t)

 , ∆(t) =

∆1(t)
∆2(t)
f (t)

 , Γ̃i j =

(
Γ1i j
Γ2i j

)
, Ãi j =

(
Ai−BiK1 j −BiK j

0 Ai−HiC

)
(54)

Γ1i j =
(
In 0 BiK2 j−Gi

)
, Γ2i j =

(
0 In Gi−G j
0 0 0

)
, (55)

From now on, the term ∆(t) gathering the fault and the mismatches coming from
the unmeasured premise variables (44)-(51), is considered as an external disturbance,
which effect is to be attenuated. The gains Ki =

(
K1i K2i

)
and HT

i =
(
HT

1i HT
2i
)

are
determined by solving a minimization problem under LMI constraints, given by the
following theorem 2.

Theorem 2. The FTC law (35) minimizing the L2-gain from ∆(t) to the tracking and
estimation errors ẽ(t) (53) is obtained by finding the symmetric and positive definite
matrices X1 ∈ Rn×n, P2 ∈ R(n+n f )×(n+n f ), matrices H i ∈ R(n+n f )×p, K1i ∈ Rm×n f and
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K2i ∈ Rm×n minimizing γ under the LMI constraints (56), for i, j = 1, . . . ,r.

Ψi j −BiK j 0 Γ1i j 0 0 X1
∗ −2µX µIn+n f 0 X 0 0
∗ ∗ Zi 0 0 0 0
∗ ∗ ∗ −γI2n+n f 0 ΓT

2i jP2 0
∗ ∗ ∗ ∗ −In+n f 0 0
∗ ∗ ∗ ∗ ∗ −In+n f 0
∗ ∗ ∗ ∗ ∗ ∗ −In


< 0 (56)

with

Ψi j = S(AiX1−BiK1 j) (57)

Zi = S(P2Ai−HiC)+ In+n f (58)

K j =
(
K1 j K2 j

)
(59)

X = diag(X1, In f ) (60)

The gains of the observer and of the FTC law, namely Hi and K j, are obtained by

Hi = P−1
2 H i, K1 j = K1 jX−1

1 (61)

the L2 gain from ∆(t) to ẽ is given by

γ =
√

γ (62)

Proof. The gains
(
HT

1i HT
2i
)T of the PI observer (36) and

(
K1i K2i

)
of the fault tol-

erant control law (35) are obtained, using the Lyapunov theory, by the minimization of
the L2-gain of the system (53) from ∆(t) to the tracking and estimation errors ẽ(t). For
that purpose, let us chose the following quadratic Lyapunov function

V (ẽ(t)) = ẽT (t)Pẽ(t), P = PT > 0 (63)

where the symmetric positive definite matrix P is chosen as a block diagonal matrix

P = diag(P1,P2) (64)

where P1 ∈Rn×n and P2 ∈R(n+n f )×(n+n f ). It is well known [8] that ẽ(t) asymptotically
converges toward zero if ∆(t) = 0 and that the L2-gain from ∆(t) to the error ẽ(t) is
bounded by γ > 0 if the Lyapunov function V (ẽ) satisfies the following inequality

V̇ (ẽ(t))+ ẽT (t)ẽ(t)− γ
2
∆

T (t)∆(t)< 0 (65)

From (53), the time derivative of the function V (ẽ(t)) is given by

V̇ (ẽ(t)) = ẽT (t)
(

ÃT
µ f µ̂ f

(t)P+PÃµ f µ̂ f

)
ẽ(t)+S

(
ẽT (t)PΓ̃µ f µ̂ f ∆(t)

)
(66)

From (54) and (64), the inequality (65) is equivalent to

ξ
T
(t)Nµ f µ̂ f (t)ξ(t)< 0 (67)
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where

ξ(t) =
(

ẽ(t)
∆(t)

)
, Ni j =

S(P1Ai−P1BiK1 j)+ I −P1BiK j P1Γ1i j
∗ S(P2Ai−P2HiC)+ I P2Γ2i j
∗ ∗ −γ2I


(68)

Since the weighting functions are nonnegative, (65) is satisfied if the matrices Ni j
are negative definite. By congruence (lemma 2), for every invertible matrix W , Ni j < 0
is equivalent to

W T Ni jW < 0 (69)

Defining the matrix W = diag(P−1
1 ,X , I2n+n f ), with P1 = X−1

1 , inequality (65) is
implied by Ψi j −BiK jX Γ1i j

∗ XZiX XP2Γ2i j
∗ ∗ −γ2I

< 0 (70)

where

Ψi j = S(AiX1−BiK1 jX1)+X1X1 (71)
Zi = S(P2Ai−P2HiC)+ I (72)

If (56) hold, then Zi < 0 and for any scalar µ, the two following inequalities hold.(
X +µZ−1

i
)T

Zi
(
X +µZ−1

i
)
≤ 0⇔ XZiX ≤−µ(X +XT )−µ2Z−1

i (73)

Using the bounding given by (73) and using a Schur complement on Z−1
i , the non-

linear term XZiX can be replaced by linear ones. Consequently, the matrix inequality
(70) is implied by the following one

Ψi j −BiK jX 0 Γ1i j
∗ −2µX µI XP2Γ2i j
∗ ∗ Zi 0
∗ ∗ ∗ −γ2I

< 0 (74)

Let us remark that (74) can be written as follows
Ψi j −BiK jX 0 Γ1i j
∗ −2µX µI 0
∗ ∗ Zi 0
∗ ∗ ∗ −γ2I

+S




0
X
0
0

(0 0 0 P2Γ2i j
)< 0 (75)

From the lemma 1, (75) is implied by
Ψi j −BiK jX 0 Γ1i j
∗ −2µX +XXT µI 0
∗ ∗ Zi 0
∗ ∗ ∗ −γ2I +ΓT

2i jP2P2Γ2i j

< 0 (76)
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and by using the Schur complement, we obtain
Ψi j −BiK jX 0 Γ1i j 0 0
∗ −2µX µI 0 X 0
∗ ∗ Zi 0 0 0
∗ ∗ ∗ −γ2I 0 ΓT

2i jP2

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

< 0, i, j = 1, ...,r (77)

Defining X = diag(P−1
1 , In f ) and with the following variable changes

H i = P2Hi, K1 j = K1 jX1, γ = γ
2 (78)

and a Schur complement on the term X1X1 in Ψi j, the LMIs in theorem 2 are obtained.
As a consequence (56) implies (65) and then ensures that the L2-gain from ∆(t) to ẽ(t)
is bounded by γ.

5.2 Time varying faults
The assumption that the fault signal is constant over the time is restrictive, but in many
practical situations where the faults are slowly time-varying signals, the estimation of
the faults is correct, and the previous proposed FTC scheme can be applied. In the
case where the faults are not slowly time-varying or constant, the Proportional Integral
Observer (PIO) can be replaced by a Proportional Multiple Integral Observer (PMIO).
Such an observer is able to estimate a large class of time-varying signals satisfying the
following assumption

f (q+1) = 0 (79)

The principle of this observer is based on the estimation of all the first qth deriva-
tives of the signal f (t). This observer can also be extended to the case where f (q+1) is
bounded.

Let consider the system (34) with a fault in the general polynomial form

f (t) = a0 +a1t +a2t2 + ...+aqtq (80)

Let consider d0(t) = ḟ (t), d1(t) = f̈ (t), ..., dq−1(t) = f (q)(t). Thus, the system
can be transformed into an augmented form ˙̃xa(t) =

r
∑

i=1
µi(x f (t))

(
Ãix̃a(t)+ B̃iu f (t)

)
y(t) = C̃x̃a(t)

(81)

where

x̃a(t)=


x f (t)
d0(t)

...
dq−2(t)
dq−1(t)

 , Ãi =


Ai Gi 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

 , B̃i =


Bi
0
...
0
0

 , C̃ =
(
C R 0 . . . 0

)
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The observer simultaneously estimating the state x f (t), the faults f (t) and the suc-
cessive derivatives is given in the following form

˙̃̂xa(t) =
r
∑

i=1
µi(x̂ f (t))

(
Ãi ˆ̃xa(t)+ B̃iu f (t)+ H̃i(y(t)− ŷ(t))

)
ŷ(t) = C̃ ˆ̃xa(t)

(82)

Using (35), (81) and (82), the tracking error e(t) = x(t)− x f (t) and the augmented
state estimation error ea(t) = x̃a(t)− ˆ̃xa(t) are given by(

ė(t)
ėa(t)

)
=

r

∑
i=1

r

∑
j=1

µi(x f (t))µ j(x̂ f (t))Ãi j

(
e(t)
ea(t)

)
+ Γ̃i j∆(t) (83)

where

Ãi j =

(
Ai−BiK1 j −BiK j

0 Ãi− H̃iC̃

)
, Γ̃i j =

(
Γ1i j
Γ̃2i j

)
, Γ̃2i j =


Γ2i j

0
...
0


Thus, the structure of the state equations is the same as those expressed in the case

of constant faults. The synthesis of the gains of the controller and those of the observer
are obtained by solving the LMIs given in the theorem 2.

6 Application to the fault tolerant control of vehicle lat-
eral dynamics

Security and assistance in vehicles are important especially in dangerous situations
like cornering and land keeping with high speed. For that purpose, this example deals
with the problem of fault tolerant control of lateral dynamics of a vehicle in cornering
situation.

6.1 System modeling
Let us consider the nonlinear model of the vehicle lateral dynamics described in the
figure 3 and given by the differential equations (84).{

m(v̇y(t)+ vxr(t)) = 2(Ff (t)+Fr(t))
Jṙ(t) = 2(a f Ff (t)−arFr(t))

(84)

where vx(t) and vy(t) are the longitudinal and lateral velocities (vy(t) = βvx(t)), r(t) is
the yaw rate, β denotes the side slip angle, m and J are the mass and the yaw moment
of inertia respectively, a f and ar are the distances of the front and rear axle from the
center of gravity. Ff (t) and Fr(t) are front and rear lateral forces. Different kinds of
tire forces models are proposed in the literature, we can cite the Dugoff’s model or
Pacejka’s model [40] which are empirical models obtained from real datas. The last
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Figure 3: Single track model of the vehicle

one is more used in vehicle and tire construction. For our study, the forces are modeled
with the magic formula as given in [40] with the following equations{

Ff (t) = D f sin
(
C f tan−1

(
B f (1−E f )α f (t)+E f tan−1(B f α f (t))

))
Fr(t) = Dr sin

(
Cr tan−1

(
Br(1−Er)αr(t)+Er tan−1(Brαr(t))

)) (85)

The coefficient Di, Ci, Bi and Ei (i = f ,r) depend on the characteristics of the tire
and the road adhesion. The parameters α f and αr represent tire slip angles at the front
and rear of the vehicle. These quantities depend on the state of the system and are
expressed by  α f (t) =−

vy(t)
vx(t)
− tan−1

(
a f

vx(t)
r(t)cos( vy(t)

vx(t)
)
)
+δ f (t)

αr(t) =−
vy(t)
vx(t)
− tan−1

(
ar

vx(t)
r(t)cos( vy(t)

vx(t)
)
) (86)

where δ f (t) is the front steering angle. A T-S simplified model as given in [39] is
represented by  ẋ(t) =

2
∑

i=1
µi(α f (t))(Aix(t)+Biu(t))

y(t) =Cx(t)
(87)

where xT (t) = [vy(t) r(t)], u(t) = δ f (t). The output y(t) contains the yaw rate given
by the inertial unit. The matrices defining the model are

A1 =

(
−6.9426 −0.8775
26.5175 −7.8343

)
, B1 =

(
3.4892

39.2914

)

A2 =

(
−0.4735 −0.9971
0.6356 −0.4921

)
, B2 =

(
0.2767
3.1155

)
C = (0 1)

The weighting function are given by the following equations

µi(α f (t)) =
βi(α f (t))

2
∑

i=1
βi(α f (t))

, i = 1,2 (88)
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with
βi(α f (t)) =

1(
1+
∣∣∣∣ |α f (t)|−ci

ai

∣∣∣∣)2bi
(89)

The parameters ai, bi and ci are the same as those used in [39], which are obtained
by Levenberg Marquard optimization.

a1 = 0.5077 a2 = 0.4748
b1 = 3.1893 b2 = 5.3907
c1 =−0.4356 c2 = 0.5622

The weighting function µi depend on the slip angle α f which depend on state vari-
ables that are not completely measured (as presented in (86)). Finaly, the fault free
model of the vehicle lateral dynamics is given by the following equations ẋ(t) =

2
∑

i=1
µi(x(t))(Aix(t)+Biu(t))

y(t) =Cx(t)
(90)

6.2 Fault tolerant control design for vehicle lateral dynamics
Let us consider an additive actuator fault signal affecting the vehicle in the form

f (t) =


0, i f t < 10
0.1sin(0.314t), i f 10≤ t ≤ 14.95
0.1, i f t > 14.95

(91)

The faulty system is then expressed as follows ẋ f (t) =
2
∑

i=1
µi(x f (t))(Aix f (t)+Bi(u f (t)+ f (t)))

y f (t) =Cx f (t)
(92)

One can note that this system corresponds to (34) with Gi = Bi and R = 0. The
control observer based control law given by the equations (35) and (36) is designed
by solving the LMI optimization problem defined in the theroem 2. Simulations are
realized by considering a random noise with maximal magnitude 0.01 as an output
measurements. Figure 4 depicts the vehicle state estimation. The fault, its estimate
and the input with and without FTC are displayed on figure 5. The fault is correctly
estimated. The control input is clearly reconfigurated according to the fault estimation,
as shown by the deviation between the FTC input and the nominal control input. Figure
6 illustrates a comparison between the states of the reference model (without fault), the
states of the faulty vehicle without FTC and finally the states of the vehicle with FTC.
Clearly, the proposed strategy is robust with respect to actuator additive fault f (t) since
the state trajectories of the reference model and those of the system with FTC are quite
indistinguishable. Moreover the fault distinctly acts on the system trajectory since the
system states without FTC significantly deviate from the reference ones. Moreover, the
FTC scheme provides good results in the presence of measurement noises as shown in
the figures.

19



2 4 6 8 10 12 14 16 18

−0.02

0

0.02

0.04

 

 

Lateral velocity

Estimated lateral velocity

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

t(s)

 

 

Yaw rate

Estimated yaw rate

Figure 4: State estimation
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Figure 5: Fault estimation and fault tolerant control signal

7 Conclusion
This chapter is dedicated to the design of new approaches for nonlinear observer and
fault tolerant controller designs. The considered systems are modeled with a T-S struc-
ture with unmeasurable premise variables. Observer design is made by using the mean
value theorem (MVT) in order to re-write the state estimation error in form of au-
tonomous system. After the Lyapunov theory is used to analyze the stability of the
state estimation error dynamics and then to derive LMI conditions. The second prob-
lem which is studied is the fault tolerant control design. The strategy is based on the
use of a reference model which is given by the fault-free system model. The proposed
control law is then designed to minimize the deviation of the system state compared
to the reference state, even in the presence of fault(s). This control law uses the nomi-
nal control input developed for the system in fault-free case and two additional terms.
The first term is related to the estimated fault and the second one corresponds to the
trajectory tracking error. The stability of the tracking error model is studied with the
Lyapunov theory and a quadratic function that allows to derive conditions ensuring the
convergence of the state and fault estimation errors and trajectory tracking error toward
zero. The existence conditions are expressed in terms of LMI that can be solved with
classical dedicated softwares. Two examples are proposed both for state estimation and
fault tolerant control. The first one concerns the state estimation for a Lorenz system
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Figure 6: States of the vehicle : reference states, states without FTC and states with
FTC

and the second one concerns the fault tolerant control of vehicle lateral dynamics.
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