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New methodologies for Fault Tolerant Control (FTC) are proposed in order to compensate actuator faults in nonlinear
systems. These approaches are based on the representation of the nonlinear system by a Takagi–Sugeno model. Two
control laws are proposed requiring simultaneous estimation of the system states and of the occurring actuator faults. The
first approach concerns the stabilization problem in the presence of actuator faults. In the second, the system state is forced
to track a reference trajectory even in faulty situation. The control performance depends on the estimation quality; indeed,
it is important to accurately and rapidly estimate the states and the faults. This task is then performed with an Adaptive Fast
State and Fault Observer (AFSFO) for the first case, and a Proportional-Integral Observer (PIO) in the second. Stability
conditions are established with Lyapunov theory and expressed in a Linear Matrix Inequality (LMI) formulation to ease
the design of FTC. Furthermore, relaxed stability conditions are given with the use of Polya’s theorem. Some simulation
examples are given in order to illustrate the proposed approaches.
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1. Introduction

For several years, the problem of fault tolerance has been
treated from many points of view. Two classes can be con-
sidered: passive control and active control. The formed
may be viewed as robust control. It requires a priori
knowledge of possible faults which may affect the system.
The principal idea of this kind of control is based on treat-
ing all possible faults as uncertainties which are taken into
account for the design of tolerant control by using differ-
ent techniques such as H∞ (Patton, 1997; Niemann and
Stoustrup, 2005). The interest of this approach lies in the
fact that no online information is needed and the struc-
ture of the control law remains unchanged. Generally, the
structure of the uncertainties (faults) is not taken into ac-
count in order to lead to a convex optimization problem.
Furthermore, the class of the faults considered is limited
and it then becomes risky to use only passive fault tolerant
control (see Mufeed et al., 2003).

The second class concerns active fault tolerant con-

trol, which is more interesting due to its possibility to
take into account a large class of faults, because of its
variable structure, which may change in the presence of
faults. The knowledge of some information about these
is required and obtained from a Fault Detection and Di-
agnosis (FDD) block. Different ideas are developed in
the literature, e.g., control law re-scheduling (Ocampo-
Martinez et al., 2010; Leith and Leithead, 1999; Stilwell
and Rugh, 1997). This approach requires a very robust
Fault Detection and Isolation (FDI) block, which consti-
tutes its major disadvantage. Indeed, a false alarm or
an undetected fault may lead to degraded performance
or even to instability. Other smooth fault tolerant con-
trol laws are proposed by Ichalal et al. (2010) for Takagi–
Sugeno systems and by Patton and Klinkhieo (2009a) for
LPV systems.

Many efforts have been spent on the problem of de-
signing active fault tolerant controllers for nonlinear sys-
tems, and the obtained results are linked to the system rep-
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resentation. Some works can be mentioned in the FTC
field for nonlinear systems. For example, Gao and Ding
(2007) took into account actuator faults for nonlinear de-
scriptor systems with Lipschitz nonlinearities. In the work
of Ocampo-Martinez et al. (2010), a method which re-
quires only fault isolation was proposed for T–S systems.
It was formed by a bank of observer based controllers. A
switching mechanism is then designed depending on the
obtained residuals. An efficient way to deal with system
nonlinearity in FTC design is the T–S approach introduced
by Takagi and Sugeno (1985). This approach is used by
Ichalal et al. (2010), who employ FTC based on trajectory
tracking and Proportional-Integral Observer (PIO) design
for T–S systems with weighting functions depending on
the state of the system which is not accessible for mea-
surements.

In this paper, a new actuator fault tolerant control
technique is proposed. Using a fast adaptive observer pro-
posed by Zhang et al. (2008) and extended here to nonlin-
ear T–S systems, the state and the fault affecting the sys-
tem are rapidly estimated. The use of such an observer is
motivated by the fact that, if a fault occurs, it is important
to quickly and accurately detect it in order to take it into
account and preserve the system performances. With the
use of Lyapunov theory, sufficient conditions are obtained
for asymptotic stability in the constant fault case and for
Input-to-State Stability (ISS) in the case of time varying
faults. The LMI formulation is used for representing the
obtained stability conditions in an adequate form for exist-
ing LMI solvers. Relaxed stability conditions are obtained
with the use of Polya’s theorem (Sala and Ariño, 2007).
Finally, another FTC strategy is proposed, based on tra-
jectory tracking. Put in other words, the system state is
kept as close as possible to a reference state, even in a
faulty situation. Some simulations illustrate the obtained
results.

2. Takagi–Sugeno structure for modeling

T–S modeling allows representing the behavior of non-
linear systems by the interpolation of a set of linear sub-
models. Each sub-model contributes to the global behav-
ior of the nonlinear system through a weighting function
μi(ξ(t)). The T–S structure is given by

⎧
⎨

⎩

ẋ(t) =
r∑

i=1

μi(ξ(t))(Aix(t) + Biu(t)),

y(t) = Cx(t),
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu is the
input vector, y(t) ∈ R

ny represents the output vector.
Ai ∈ R

n×n, Bi ∈ R
n×nu and C ∈ R

ny×n are known ma-
trices. The functions μi(ξ(t)) are the weighting functions
depending on the variable ξ(t), which is, in the sequel of
the paper, accessible for measurements (as the input or the

output of the system). These functions satisfy the follow-
ing properties:

⎧
⎨

⎩

r∑

i=1

μi(ξ(t)) = 1,

0 ≤ μi(ξ(t)) ≤ 1, ∀i ∈ {1, 2, . . . , r} .
(2)

Obtaining a T–S model (1) can be performed with var-
ious methods such as linearization around some operat-
ing points and using adequate weighting functions. It
can also be obtained by black-box approaches, which al-
low identifying the parameters of the model from input-
output data. Finally, a T–S model can be obtained from the
well-known nonlinear sector transformations (Tanaka and
Wang, 2001; Nagy et al., 2009). These transformations al-
low obtaining an exact T–S representation of a nonlinear
model with no information loss on a compact set of the
state space.

Thanks to the convex sum property of the weighing
functions (2), it is possible to generalize some tools de-
veloped in the linear domain to nonlinear systems. The
representation (1) is very interesting in the sense that it
simplifies the stability studies of nonlinear systems and
the design of control laws and observers. In the works
of Tanaka and Wang (2001) as well as Kruszewski et al.
(2008), the stability and stabilization tools are inspired
from the study of linear systems. Akhenak et al. (2008)
and Marx et al. (2007), worked on the problem of state
estimation and diagnosis of T–S systems. The approaches
proposed in these last mentioned papers rely on the gener-
alization of the classical observers (Luenberger observer)
(Luenberger, 1971) and Unknown Input Observer (UIO)
(Darouach et al., 1994)) to nonlinear systems. Sala and
Ariño (2007) proposed a new approach, derived from
Polya’s theorem, which leads to asymptotic necessary and
sufficient stability conditions. FTC was also envisaged for
T–S systems with time-delay by Zhang et al. (2009), but
no reference tracking was considered.

In the remainder of the paper, the following two lem-
mas and notations are used.

Lemma 1. Consider two matrices X and Y with appro-
priate dimensions and G as a symmetric positive definite
matrix. The following property is satisfied:

XT Y + Y T X ≤ XT GX + Y T G−1Y, G > 0. (3)

Lemma 2. (Congruence) Consider two matrices P and
Q. If P is positive definite and if Q is a full column rank
matrix, then the matrix QPQT is positive definite.

Notation. For any square matrix M , λmax(M) represents
the maximum singular value of the matrix M and S(M)
is defined by S(M) = M +MT . A block diagonal matrix
with the block matrices Mi on the diagonal entries is de-
noted by diag(M1, M2, . . . , Mn). In a partitioned matrix,
the star ‘∗′ denotes the terms induced by symmetry.
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3. Problem statement

Under actuator faults, the system (1) can be rewritten in
the following form:
⎧
⎨

⎩

ẋ(t) =
r∑

i=1

μi(ξ(t)) (Aix(t) + Bi (u(t) + f(t))),

y(t) = Cx(t),
(4)

where f(t) is an actuator fault. Faults can affect a sys-
tem in many different ways. They can be represented
by an additive or a multiplicative external signal. It can
be pointed out that, if the fault depends on the system
state, it can change the model structure and cause its in-
stability. For instance, malfunctions of an actuator can be
represented by a faulty control input defined by uf(t) =
(Inu − γ)u(t), which can easily be rewritten as an exter-
nal additive signal (u(t) + f(t)) with f(t) = −γu(t) and
γ = diag (γ1, γ2, . . . , γnu) , 0 ≤ γi ≤ 1 (i = 1, . . . , nu),
where
⎧
⎨

⎩

γi = 1 ⇒ a total failure of the i-th actuator,
γi = 0 ⇒ the i-th actuator is healthy,
γi ∈]0 1[⇒ a loss of effectiveness of the i-th actuator.

For example, if γ2 = 0.4, there is a 40% loss of effective-
ness of the second actuator. Note that such multiplicative
faults can cause system instability.

Assumption 1. In this paper, it is assumed that

A1. The faults have a norm bounded first time derivative

‖ḟ(t)‖ ≤ f1max, 0 ≤ f1max < ∞. (5)

A2. rank(CBi) = nu, i = 1, . . . , r.

A3. Only partial actuator failures are considered, i.e.,
γi ∈ [0 1[, i = 1, . . . , r.

The objective of FTC design is to find a control law
u(t) in (4) such that the system remains stable even in a
faulty case. For this purpose, state and fault estimates will
be used in order to minimize the fault influence on system
stability.

4. Stabilizing fault tolerant control for
nonlinear systems

In order to estimate the state and the faults of the system
(4), the following adaptive observer is proposed:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

μi(ξ(t))(Aix̂(t) + Bi(u(t) + f̂(t))

+ Liey(t)),

ŷ(t) = Cx̂(t),
˙̂
f(t) = Γ

r∑

i=1

μi(ξ(t))Fi(ėy(t) + σey(t)),

ey(t) = y(t) − ŷ(t),
(6)

and the active fault tolerant control is chosen as

u(t) = −
r∑

i=1

μi(ξ(t))Kix̂(t) − f̂(t). (7)

This control law can be seen as a generalization to
the nonlinear case of the approach proposed by Patton and
Klinkhieo (2009b). The solution of the FTC problem is
obtained by setting Γ ∈ R

nu×nu and the scalars σ and
β ∈ R, and determining the gains Li ∈ R

n×ny , Fi ∈
R

nu×ny and Ki ∈ R
nu×n by LMI optimization such that

the state of the system asymptotically converges to zero
if the fault f(t) is constant or to a small set around the
origin when f(t) is time varying with a norm bounded first
time derivative. The expression describing the dynamics
of the estimated fault f̂(t) given in (6) depends on both
the output error and its derivative.

Let us consider the state and fault estimation errors
defined respectively by

ex(t) = x(t) − x̂(t), (8)

ef (t) = f(t) − f̂(t). (9)

The dynamics of the state estimation error and the closed-
loop system with the control (7) obey the differential
equations:

ėx(t) =
r∑

i=1

μi(ξ(t)) (Φiex(t) + Bief (t)), (10)

ẋ(t) =
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t)) (Ξijx(t)

+Bief(t) + BiKjex(t)) , (11)

where Φi = Ai − LiC and Ξij = Ai − BiKj .

Theorem 1. Under Assumption 1, given positive scalars
σ and β, if there exists symmetric and positive definite ma-
trices X ∈ R

n×n, P2 ∈ R
n×n, a positive definite matrix

G ∈ R
nu×nu , matrices Mi ∈ R

nu×n and Ni ∈ R
n×ny

and a positive scalar η solution to the optimization prob-
lem

min η (12)

subject to

(
ηI BT

i P2 − FiC
∗ ηI

)

> 0, (13)

Qij =

⎛

⎜
⎜
⎜
⎜
⎝

Sij BiMj Bi 0 0
∗ −2βX 0 βI 0
∗ ∗ −2βI 0 βI
∗ ∗ ∗ Ωi Rij

∗ ∗ ∗ ∗ Ψij

⎞

⎟
⎟
⎟
⎟
⎠

< 0,

(14)
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Sij = S(AiX − BiMj), (15)

Ωi = S(P2Ai − NiC), (16)

Rij = − 1
σ

(AT
j P2 − CT NT

j )Bi, (17)

Ψij = − 1
σ

(
BT

i P2Bj + BT
j P2Bi

)
+

1
σ

G, (18)

then the state x(t) of the system, the state estimation error
ex(t) and the fault estimation error ef (t) are bounded.
Furthermore, if the bound of the first time derivative of
f(t) is zero, i.e., f1max = 0, these variables converge
asymptotically to zero. The gains of the observer and fault
tolerant control are given by Fi, Li = P−1

2 Ni and Ki =
MiX−1.

Proof. In order to prove both the stability of the closed-
loop system and the convergence of the state and fault es-
timation errors, consider a Lyapunov function depending
on x(t), ex(t) and ef(t) defined by

V (t) = xT (t)P1x(t) + eT
x (t)P2ex(t)

+
1
σ

ef (t)Γ−1ef (t), (19)

where P1, P2 and Γ are symmetric and positive definite
matrices with appropriate dimensions.

According to Eqns. (10) and (11), the time derivative
of V (t) is given by

V̇ (t) =
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))(xT (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

+
2
σ

eT
f (t)Γ−1ėf (t)), (20)

where
Πij = ΞT

ijP1 + P1Ξij , (21)

Ωi = ΦT
i P2 + P2Φi. (22)

Knowing that ėf (t) = ḟ(t) − ˙̂
f(t) and using the expres-

sion of f̂(t) in (6), we obtain

V̇ (t) =
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))(xT (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

− 2
σ

eT
f (t)Fi(ėy(t) + σey(t))

+
2
σ

eT
f (t)Γ−1ḟ(t)), (23)

where ey(t) = Cex(t).

Using the differential equation (10) generating ex(t),
the following is obtained:

V̇ (t) =
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))(xT (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

− 2
σ

eT
f (t)FiCΦjex(t) − 2

σ
eT

f (t)FiCBjef (t)

− 2eT
f (t)FiCex(t) +

2
σ

eT
f (t)Γ−1ḟ(t)). (24)

Using Lemma 1 and Assumption A1, we deduce that

2
1
σ

eT
f (t)Γ−1ḟ(t)

≤ 1
σ

eT
f (t)Gef +

1
σ

ḟT (t)Γ−1G−1Γ−1ḟ(t)

≤ 1
σ

eT
f (t)Gef +

1
σ

f2
1maxλmax

(
Γ−1G−1Γ,−1

)
(25)

and using Assumption A2, it is possible to obtain Fi and
P2 such that BT

i P2 = FiC. The time derivative of the
Lyapunov function (24) is bounded as follows:

V̇ (t) ≤ x̃T (t)
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))Δij x̃(t) + δ,

(26)
where

x̃T (t) = (xT (t) eT
x (t) eT

f (t))T , (27)

δ =
1
σ

f2
1maxλmax

(
Γ−1G−1Γ−1

)
, (28)

Δij =

⎛

⎝
Πij P1BiKj P1Bi

∗ Ωi − 1
σΦT

j P2Bi

∗ ∗ Ψij

⎞

⎠ . (29)

If the following inequality holds:

r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))Δij < 0, (30)

it is established that

V̇ (t) < −ε ‖x̃(t)‖2 + δ, (31)

where ε > 0 is defined by

ε = min
t>0

λmin

⎛

⎝−
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))Δij

⎞

⎠ ,

(32)
which can also be bounded by

ε ≤ min
i,j

λmin(−Δij). (33)
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It follows that V̇ (t) < 0 if ε ‖x̃(t)‖2
> δ, and accord-

ing to Lyapunov stability theory the state x(t), the state
estimation error ex(t) and the fault estimation error ef (t)
converge to a small set around the origin and then lie in it.
This set is smaller as the constant δ converges to zero.

In order to complete the proof, it remains to establish
some LMI conditions to ensure that (30) and BT

i P2 =
FiC hold. The latter is first considered.

As pointed out by Zhang et al. (2008), it is difficult
to solve simultaneously the inequality

r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))Δij < 0

with the equality constraint BT
i P2 = FiC. A technique

for reducing this difficulty is to formulate the equality con-
straint as an optimization problem (Corless and Tu, 1998):

minη

subject to
(

ηI BT
i P2 − FiC

∗ ηI

)

> 0. (34)

For simplicity, the following notation will be used:

Yξ =
r∑

i=1

μi(ξ(t))Yi, (35)

Yξξ =
r∑

i=1

r∑

i=1

μi(ξ(t))μj(ξ(t))Yij , (36)

where Yi and Yij are given matrices. Using this represen-
tation, the inequality (30) becomes

Δξξ =
(

Πξξ Θξξ

ΘT
ξξ Λξξ

)

< 0, (37)

where
Θij =

(
P1BiKj P1Bi

)
, (38)

Λij =
(

Ωi − 1
σ ΦT

j P2Bi

∗ Ψij

)

. (39)

Consider a symmetric matrix X defined as follows:

X =
(

P−1
1 0
0 X1

)

, X1 =
(

P−1
1 0
0 I

)

. (40)

Using Lemma 2, post and pre-multiplying the inequality
(37) by X , it follows that (37) is equivalent to the follow-
ing inequality:

(
P−1

1 ΠξξP
−1
1 P−1

1 ΘξξX1

∗ X1ΛξξX1

)

< 0. (41)

Since the following inequality holds for any scalar β:
(
X1 + βΛ−1

ξξ

)T

Λξξ

(
X1 + βΛ−1

ξξ

)
≤ 0

⇔ X1ΛξξX1 ≤ −2βX1 − β2Λ−1
ξξ , (42)

and with a Schur complement, it follows that the inequal-
ity (41) holds if
⎛

⎝
P−1

1 ΠξξP
−1
1 P−1

1 ΘξξX1 0
∗ −2βX1 βI
∗ ∗ Λξξ

⎞

⎠ < 0. (43)

Using (35), (36) and the definitions of the matrices Πξξ ,
Θξξ and Λξξ given by (21), (38) and (39), and with the
changes of variables X = P−1

1 , Mi = KiX , Ni = P2Li,
it is easy to obtain the inequalities given in Theorem 1.
Finally, the inequality (31) is satisfied if the optimization
problem given by (12) under the LMI constraints (13) and
(14) has a solution, which ends the proof. �

Remark 1. After solving the optimization problem given
in Theorem 1, the input-to-state stability condition given
in (31) is satisfied. Thus, in the case of time varying faults
with a bounded first time derivative, the state x(t), the
state estimation error ex(t) and the fault estimation error
ef (t) converge to a ball, centered at the origin, defined by
the terms δ and ε. The radius of the ball in which x̃ con-
verges can be minimized by a choice of the parameter Γ
that minimizes δ without changing ε (that does not depend
on Γ). It thus improves the accuracy of the estimation.

Remark 2. The objective of fault tolerant control is to
compensate the faults, so it is important to estimate them
as soon as possible with a good accuracy. The adaptive
observer studied in this paper can be considered an im-
provement of the classical PI observer, in the sense that
the convergence of the state and fault estimates is proved
(in a ball centered at the origin) even in a nonconstant fault
case, whereas the assumption of a constant fault is needed
to prove the convergence of the estimation error when
using a PI observer (Koenig and Mammar, 2002; Icha-
lal et al., 2009). Note that, if the fault f(t) is constant,
then f1max = 0 and with (28) δ = 0. Consequently, the
asymptotic stability is achieved, since V̇ (t) < 0 for every
x̃(t).

5. Simulation example

To illustrate the performances of the proposed approach,
let us consider the system (4) defined by the matrices

A1 =
(

0 1
17.2941 0

)

, A2 =
(

0 1
3.5361 0

)

,

B1 =
(

0
−0.1765

)

, B2 =
(

0
−0.1763

)

,

C = I2.

The weighting functions are given by

μ1(x(t)) = 1 − 2
π
|x1(t)| ,

μ2(x(t)) = 1 − μ1(x(t)).
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Let us consider the fault f(t) defined as follows:

f(t) =

⎧
⎨

⎩

0, t ≤ 20,
7.5 sin(2t + 2.1) + 15, 20 ≤ t ≤ 70,

−0.89u(t), 70 ≤ t ≤ 100.
(44)

For t ≥ 70 s, the fault f(t) describes a loss of the
effectiveness of the actuator, satisfying Assumption A3.
The first simulation is obtained by synthesizing a classical
controller without taking the faults into account, u(t) =
−∑r

i=1 μi(x(t))Kix(t), using an approach proposed by
Tanaka and Wang (2001). The gains Ki are obtained by
Ki = MiP

−1, where P and Mi are solutions of the LMIs

S(PAi − BiMj) < 0, i, j = 1, 2. (45)

With this control law, as shown in Fig. 1, the sys-
tem states converge to zero in the fault-free case (i.e., for
t < 20), but in the faulty case the system performances
are degraded from t = 20 s to t = 70 s and the system
becomes unstable for t ≥ 70 s.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

 

 

t(s)

x
1
(t)

x
2
(t)

Fig. 1. System states with classical control.

The proposed fault tolerant control is designed by
solving the optimization problem of Theorem 1. For that
purpose, the parameter values σ = 0.8, Γ = 100 and
β = 10 are chosen. The obtained gains of the observer
and the controller are

L1 =
(

0.52 1.22
17.24 0.27

)

, L2 =
(

0.52 1.21
3.48 0.26

)

,

F1 =
(

3.63 −43.25
)
, F2 =

(
3.62 −43.20

)
,

K1 =
( −161.89 −65.95

)
,

K2 =
( −156.25 −65.24

)
.

Figure 2 illustrates the results of the proposed con-
trol law obtained after solving the optimization problem
of Theorem 1. One can note that, with the fault f(t) de-
fined in (44), the performances are better than those of the
classical control and the system remains stable for t ≥ 70
(Fig. 2, top). The observer rapidly and accurately esti-
mates the fault as shown in Fig. 2 (bottom).
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f(t)
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Fig. 2. Fault tolerant control: system states (top), fault and its
estimate (bottom).

In this example, the classical control cannot preserve
the stability of the system when γ ≥ 0.89. However,
based on simulations not reported here due to space lim-
itation, it can be claimed that the proposed FTC strategy
can tolerate faults until γ = 0.992, which means that if the
loss in the effectiveness of the actuator is less than 99.2%,
the proposed controller makes the system stable. In Fig. 3,
after t > 70 the loss of the effectiveness of the actuator is
considered with γ = 0.99, and we see that the controller
compensates it despite its severity.
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Fig. 3. Fault tolerant control with γ = 0.99: system states (top),
fault and its estimate (bottom).

In addition, this approach provides a rapid and ac-
curate estimate of the actuator faults present with the
adaptive observer (Fig. 2, bottom), which constitutes
an FDI block for diagnosis. If f(t) = 7.5 sin(2t +
2.1) + 15, its derivative over time is bounded by
15. Then, in this simulation example, the term δ =
1/σf2

1maxλmax(Γ−1G−1Γ−1) = 0.0186, and the term ε
can be minimized by an appropriate choice of Γ to reduce
the radius of the ball in which the estimation errors con-
verge and then obtain a more accurate fault estimate.

6. Conservatism reduction with Polya’s
theorem

In the previous section, the proposed result may be con-
servative in the sense that common Lyapunov matrices
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were sought to satisfy r2 LMIs. Recently, a new interest-
ing method to reduce the conservativeness of the matrix
summations inequality has been proposed with the use of
Polya’s theorem (Sala and Ariño, 2007). Let us consider
the inequality

Δξξ =
r∑

i=1

r∑

j=1

μi(ξ(t))μj(ξ(t))Δij < 0, (46)

where Δij is defined in Eqn. (29).

Noticing that (
∑r

i=1 μi(ξ(t)))
p = 1 for any positive

integer p, it can be deduced that inequalities like Δξξ < 0
can be rewritten as (

∑r
i=1 μi(ξ(t)))

p Δξξ < 0. By gather-
ing all terms on the left hand side of the inequality with the
same coefficient, less conservative LMI conditions than
Δij < 0 for i, j = 1, . . . , r can be obtained. As proved
by Sala and Ariño (2007), if a solution exists for a given
p, it satisfies the inequalities obtained for p + 1. As a con-
sequence, increasing p will provide less restrictive con-
ditions and, if p → +∞, asymptotic necessary and suf-
ficient conditions for the negativity of (46) are obtained.
The authors also proposed an algorithm to compute finite
values of p, which gives necessary and sufficient condi-
tions with a given accuracy. The reader can refer to the
paper by Sala and Ariño (2007) for more details on a Polya
theorem based relaxation approach.

Theorem 2. Under Assumption 1, given positive scalars
σ and β, if there exist symmetric and positive definite ma-
trices X ∈ R

n×n, P2 ∈ R
n×n, G ∈ R

nu×nu , matrices
Mi ∈ R

nu×n and Ni ∈ R
n×ny and a positive scalar η as

a solution to the optimization problem

min η (47)

subject to
(

ηI BT
i P2 − FiC

∗ ηI

)

> 0, (48)

Qii < 0, i = 1, . . . , r,

3Qii + Qij + Qji < 0, i, j = 1, . . . , r, i �= j,

3Qii + Qjj + 3Qij + 3Qji < 0,

i, j = 1, . . . , r, i �= j,

6Qii + 3Qij + 3Qik + 3Qji + 3Qki + Qjk

+ Qkj < 0, i, j, k = 1, . . . , r, i < j < k,

3Qii + 3Qjj + 6Qij + 6Qji + 3Qik + 3Qki

+ 3Qjk + 3Qkj < 0,

i, j, k = 1, . . . , r, i < j < k

6Qii + 6Qij + 6Qji + 6Qik

+ 6Qki + 6Qil + 6Qli + 3Qjk

+ 3Qkj + 3Qjl + 3Qlj + 3Qkl + 3Qlk < 0,

i, j, k = 1, . . . , r, i < j < k < l,

6(Qij + Qji + Qik + Qki + Qil + Qli + Qim

+ Qmi + Qjk + Qkj + Qjl + Qlj + Qjm

+ Qmj + Qkl + Qlk + Qkm + Qmk) < 0
i, j, k, l, m = 1, . . . , r, i < j < k < l < m,

where Qij is defined in (14), then the system x(t), the
state estimation error ex(t) and the fault estimation error
ef (t) are bounded. The gains of the observer and the fault
tolerant control are given by Fi, Li = P−1

2 Ni and Ki =
MiX−1.

Proof. According to Theorem 1, the solution of the FTC
problem is obtained by minimizing η subject to the con-
straints (13) and

∑r
i=1

∑r
j=i μi(ξ(t))μj(ξ(t))Qij < 0,

which, due to the convexity of the weighting functions, is
equivalent to
(

r∑

k=1

μk(ξ(t))

)p r∑

i=1

r∑

j=i

μi(ξ(t))μj(ξ(t))Qij < 0.

(49)
Setting p = 3 and gathering the terms sharing the same
combinations of weighting functions, we obtain

r∑

i=1

r∑

j=1

μiμjQij =

(
r∑

i=1

μi

)3 r∑

i=1

r∑

j=1

μiμjQij

=
r∑

i=1

μ5
iQii +

r∑

i,j=1
i�=j

μ4
i μj (3Qii + Qij + Qji)

+
r∑

i,j=1
i�=j

μ3
i μ

2
jQ̃ij +

r∑

i=1

r∑

j=1
i<j

r∑

k=1
j<k

μ3
i μjμkQ̃ijk

+
r∑

i=1

r∑

j=1
i<j

r∑

k=1
j<k

μ2
i μ

2
jμkQ̃∗

ijk

+
r∑

i=1

r∑

j=1
i<j

r∑

k=1
j<k

r∑

l=1
k<l

μ2
i μjμkμlQ̃ijkl

+
r∑

i=1

r∑

j=1
i<j

r∑

k=1
j<k

r∑

l=1
k<l

r∑

m=1
l<m

μiμjμkμlμmQ̃ijklm (50)

with

Q̃ij = 3Qii + Qjj + 3Qij + 3Qji,

Q̃ijk = 6Qii + 3(Qij + Qji + Qik + Qki)
+ Qjk + Qkj ,
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Q̃∗
ijk = 3Qii + 3Qjj + 6Qij + 6Qji + 3Qik

+ 3Qki + 3Qjk + 3Qkj ,

Q̃ijkl = 6(Qii + Qij + Qji + Qik + Qki

+ Qil + Qli),

Q̃ijklm = 6(Qij + Qji + Qik + Qki + Qil + Qli

+ Qim + Qmi + Qjk + Qkj + Qjl

+ Qlj + Qjm + Qmj + Qkl + Qlk

+ Qkm + Qmk).

Finally, with the same reasoning as in Theorem 1, the op-
timization problem with relaxed LMI constraints of The-
orem 2 is obtained. �

Remark 3. The use of Polya’s theorem leads to increas-
ing the number of LMIs to be solved. It is the price to pay
to have less conservative stability conditions. With present
powerful computers it is possible to solve a great number
of LMIs in an acceptable computation time. Accordingly,
for a given system, it suffices to take a minimal value of p
guaranteeing the existence of a solution to the LMIs. As
shown in the above simulation example, a solution exists
without using Polya’s theorem (p = 0). If we are faced
with an unfeasible problem, an iterative procedure can be
used by increasing the integer value p and, once the prob-
lem is feasible, the obtained value of the parameter p is
the minimal one, so it is not necessary to further increase
this parameter.

7. Fault tolerant control by trajectory
tracking

In this section the control objective is not only closed-loop
stabilization, but also trajectory tracking. First, the FTC
strategy is detailed, before addressing the FTC design.

7.1. FTC strategy. The state trajectory x(t) to be fol-
lowed by the controlled system is given by a reference
model which corresponds to the model of the fault-free
system with nominal input u(t) defined by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) =
r∑

i=1

μi(ξ(t)) (Aix(t) + Biu(t)),

y(t) =
r∑

i=1

μi(ξ(t))Cix(t).
(51)

Because of the fault f(t), the state of the faulty controlled
system, denoted by xf (t), may differ from the reference
trajectory. As a consequence, the control input of the sys-
tem has to be modified, and the resulting applied input is
denoted uf(t). The faulty system is given by

controller

observer

system

f(t)
u(t)

x(t) x̂f(t)

f̂(t)

y(t)

reference
model

+ −

+ +

Fault Tolerant Controller

uf(t)

Fig. 4. Fault tolerant control scheme.

⎧
⎪⎪⎨

⎪⎪⎩

ẋf (t) =
r∑

i=1

μi(ξf (t)) (Aixf (t) + Bi(uf (t) + f(t))),

yf(t) =
r∑

i=1

μi(ξf (t))Cixf (t).

(52)

The faults considered are the same as in the previous sec-
tions. Note that the weighting functions depend on a
faulty premise variable ξf (t). The latter may be the sys-
tem input, which depends on the state xf (t) or the output
yf (t). Consequently, the fault necessarily affects these
variables. In order to minimize the state deviation due to
the fault, the controlled input uf (t) encompasses two ad-
ditive terms depending on the fault estimate and on the
estimated state deviation x(t) − x̂f (t). One should note
that the reference state is simulated from (51), and thus it
is accessible for the control law, whereas the faulty system
state has to be estimated. The FTC law uf (t) is given by

uf(t) = −f̂(t) + K(x(t) − x̂f (t)) + u(t). (53)

A PI observer is designed to provide the controller with
both the estimates of the actuator fault and of the faulty
system state. The proposed PI observer is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xf (t) =
r∑

i=1

μi(ξf (t))(Aix̂f (t) + Bi(uf (t) + f̂(t))

+H1i(yf (t) − ŷf (t))),
˙̂

f(t) =
r∑

i=1

μi(ξf (t)) (H2i(yf (t) − ŷf (t))),

ŷf (t) =
r∑

i=1

μi(ξf (t))Cix̂f (t).

(54)
The premise variable ξf (t) is assumed to be known and
the observer weighting functions depend on the same
premise variable as the system (52).

The overall scheme of the proposed FTC strategy is
depicted by Fig. 4. The FTC design consists in determin-
ing the control law (53) and the PIO (54), such that the
controlled system state xf (t) is as close to the reference
state x(t) as possible.

Remark 4. A fixed gain in the control law (53) has
been chosen, rather than a PDC-like control law involving
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premise variables. Indeed, if the premise variable ξf is the
control signal uf(t), implementing such a control law is
not possible (in that case the control signal uf(t) depends
on weighting functions, which themselves depend on the
control signal). This problem is not encountered if the
premise variable is ξf (t) = yf(t). But the choice of the
control law structure (53) unifies the case of measurable
premise variables for both uf(t) and yf (t).

7.2. FTC design. The FTC design consists in deter-
mining the gains K in (53) as well as H1i and H2i in
(54) that minimize the trajectory tracking error defined by
e(t) = x(t) − xf (t) and the state and fault estimation er-
rors, respectively defined by ex(t) = xf (t) − x̂f (t) and
ef(t) = f(t)− f̂(t). From (51)–(54) and the definition of
the errors, it follows that

ẋ(t) =
r∑

i=1

μi(ξf (t))(Aix(t) + Biu(t)) + δ(t), (55)

ẋf (t) =
r∑

i=1

μi(ξf (t)) (Aixf (t) + Bi(u(t)

+ef(t) + K(e(t) + ex(t)))) , (56)

˙̂xf (t) =
r∑

i=1

r∑

j=1

μi(ξf (t))μj(ξf (t)) (Aix̂f (t)

+Bi(u(t) + K(e(t) + ex(t)))
+H1iCjex(t)) , (57)

where δ(t) is defined by

δ(t) =
r∑

i=1

(μi(ξ(t)) − μi(ξf (t)))(Aix(t) + Biu(t)).

(58)
Assuming ḟ(t) = 0, the error dynamics is given by

˙̃e(t) =
(

Aξf
− Bξf

K −L̃ξf

0 Ãξf
− Hξf

C̃ξf

)

ẽ(t) + Γ̃δ(t).

(59)
with

ẽ(t) =

⎛

⎝
e(t)
ex(t)
ef (t)

⎞

⎠ , Γ̃ =

⎛

⎝
In

0
0

⎞

⎠ ,

Hi =
(

H1i

H2i

)

, L̃i =
(
BiK Bi

)
,

Ãi =
(

Ai Bi

0 0

)

, C̃i =
(
Ci 0

)
.

In order to design the PIO, it is necessary that the
pairs (C̃, Ãi) be observable or at least detectable.

Remark 5. One can note that, in the previous section,
the weighting functions depend on the premise variable
ξf (t). It can be an external known variable which is not

affected by faults. Indeed, Witczak et al. (2008) proposed
a method for this case with an application to the three tank
system in open-loop control. In this case, ξ(t) = ξf (t)
and Eqn. (59) becomes an autonomous system

˙̃e(t) =
(

Aξf
− Bξf

K −L̃ξf

0 Ãξf
− Hξf

C̃ξf

)

ẽ(t). (60)

In Takagi–Sugeno modeling, it is often considered
that the premise variable ξ(t) is the input, the output or
the state of the system, which are necessarily affected by
faults. Consequently, ξ(t) �= ξf (t) and the fault and state
estimation errors as well as the state tracking error are ex-
pressed by (59). When ξ(t) = u(t) and ξf (t) = uf(t),
the term δ(t) does not converge to zero if xf (t) con-
verges to the reference state x(t), but if ξ(t) = y(t) and
ξf (t) = yf(t), the tolerant control allows the convergence
of xf (t) to x(t) and yf (t) to y(t). Then the term δ(t)
also converges to zero, which gives better results com-
pared with the case where ξ(t) = u(t). The same problem
can appear if the output is also affected by faults. In these
cases, the fault tolerant control design aims to minimize
the difference between xf (t) and x(t) and to minimize
the L2 gain of the transfer from δ(t) to the state tracking
error.

The gains K , H1i and H2i are determined by solving
the optimization problem under LMI constraints given in
the next theorem.

Theorem 3. Consider λ to be a positive scalar. The sys-
tem (59) that generates the state tracking error e(t) and
the state and fault estimation errors ex(t) and ef(t) is
stable and the L2-gain of the transfer from δ(t) to e(t)
is bounded if there exists symmetric and positive definite
matrices X1, X2 and P2, matrices H̄i and K̄ as well as
a positive scalar γ̄ solution to the following optimization
problem

min
X1,X2,P2,K̄i,H̄i

γ̄ (61)

subject to

Yii < 0, i = 1, . . . , r,

1
r − 1

Yii + Yij + Yji < 0, i < j,
(62)

where

Yij =

⎛

⎜
⎜
⎜
⎜
⎝

Ψi −BiM 0 In X1

∗ −2λX λIn+nu 0 0
∗ ∗ Δij 0 0
∗ ∗ ∗ −γ̄In 0
∗ ∗ ∗ ∗ −In

⎞

⎟
⎟
⎟
⎟
⎠

< 0,

(63)

Ψi = S(AiX1 − BiK̄), (64)

Δij = S

(
P2Ãi − H̄iC̃ij

)
, (65)
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M =
(

K̄ X2

)
, X =

(
X1 0
0 X2

)

. (66)

The controller and observer gains are computed from

Hi =
(

H1i

H2i

)

= P−1
2 H̄i, K = K̄X−1

1 , (67)

and the L2-gain from δ(t) (58) to the tracking error e(t)
is obtained by

γ =
√

γ̄. (68)

Proof. With the variable changes X1 = P−1
1 , K̄ = KX1,

H̄i = P2Hi, M =
[
K̄ X2

]
, which implies

BiM = L̃i

(
X1 0
0 X2

)

= L̃iX,

and a Schur complement, the inequalities (63) are equiva-
lent to

⎛

⎝
Ξi −L̃iX In

∗ −2λX − λ2Δ−1
ij 0

∗ ∗ −γ2In

⎞

⎠ < 0, (69)

where Δi is defined in (65) and Ξi given by

Ξi = S
(
AiP

−1
1 − BiKP−1

1

)
+ P−1

1 P−1
1 . (70)

If (63) hold, then the (3, 3) blocks of Yi, i.e., Δi, are
negative definite and

(
X + λΔ−1

ij

)T
Δij

(
X + λΔ−1

ij

) ≤ 0

⇔ XΔijX ≤ −λ
(
X + XT

)− λ2Δ−1
ij . (71)

Consequently, (69) implies
⎛

⎝
Ξi −L̃iX In

∗ XΔijX 0
∗ ∗ −γ2In

⎞

⎠ < 0. (72)

Pre- and post-multiplying (72) by diag(P1, X
−1, In), it

follows that (63) implies

Nij =

⎛

⎝
S (Λi) + In −P1L̃i P1

∗ Δij 0
∗ ∗ −γ2In

⎞

⎠ < 0 (73)

with Λi defined by Λi = P1Ai − P1BiK . Choosing a
quadratic Lyapunov function defined by

V (ẽ(t)) = ẽT (t)
(

P1 0
0 P2

)

ẽ(t)

with P1 ∈ R
n×n and P2 ∈ R

(n+nu)×(n+nu) real sym-
metric positive definite matrices, it is easily derived from
(59) that

V̇ (ẽ(t)) + eT (t)e(t) − γ2δT (t)δ(t)

=
(

e(t)
δ(t)

)T

Nij

(
e(t)
δ(t)

)

. (74)

As a consequence, (63) implies

V̇ (ẽ(t)) + eT (t)e(t) − γ2δT (t)δ(t) < 0,

which is well known to be a sufficient condition for the
L2-gain from δ(t) to e(t) to be bounded by γ and for
ẽ(t) to asymptotically converge toward zero when δ(t) is
identically null. Finally, the application of Tuan’s lemma
(Tuan et al., 2001), and minimization of γ leads to the the
optimization problem with LMI constraints given in The-
orem 3. �

Remark 6. The conservatism of the results given in the
previous theorem could be reduced by applying, in a sim-
ilar way, Polya’s theorem presented in the first strategy.

Remark 7. The assumption that the fault signal is con-
stant over time is restrictive, but in many practical situ-
ations where faults are slowly time-varying signals, the
estimation of the faults is correct and the proposed FTC
scheme can be applied. In the case where faults are not
slowly time-varying or constant, the PIO can be replaced
by a Proportional Multiple Integral Observer (PMIO).
Such an observer was introduced in order to filter high-
frequency disturbance by Ibrir (2004). It is able to es-
timate a large class of time-varying signals, which satis-
fies the assumption f (q+1)(t) = 0. The principle of this
observer is based on the estimation of the first q deriva-
tives of the signal f(t). This observer can also be ex-
tended to the case where f (q+1)(t) is bounded (see Ichalal
et al., 2009). It is also possible to use the adaptive ob-
server given in the first part of the paper, since, as shown
in the example, this observer can estimate faults with fast
variations.

8. Simulation examples

In this section, two examples are proposed to illustrate the
proposed FTC. The first discusses some aspects of the pro-
posed approach and the second is dedicated to the actuator
fault tolerant control of lateral dynamics of a vehicle.

Example 1. To illustrate the proposed actuator fault tol-
erant control strategy for T–S systems with measurable
premise variables and affected by actuator faults, two aca-
demic examples are presented.

First case: ξ(t) = u(t). Consider the T–S system de-
scribed by
⎧
⎨

⎩

ẋf (t) =
r∑

i=1

μi(u(t)) (Aixf (t) + Bi(uf (t) + f(t))),

yf(t) = Cxf (t) + ω(t),
(75)

where

A1 =

⎡

⎣
−2 1 1
1 −3 0
2 1 −8

⎤

⎦ , A2 =

⎡

⎣
−3 2 −2
0 −3 0
5 2 −4

⎤

⎦ ,
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B1 =

⎡

⎣
0
1
1

⎤

⎦ , B2 =

⎡

⎣
1
1
0

⎤

⎦ , C =
[

1 1 1
1 0 1

]

.

The weighting functions depend on the input u(t), which
is the nominal control of the system in the fault-free
case. They are defined by μ1(u(t)) = (1 − u(t))/2 and
μ2(u(t)) = 1 − μ1(u(t)). To apply the proposed FTC
strategy, the following reference model is considered:

⎧
⎨

⎩

ẋ(t) =
r∑

i=1

μi(u(t)) (Aix(t) + Biu(t)),

y(t) = Cx(t).
(76)

The fault f(t) is time varying and defined as follows:

f(t) =

⎧
⎪⎨

⎪⎩

0, t < 10,

−0.5u(t), 10 ≤ t ≤ 20,

1, 20 < t,

(77)

and ω(t) is a random signal whose maximum value corre-
sponds to 10% of the maximum amplitude of the mea-
sured signal y(t). Notice that even if the assumption
ḟ(t) = 0 is not satisfied, the PIO is able to reconstruct
time varying signals with slow variation.

Solving the optimization problem under LMI con-
straints in Theorem 3 with λ = 20 results in the following
matrices:

H11 =

⎡

⎣
−24.84 59.47
30.05 −29.75
31.54 −43.02

⎤

⎦ ,

H12 =

⎡

⎣
−11.03 45.34
31.58 −33.25
17.80 −26.25

⎤

⎦ ,

H21 =
[

337.82 −356.67
]
,

H21 =
[

338.57 −353.93
]
,

K =
[

6.5179 4.9204 1.2659
]
,

γ = 0.4721 .

Figure 5 (top) shows the time evolution of the fault f(t)
and its estimate f̂(t), while the bottom part depicts the
nominal control u(t) and the FTC uf(t). The state es-
timation errors, xf (t) − x̂f (t), are shown in the top of
Fig. 6, while the bottom part shows the state tracking er-
rors x(t) − xf (t). Finally, Fig. 7 allows the comparison
of the reference model states with the state obtained when
the system is faulty without any modification of the con-
trol law and those of the system when using FTC.

Even if a fault occurs, the system trajectory follows
that of the reference model, which represents the trajec-
tory of the system in the fault-free situation. Thus, the
FTC control law compensates the fault and allows normal
functioning of the system in the presence of faults.

0 5 10 15 20 25 30

−3

−2

−1

0

1

2

t(s)

 

 

u(t)
u

f
(t)

0 5 10 15 20 25 30

−0.5

0

0.5

1

1.5

 

 

f(t)
estimated f(t)

Fig. 5. Fault and its estimates (top), nominal control and FTC
(bottom).
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Fig. 6. State estimation errors (top), state tracking errors (bot-
tom).

Second case: ξ(t) = y(t). In this subsection, the previ-
ous system is considered, but with weighting functions de-
pending on the first component of the system output vec-
tor. Figure 8 illustrates the state estimation errors (top)
and the state tracking errors (bottom). It is clear that
the use of weighting functions depending on the output
of the system provides better results than the case where
they depend on the control input. This is because the
system is only affected by actuator faults and the pertur-
bation like term δ(t) converges to zero when yf(t) con-
verges to the reference y(t). But in the previous simula-
tion, the term δ(t) did not converge to zero, in the pres-
ence of a fault, because u(t) �= uf (t), which leads to
μi(u(t)) �= μi(uf (t)). As a conclusion, considering the
problem of the fault tolerant control of T–S systems with
actuator faults, it is more interesting to use the output of
the system as a premise variable. However, when actua-
tor and sensor faults occur simultaneously, better results
are obtained by using the system state as a premise vari-
able. This is a more difficult and general case, but the
obtained state tracking error is less than those obtained
above. First results on this point were published by Icha-
lal et al. (2010). �

Example 2. In this second example, an interesting model
is used. Security and assistance in vehicles are important,
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Fig. 7. Comparison between states of the system without a fault,
states with a fault and nominal control and states with a
fault and FTC.
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Fig. 8. State estimation errors (top), state tracking errors (bot-
tom).

especially in dangerous situations like cornering and land
keeping with high speed. For that purpose, this example
deals with the problem of fault tolerant control of lateral
dynamics of a vehicle in a cornering situation (for exam-
ple). Let us consider the nonlinear model of the vehicle
lateral dynamics given by the following differential equa-
tions:

{
mv̇(t) + u(t)r(t)) = 2(Ff (t) + Fr(t)),
Jṙ(t) = 2(αfFf (t) − arFr(t) (78)

where u and v are the longitudinal and lateral velocities
(v = βu), r is the yaw rate, β denotes the side slip angle,
m and J are the mass and the yaw moment of inertia,
respectively, af and ar are the distances of the front and
rear axle from the center of gravity. Ff and Fr are front
and rear lateral forces. A T–S simplified model, as given
by Oudghiri et al. (2008), is represented by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) =
2∑

i=1

μi (|αf |) (Aix(t) + Biδf ) ,

y(t) =
2∑

i=1

μi (|αf |) (Cix(t) + Diδf ) ,

(79)

where xT = [v r], δf is the steering angle of the front
wheel.

The output y contains the lateral acceleration and
yaw rate given by the inertial unit and expressed as func-
tions of state variables. The matrices defining the model
are

A1 =
(−6.9426 −0.8775

26.5175 −7.8343

)

, B1 =
(

3.4892
39.2914

)

,

A2 =
(−0.4735 −0.9971

0.6356 −0.4921

)

, B2 =
(

0.2767
3.1155

)

,

C1 =
(−6.9426 2.4491

0 1

)

, D1 =
(

69.7847
0

)

,

C2 =
(−0.4735 0.0587

0 1

)

, D2 =
(

5.5333
0

)

.

The weighting functions depend on the slip angle αf ,
which is assumed to be known. An additive actuator fault
signal affecting the vehicle is given in the form

f(t) =

⎧
⎨

⎩

0, t < 10,
−0.1 sin(0.314t), 10 ≤ t < 14.95,
0.1, t ≥ 14.95.

(80)

Furthermore, a random noise with a maximal mag-
nitude 0.05 is added to output measurements. Figure 9
illustrates a comparison between the states of the refer-
ence model (without a fault), the states of the faulty ve-
hicle without FTC, and finally the states of the vehicle
with FTC. Clearly, the proposed strategy is robust with
respect to the actuator additive fault f(t). In Fig. 10, we
can observe the estimation of the fault. Moreover, the FTC
scheme provides good results in the presence of measure-
ment noise, as shown in the figures. Figure 11 illustrates
the state estimation of vehicle states.
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Lateral velocity of the reference model Lateral velocity without FTC Lateral velocity with FTC
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Yaw rate of the reference model Yaw rate without FTC Yaw rate with FTC

Fig. 9. States of the reference model, vehicle model without
FTC and with FTC.

9. Conclusions and future work

This paper was dedicated to the study of a new actuator
fault tolerant control for nonlinear systems described by
a Takagi–Sugeno model. Stabilizing active fault tolerant
control was studied. It requires simultaneous estimations
of the state and fault, obtained by the proposed adaptive
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Fig. 10. Fault estimation and control inputs.
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Fig. 11. State estimation.

observer. This observer is able to simultaneously estimate
time varying faults and state variables with a good accu-
racy. Furthermore, it rapidly produces estimates which
is important to preserve the performances of the system.
The stability analysis, made with Lyapunov theory and
input-to-state stability, was performed in the case of time
varying faults, and, furthermore, asymptotic stability was
guaranteed in the case of constant faults. Sufficient stabil-
ity conditions were given in terms of LMIs. In order to
reduce the conservatism of the given conditions, Polya’s
theorem was used to derive relaxed conditions for the FTC
design for nonlinear systems.

Secondly, an extension of the first work was pro-
posed in order to provide a new control law which forces
the faulty-state of the system to track a reference trajec-
tory given by the fault free model of the system. For that
purpose, the control law was modified in order to take into
account the trajectory tracking error and the estimated ac-
tuator faults. Finally, an application to a nonlinear model
of lateral dynamics of a vehicle with an additive actuator
fault was given in order to illustrate the second approach.

Future works will concern FTC of systems affected
by both sensor and actuator faults and/or uncertainties
and/or perturbations. Secondly, the case when the premise
variables are unmeasured (like states of the system) will
also be investigated. It will also be interesting to study the
case when a set of actuators is completely out of order. In
this situation the dimensions of the matrices Bi and of the
control vector u(t) are reduced.
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