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1. Introduction

In the field of the observer/controller synthesis, the extension of linear

methods to nonlinear systems is generally a difficult problem. Several ap-

proaches are reported in the literature along the last decades in order to

design observers for nonlinear systems: the extended Kalman filtering [1, 2],

the method based on Lyapunov functions [3, 4], methods based on coordi-

nate transformation using canonical observer forms [5, 6], high gain observers

[7, 8] or sliding mode observers [9, 10] are only a few of them.

The multiple model (MM) [11] -also called in the literature Takagi-Sugeno

fuzzy model [12]- has received a special attention in the last two decades, in

order to overcome the difficulty already mentioned. The MM is mainly based

on the idea of a complexity reduction of nonlinear systems, by aggregating

linear submodels using weighting functions [12]. Several techniques [13, 14,

15, 16] were developed in order to obtain such a structure from a general

representation of a nonlinear system. Then the MM approach is a mean to

deal with nonlinear systems and to design observer for such systems [17, 18,

19, 20, 21, 22]. In this paper, the MM formulation is obtained by applying

a method proposed in [23] to represent nonlinear systems into an equivalent

MM. Only the general steps of this technique are reminded in this paper. The

major inconveniences of the previous works are avoided: the transformation

is realized without loss of information, the obtained system has exactly the

same state trajectory as the initial system, the choice of different linearization

points is no longer necessary.

The MM under study in this paper involves unmeasurable premise vari-
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ables depending on the state variables. Most of the existing works, dedi-

cated to MM in general and to observer design based on MM in particular

[16, 22, 18, 24], are established for MM with measurable premise variables

(inputs/outputs). But, in many practical situations, these premise variables

depend on the state variables, that are not always accessible. Recently, a few

works [17, 21, 25] are devoted to the case of unmeasurable premise variables.

A proportional integral observer approach for uncertain nonlinear sys-

tems with unknown inputs presented under a MM form with unmeasurable

premise variables is proposed in this paper. The state and unknown input

estimation given by this observer is made simultaneously and the influence

of the model uncertainties is minimized through a L2 gain. The convergence

conditions of the state and unknown input estimation errors are expressed

through LMIs (Linear Matrix Inequalities) by using the Lyapunov method

and the L2 approach. An extension of this approach is finally discussed and

it concerns the uncertain nonlinear systems also affected by some unknown

inputs which estimates are not needed. In this case, the previous result can

readily be adapted in order to estimate both state and a part of unknown

inputs (for which an estimation is needed) while minimizing the influence of

not needed unknown inputs on the estimation errors.

The chosen application is a wastewater treatment plant (WWTP). The strong

nonlinearity of a WWTP is due to the variations of the wastewater flow rate

and composition, to reactions that vary in time in a mixed culture of micro-

organisms. In order to model this highly complex bio-chemical process, sev-

eral models were proposed in the literature: ASM1 (Activated Sludge Model

No.1) [26, 27], ASM2 [28], ASM3 [29]. In order to deal with the complexity
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of such models, different reduced models for the activated sludge plant were

proposed along the last decades [30, 31, 32, 33]. In this article, a nonlinear

reduced model with six states inspired by [34] is chosen. Recently, observer

design for the activated sludge wastewater treatment process was proposed

in [35], where a reduced model was also considered. In [35], the observer de-

sign is done for a class of nonlinear Lipschitz discrete-time systems using the

linear parameter varying approach. Thus, this approach needs the respect

of the Lipschitz property of the nonlinear part, that may constitute a quite

conservative property. Our approach avoids this assumption. In [35], the lin-

ear parameter varying term depends only on an online accessible scheduling

variable. The approach proposed in this article is placed in a more general

situation, that was discussed previously: unmeasurable premise variables are

considered in the MM form. The Cost Benchmark was considered for simu-

lation results. This benchmark has been proposed by the European program

Cost 624 for the evaluation of control strategies in wastewater treatment

plants [36].

The paper is organized as follows: in section 2 are introduced the main

tools used in this paper to model nonlinear systems: the MM form of nonlin-

ear systems. Section 3 is devoted to the proportional integral observer design.

In section 4 an application to a model of wastewater treatment plants (ASM1)

is proposed and the numerical results illustrate the performances of the pro-

posed observer approach. Finally, the paper ends with some conclusions and

future works, in section 5.
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2. Multiple model representation of nonlinear systems

Generally, a dynamic nonlinear system can be described by the following

ordinary differential equations:

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(1)

The MM approach allows to represent any nonlinear dynamic system in a

compact set of the state space with a convex combination of linear submodels:

ẋ(t) =
r∑

i=1

µi(x, u) [Aix(t) + Biu(t)]

y(t) =
r∑

i=1

µi(x, u) [Cix(t) + Diu(t)]
(2)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector, y ∈ R
l the

output vector, Ai, Bi, Ci and Di are constant matrices of appropriate dimen-

sions. The functions µi(x, u) also called the activating functions represent

the weights of the submodels {Ai, Bi, Ci, Di} in the global model and they

have the following properties:

r∑
i=1

µi(x, u) = 1 and µi(x, u) ≥ 0, ∀(x, u) ∈ R
n × R

m (3)

In order to deduce the MM form (2), a method giving an equivalent rewriting

of the nonlinear system (1) is used [23]. The main steps of the rewriting

procedure are given in the following, further details can be found in [23].

Firstly, the system (1) is transformed into a quasi-Linear Parameter Varying

(quasi-LPV) form:

ẋ(t) = A(x(t), u(t)) x(t) + B(x(t), u(t)) u(t)

y(t) = C(x(t), u(t)) x(t) + D(x(t), u(t)) u(t)
(4)
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Secondly, the nonlinear entries of the matrices A, B, C and/or D are consid-

ered as ”premise variables” and denoted zj(x, u)(j = 1, ..., q). Several choices

of these premise variables are possible due to the existence of different equiv-

alent quasi-LPV forms (for details on the selection procedure see [23]).

Thirdly, a convex polytopic transformation is performed for all the premise

variables (j = 1, ..., q), as follows:

zj(x, u) = Fj,1(zj(x, u)) zj,1 + Fj,2(zj(x, u)) zj,2 (5)

where the scalars zj,1 and zj,2 are defined by

zj,1 = max
x,u

{zj(x, u)}

zj,2 = min
x,u

{zj(x, u)}
(6)

and where the partition functions involved in equation (5) are defined by

Fj,1(zj(x, u)) =
zj(x, u) − zj,2

zj,1 − zj,2

(7a)

Fj,2(zj(x, u)) =
zj,1 − zj(x, u)

zj,1 − zj,2

(7b)

For q premise variables, r = 2q submodels will be obtained. By multiplying

the functions F
j,σ

j
i

the weighting functions are obtained:

µi(x, u) =

q∏

j=1

F
j,σ

j
i
(zj(x, u)) (8)

Considering definition (7), the reader should remark that these functions

respect the conditions (3).

The indexes σj
i (i = 1, ..., 2q and j = 1, ..., q) are equal to 1 or 2 and indicates

which partition of the jth premise variable (Fj,1 or Fj,2) is involved in the ith

submodel.
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The constant matrices Ai, Bi, Ci and Di (i = 1, ..., 2q) are obtained by

replacing the premise variables zj in the matrices A, B, C and D, with the

scalars defined in (6):

Ai = A(z1,σ1

i
, ..., zq,σ

q
i
) (9a)

Bi = B(z1,σ1

i
, ..., zq,σ

q
i
) (9b)

Ci = C(z1,σ1

i
, ..., zq,σ

q
i
) (9c)

Di = D(z1,σ1

i
, ..., zq,σ

q
i
) (9d)

3. Observer design

This section is devoted to the state estimation of the multiple model (2).

In fact a more general situation will be analyzed since unknown input and

model uncertainties are envisaged. The following uncertain Takagi-Sugeno

system affected by unknown inputs is considered

ẋ(t) =
r∑

i=1

µi(x, u) ((Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t) + Eid(t)) (10a)

y(t) =Cx(t) + Gd(t) (10b)

where x(t) ∈ R
n is the system state, u(t) ∈ R

nu is the known input,

d(t) ∈ R
nd is the unknown input, y(t) ∈ R

ny is the measured output and

the matrices of appropriate dimensions are known and constant excepted

∆Ai(t) and ∆Bi(t) that satisfy the following equations

∆Ai(t) = Ma
i Fa(t)N

a
i , with F T

a (t)Fa(t) ≤ I (11a)

∆Bi(t) = M b
i Fb(t)N

b
i , with F T

b (t)Fb(t) ≤ I (11b)
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where both Fa(t) ∈ R
f1×f1 and Fb(t) ∈ R

f2×f2 are unknown and time varying.

One can note that the activating functions depend on the system state that

is not available to the measurement. In the sequel, the following assumption

is made

Assumption 1. The unknown input is constant :

ḋ(t) = 0 (12)

It is well known in proportional integral observer (PIO) design that, al-

though this assumption is needed for the theoretical proof of the estimation

error convergence, it can be relaxed in practical applications [37]. For in-

stance, one will see, in section 4, that good estimation results are obtained

even with time varying unknown input.

In order to estimate both the system state and the unknown input, the

following PIO is proposed:

˙̂x(t) =
r∑

i=1

µi(x̂(t), u(t))
(
Aix̂(t) + Biu(t) + Eid̂(t) + LP

i (y(t) − ŷ(t))
)

(13a)

˙̂
d(t) =

r∑

i=1

µi(x̂(t), u(t))LI
i (y(t) − ŷ(t)) (13b)

ŷ(t) =Cx̂(t) + Gd̂(t) (13c)

The observer design reduces to finding the gains LP
i and LI

i such that the

state and unknown input estimation error obey to a stable generating system.

Notation 1. The symbol ∗ in a block matrix denotes the blocks induced by

symmetry. For any square matrix M , S(M) is defined by S(M) = M + MT .
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Theorem 1. The observer (13) estimating the state and unknown input

of the system (10) and minimizing the L2-gain of the known and unknown

inputs on the state and unknown input estimation error is obtained by finding

symmetric positive definite matrices P1 ∈ R
(n+nd)×(n+nd) and P2 ∈ R

n×n,

matrices P j ∈ R
(n+nd)×ny and positive scalars ε1i and ε2i that minimize the

scalar γ under the following LMI constraints

Mij < 0, i, j = 1, . . . , r (14)

where Mij is defined by

Mij =




Θ11
ij Θ12

ij 0 Θ14
ij P1M

a

i P1M
b

i

∗ Θ22
ij P2Bi P2Ei P2M

a
i P2M

b
i

∗ ∗ Θ33
ij 0 0 0

∗ ∗ ∗ −γInd
0 0

∗ ∗ ∗ ∗ −ε1iIf1
0

∗ ∗ ∗ ∗ ∗ −ε2iIf2




(15)

with

Θ11
ij =In+nd

+ S(P1Aj − P jC) Θ12
ij =P1(Ãi − Ãj) Θ14

ij =P1(Ẽi − Ẽj)

Θ22
ij =ε1iN

aT
i Na

i + S(P2Ai) Θ33
ij =ε2iN

bT
i N b

i − γInu

and where the overlined and tilded matrices are defined by

C =
[
C G

]
, Ai =


Ai Ei

0 0


 , Ãi =


Ai

0


 ,

Ẽi =


Ei

0


 , M

a

i =


Ma

i (t)

0


 , M

b

i =


M b

i (t)

0



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The observer gains are obtained by:

Lj =


LP

j

LI
j


 = P−1

1 P j

Proof. See proof in Appendix A.

Remark 1. If the system is also affected by unknown input which estimates

are not needed, the system (10) becomes

ẋ(t) =
r∑

i=1

µi(x(t)) ((Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t) + Eid(t) + Fiw(t))

(16a)

y(t) =Cx(t) + Gd(t) + Hw(t) (16b)

where w(t) ∈ R
nw denotes these unknown inputs. In this case, the previous

result can readily be adapted in order to estimate both x(t) and d(t) while

minimizing the influence of w(t) on the estimation errors. One should easily

see that the matrices Mij in (14) should be replaced by M̃ij defined by

M̃ij =


Mij Ψij

∗ −γInw


 (17)

with ΨT
ij =

[
(P jH − P1Fi)

T F T
i P2 0 0

]
, H

T
=

[
HT 0

]
and F

T

i =
[
F T

i 0
]
.

4. Application to a wastewater treatment plant model

In this section the proposed observer approach is applied to a model of a

wastewater treatment plant -the ASM1 model [26, 31]- in order to reconstruct

the state variables and the unknown inputs. First the wastewater treatment

process and the model used are presented.
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4.1. Process description and ASM1 model

The activated sludge wastewater treatment is widely used and studied

in the last two decades [26, 27, 30, 31, 33, 34, 35, 36]. It consists in mixing

waste water with a rich mixture of bacteria in order to degrade the pollutants

contained in the water.

The polluted water circulates in the basin of aeration in which the bacterial

biomass degrades the polluted matter. Micro-organisms gather together in

colonial structures called flocs and produce sludges. The mixed liqueur is

then sent to the clarifier where the separation of the purified water and the

flocs is made by gravity. A fraction of settled sludges is recycled towards

the bioreactor to maintain its capacity of purification. The purified water is

thrown back in the natural environment.

In this work, we consider only a part of the Cost Benchmark. The Cost

Benchmark has been proposed by the European program Cost 624 for the

evaluation of control strategies in wastewater treatment plants [36]. The

Benchmark is based on the most common wastewater treatment plant: a

continuous flow activated sludge plant, performing nitrification and pre-

nitrification. Usually, a configuration with a single tank with a settler/clarifier

was developed.

The data used for simulation are generated with the complete ASM1 model

(n = 13) [26, 33], in order to represent a realistic behavior of a WWTP.

The observer design is based on a reduced model (n = 6) [34], in order to

ease the obtaining of the MM representation and to ensure a solution for the

associated LMIs. The estimation results represent a comparison between the

signals of the complete ASM1 model and those of the observer. Even if the
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observer design is based on a MM form of the reduced ASM1 model (n = 6)

it will be seen that the estimation results are satisfactory.

The functioning principle of the process is briefly described after. The sim-

Figure 1: Wastewater treatment process diagram

plified diagram, given in figure 1, includes a tank of aeration (bioreactor)

and a clarifier. In this figure qin represents the fresh water input flow, qout

the bioreactor output flow, qa the air flow, qR and qW are respectively the

clarifier recycled and the rejected flow. The reactor volume V is assumed to

be constant and thus:

qout(t) = qin(t) + qR(t) (18)

In general, qR(t) and qW (t) represent fractions of the input flow qin(t):

qR(t) = fR qin(t), 1 ≤ fR ≤ 2 (19)

qW (t) = fW qin(t), 0 < fW < 1 (20)

In the bioreactor, under the homogeneity hypothesis, the equations of mass

conservation for the various constituents, involving the reaction and the in-

put/output balance parts, are given by:

ẋ(t) = r(x(t)) +
qin(t)xin(t) + qR(t)xR(t) − [qin(t) + qR(t)]x(t)

V
(21)
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where x = [S,X]T is the vector of soluble (S) and particular (X) con-

stituents, xR = [SR, XR]T is the vector of constituents corresponding to

recycled sludges. The reactor homogeneity hypothesis are often given as

[31]:

xout(t) = x(t) (22)

The clarifier/settler is assumed to be perfect i.e. no sludge leaves the clarifier

tank by the overflow. In this case it can be written:

SR(t) = S(t) (23)

XR(t) =
qin(t) + qR(t)

qR(t) + qW (t)
X(t) (24)

The reaction part of (21) can be put under the form:

r(x(t)) = Ccoef Φ(x(t)) (25)

where the matrix Ccoef of stoichiometric coefficients and the vector Φ(x(t))

of process kinetics are explicitly defined in [31].

Some simplifying assumptions are applied for ASM1 reduction: simplification

with respect to components is considered [34]. For the sake of brevity, we

only consider the biological removal of carbon and nitrogen from wastewater.

Thus, the simplified model involve the following six components: soluble

carbon SS, particulate XS, oxygen SO, heterotrophic biomass XBH , ammonia

SNH , nitrate SNO and autotrophic biomass XBA. The following components

are not considered: inert components (SI , XI , XP , the alkalinity (Salk).

The dynamic of the suspended organic nitrogen (XND) and the ammonia

production from organic nitrogen (SND) is neglected.

Since it is not practically possible to distinguish the soluble part SS and the
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particulate part XS from the measurement of the chemical oxygen demand

(COD), a single organic compound (denoted XDCO) will be considered by

adding the two compound concentrations [34].

The following state vector is thus considered:

x = [XDCO, SO, SNH , SNO, XBH , XBA]T (26)

The reduced matrix Ccoef ∈ R
6×5 in (25) is defined by:

Ccoef =




− 1
YH

− 1
YH

0 1 − fP 1 − fP

YH−1
YH

0 YA−4.57
YA

0 0

−iXB −iXB −iXB − 1
YA

iXB − fP iXP iXB − fP iXP

0 YH−1
2.86 YH

1
YA

0 0

1 1 0 −1 0

0 0 1 0 −1




(27)

and the vector Φ(x(t)) = [ϕ1(t), · · · , ϕ5(t)]
T ∈ R

5 is given by:

ϕ1(t) = µH
XDCO(t)

KDCO + XDCO(t)

SO(t)

KOH + SO(t)
XBH(t)

ϕ2(t) = µHηNOg
XDCO(t)

KDCO + XDCO(t)

SNO(t)

KNO + SNO(t)

KOH

KOH + SO(t)
XBH(t)

ϕ3(t) = µA
SNH(t)

KNH,A + SNH(t)

SO(t)

KO,A + SO(t)
XBA(t)

ϕ4(t) = bHXBH(t)

ϕ5(t) = bAXBA(t)

(28)

where

KDCO = KS

XDCO

SS

=
KS

fSS

Hypothesis 1. It is supposed that the dissolved oxygen concentration at

the reactor input (SO,in) is null. It is also supposed that SNO,in
∼= 0 and
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XBA,in
∼= 0, which is in conformity with the benchmark of European Pro-

gram Cost 624 [36]. In practice and in particular in the Bleesbruck station

from Luxembourg, the concentrations XDCO,in, XBH,in and SNH,in are not

measured online. Thus, a frequently used approximation is to replace these

concentrations with their respective daily mean values. A daily mean value

will be considered for XDCO,in -known input- and the concentrations XBH,in

and SNH,in will be considered as unknown inputs. The measurements of the

four concentrations in the reactor output (XDCO, SO, SNH and SNO) are

available online.

Remark 2. Another option exists that is to chose the daily mean value

for XBH,in and consider XDCO,in as unknown input, since the estimation

approach is based on the idea of minimizing the L2-gain of the known and

unknown inputs on the state and unknown input estimation error.

Let us consider the explicit form of the ASM1 model (21) characterized by

the reduced state vector (26) and the stoichiometric matrix (27) as follows:

ẊDCO(t) = −
1

YH

[ϕ1(t) + ϕ2(t)] + (1 − fP )(ϕ4(t) + ϕ5(t)) + D1(t)

ṠO(t) =
YH − 1

YH

ϕ1(t) +
YA − 4.57

YA

ϕ3(t) + D2(t)

ṠNH(t) = −iXB[ϕ1(t) + ϕ2(t)] −

(
iXB +

1

YA

)
ϕ3(t)

+(iXB − fP iXP )[ϕ4(t) + ϕ5(t)] + D3(t) (29)

ṠNO(t) =
YH − 1

2.86YH

ϕ2(t) +
1

YA

ϕ3(t) + D4(t)

ẊBH(t) = ϕ1(t) + ϕ2(t) − ϕ4(t) + D5(t)

ẊBA(t) = ϕ3(t) − ϕ5(t) + D6(t)
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The input/output balance is defined by:

D1(t) =
qin(t)

V
[XDCO,in(t) − XDCO(t)]

D2(t) =
qin(t)

V
(−SO(t)) + Kqa(t) [SO,sat − SO(t)]

D3(t) =
qin(t)

V
[SNH,in(t) − SNH(t)]

D4(t) =
qin(t)

V
[−SNO(t)]

D5(t) =
qin(t)

V

[
XBH,in(t) − XBH(t) + fR

1 − fW

fR + fW

XBH(t)

]

D6(t) =
qin(t)

V

[
−XBA(t) + fR

1 − fW

fR + fW

XBA(t)

]

(30)

Let us first define the vector of measures, the control vector and the vector

of unknown inputs in order to build a multiple model of the wastewater

treatment process that will be used to apply the estimation methods proposed

in this article.

In conformity with the hypothesis 1, the output vector is:

y(t) = [XDCO(t), SO(t), SNH(t), SNO(t)]T (31)

the known input vector is:

u(t) = [XDCO,in(t), qa(t)]
T (32)

and the unknown input vector is:

d(t) = [SNH,in(t), XBH,in(t)]T (33)

For numerical applications, the following heterotrophic growth and decay

kinetic parameters are used [31]: µH = 3.733[1/24h], µA = 0.3[1/24h],

KS = 20[g/m3], fSS = 0.79, KOH = 0.2[g/m3], KOA = 0.4[g/m3], KNO =

0.5[g/m3], KNH,A = 1[g/m3], bH = 0.3[1/24h], bA = 0.05[1/24h], ηNOg = 0.8.
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In the following, variations of bA and bH around their nominal values will

be considered as can be seen on figure 3. The stoichiometric parameters

are YH = 0.6[g cell formed], YA = 0.24[g cell formed], iXB = 0.086[g N in

biomass], iXP = 0.06[g N in endogenous mass], fP = 0.1 and the oxygen sat-

uration concentration is SO,sat = 10[g/m3]. The following numerical values

are considered here for the fractions fR and fW : fR = 1.1 and fW = 0.04.

The volume of the tank is 1333 [m3].

4.2. Multiple model design

A MM is built to design observers allowing state and unknown input es-

timation. Since the transformation of nonlinear system (29) into a MM form

does not constitutes the main objective of the paper, and for lack of space,

only the essential points (briefly described in section 2) are given in the fol-

lowing. For more details on this procedure the reader is referred to [23].

Considering the process equations (29), it is natural to define the follow-

ing premise variables since they mainly contribute to the definitions of the

nonlinearity of the system:

z1(u(t)) =
qin(t)

V
(34a)

z2(x(t), u(t)) =
XDCO(t)

KDCO + XDCO(t)

SO(t)

KOH + SO(t)
(34b)

z3(x(t), u(t)) =
XDCO(t)

KDCO + XDCO(t)

SNO(t)

KNO + SNO(t)

KOH

KOH + SO(t)
(34c)

z4(x(t), u(t)) =
1

KOA + SO(t)

SNH(t)

KNH,A + SNH(t)
XBA(t) (34d)

The system (29) can be written in a quasi-LPV form

ẋ(t) = A(x, u)x(t) + B(x, u)u(t) + E(x, u)d(t) (35)
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with matrices A(x, u), B(x, u) and E(x, u) expressed by using the premise

variables previously defined:

A(x, u) =




a11 0 0 0 a15 a16

0 a22 0 0 a25 0

0 a32 −z1(u) 0 a35 a36

0 a42 0 −z1(u) a45 0

0 0 0 0 a55 0

0 a62 0 0 0 a66




(36)

B(u) =




z1(u) 0

0 K SO,sat

0 0

0 0

0 0

0 0




, E(u) =




0 0

0 0

z1(u) 0

0 0

0 z1(u)

0 0




(37)
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where:

a11(x, u) = −z1(x, u)

a15(x, u) = −
µH

YH

z2(x, u) + (1 − fP ) bH −
µH ηNOg

YH

z3(x, u)

a16(x, u) = (1 − fP ) bA

a22(x, u) = −z1(x, u) − K qa −
4.57 − YA

YA

µA z4(x, u)

a25(x, u) =
(YH − 1)µH

YH

z2(x, u)

a32(x, u) = −(iXB +
1

YA

)µA z4(x, u)

a35(x, u) = (iXB − fP iXP )bH − iXB µH z2(x, u) − iXB µH ηNOg z3(x, u)

a36(x, u) = (iXB − fP iXP ) bA

a42(x, u) =
1

YA

µAz4(x, u)

a45(x, u) =
YH − 1

2.86 YH

µH ηNOg z3(x, u)

a55(x, u) = µH z2(x, u) − bH + z1(x, u)

[
fW (1 + fR)

fR + fW

− 1

]
+ µH ηNOg z3(x, u)

a62(x, u) = µA z4(x, u)

a66(x, u) = z1(x, u)

[
fW (1 + fR)

fR + fW

− 1

]
− bA (38)

The decomposition of the four premise variables (34) is realized by using the

convex polytopic transformation (5). The scalars zj,1 and zj,2 are defined as

in (6) and the functions Fj,1(zj(x, u)) and Fj,2(zj(x, u)) are given by (7) for

j = 1, ..., 4. By multiplying the functions F
j,σ

j
i
(zj(x, u)), the r = 16 weighting

functions µi(z(x, u)) (i = 1, · · · , 16) are obtained:

µi(z(x, u)) = F1,σ1

i
(z1(u))F2,σ2

i
(z2(x, u))F3,σ3

i
(z3(x, u))F4,σ4

i
(z4(x, u)) (39)
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The constant matrices Ai, Bi and Ei defining the 16 submodels, are deter-

mined by using the matrices A and B and the scalars z
j,σ

j
i
:

Ai = A(z1,σ1

i
, z2,σ2

i
, z3,σ3

i
, z4,σ4

i
) (40a)

Bi = B(z1,σ1

i
) (40b)

Ei = E(z1,σ1

i
) i = 1, ..., 16, j = 1, ..., 4 (40c)

Thus, the nonlinear model (29)-(31) is equivalently written under the multi-

ple model form:

ẋ(t) =
r∑

i=1

µi(x, u)[Aix(t) + Biu(t) + Eid(t)] (41a)

y(t) = Cx(t) (41b)

with

C =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




(42)

4.3. Uncertainties in the MM representation of the ASM1 model

The MM form used for the ASM1 model was previously proposed. Its

structure is slightly modified in order to take into account parameter uncer-

tainties of bH and bA. These parameters appear in the coefficients a15, a16,

a35, a36, a55 and a66 in (38), that allow in (36) to separate the uncertain part

∆A(t) from the perfectly known part A. The variation of these parameters

is 20% for bH of its nominal value and for bA 25% of its nominal value [32].

The uncertainties effect, taken into account in the matrices A + ∆A(t) can
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be written:

∆A(t) =




0 0 0 0 0.2∆bH(t) 0.25∆bA(t)

0 0 0 0 0 0

0 0 0 0 0.2∆bH(t) 0.25∆bA(t)

0 0 0 0 0 0

0 0 0 0 0.2∆bH(t) 0

0 0 0 0 0 0.25∆bA(t)




(43)

Moreover the uncertain term is written under the form ∆A(t) = MaFa(t)N
a

with the matrices:

Ma =




1 1

0 0

1 1

0 0

1 0

0 1




, Fa(t) =


0.2∆bH(t) 0

0 0.25∆bA(t)


 , Na =


0 0 0 0 1 0

0 0 0 0 0 1




where Fa(t) has the following property F T
a (t)Fa(t) ≤ I.

Thus, the equations (41) are modified as follows:

ẋ(t) =
r∑

i=1

µi(x, u)[(Ai + ∆A(t)) x(t) + Bi u(t) + Ei d(t)] (44a)

y(t) = C x(t) + Gd(t) (44b)

Let us see in the next section the state estimation results obtained by the

proposed observer approach.

4.4. Proportional integral observer synthesis and simulation results

In the following, the observer approach described in section 3 is applied

to the ASM1 model (29)-(31). The MM constructed in section 4.2 for the
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ASM1 model is used to build the observer. A zero mean random signal δ(t)

is added on the output to model noise measurements. The output is then

given by:

y(t) = C x(t) + δ(t) (45)

The data used for simulation are generated with the complete ASM1 model

(n = 13) [26, 33], in order to represent a realistic behavior of a WWTP. Even

if the observer design is based on a MM form of the reduced ASM1 model

(n = 6) it will be seen that the estimation results are satisfactory.

Let us consider the ASM1 model (29) under the equivalent MM form (44)

with Ai, Bi, C, ∆A(t) defined by (40)-(42)-(43). Applying the Theorem 1,

the observer (13) is designed by finding positive scalars ǫ1i, ǫ2i (i = 1, ..., r

with r = 16), positive definite matrices P1 and P2 and matrices P̄j (j =

1, · · · , 16) -that are not given here- such that the convergence conditions,

given in Theorem 1 hold. The value of the attenuation rate from the known

and unknown inputs u(t) and d(t) to the state and fault estimation error

ea(t) is γ̄ = 1.64. The system inputs are represented in figure 2. The

time varying parameters bH and bA are displayed in figure 3. A comparison

between respectively the actual state variables, the unknown inputs and their

respective estimates is depicted in the figures 4 and 5. The discrepancies near

the time origin are only due to the arbitrarily choice of the initial conditions of

the state observer. Despite of that choice, due to the convergence property of

the observer, the reconstructed states fully represent the state of the process.

Concerning the unknown inputs estimation (figure 5), the estimation errors

in some time intervals are essentially due to the local fast variations of these

variables, which is not in fully concordance with the hypothesis made for the
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Figure 2: Inputs of wastewater treatment process
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Figure 3: Varying parameters bH and bA
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Figure 4: State estimation using the PIO with linear output

unknown inputs: ḋ = 0. However, the unknown input estimation remains

globally correct. It should be highlighted that the input and output data

are generated by the complete ASM1 model (n = 13) [26], whereas the model

used for MM modeling and state estimation is the reduced one (n = 6).

5. Conclusion

The synthesis of a proportional integral observer adapted to uncertain

nonlinear systems and affected by unknown inputs is proposed in this paper.

The nonlinear system is equivalently represented by a multiple model with
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Figure 5: Unknown input estimation using the PIO

unmeasurable premise variables which is not intensively studied in literature

since it could represent a difficult problem concerning the observer design

and stability analysis studies. This theoretical points are then applied to

a real process of a wastewater treatment plant that is characterized by pa-

rameter uncertainties and unknown inputs. The numerical simulation results

for the proposed application show good state and unknown inputs estima-

tion performances. As future prospects we can design dedicated observers

by minimizing the L2 gain to the estimation error of a part of x and d (see a

single element). An application to diagnosis based on the proposed observer

design is in progress.
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Appendix A. Proof of Theorem 1

Proof. Let us define an augmented state and its estimate by

xa(t) =


x(t)

d(t)


 and x̂a(t) =


x̂(t)

d̂(t)


 respectively. The augmented state esti-

mation error is defined by ea(t) = xa(t) − x̂a(t). Using (10b) and (12), the

system and observer equation can be written as

ẋa(t) =
r∑

i=1

µi(xa(t), u(t))
[
(Ai + ∆Ai(t))xa(t) + (Bi + ∆Bi(t))u(t)

]
(A.1a)

y(t) = Cxa(t) (A.1b)

and

˙̂xa(t) =

r∑

j=1

µj(x̂a(t), u(t))
[
Aj x̂a(t) + Bju(t) + Lj (y(t) − ŷ(t))

]
(A.2a)

ŷ(t) =Cx̂a(t) (A.2b)

respectively, where

Bi =


Bi

0


 , ∆Ai(t) =


∆Ai(t) 0

0 0


 ∆Bi(t) =


∆Bi(t)

0


 , Li(t) =


LP

i

LI
i




One should note that in (A.1) the activating functions depend on xa(t),

whereas they depend on x̂a(t) in (A.2) and then the comparison of the state

xa (A.1a) and its reconstruction (A.2a) seem to be difficult. In order to cope

with the difficulty of expressing the augmented state estimation error in a

tractable way, (A.1a) is re-written, based on the property (3),

ẋa(t) =
r∑

i=1

r∑

j=1

µi(xa(t), u(t))µj(x̂a(t), u(t))
[
(Aj + Ai − Aj + ∆Ai(t))xa(t)

+(Bj + Bi − Bj + ∆Bi(t))u(t)
]

(A.3)
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Consequently, the augmented state estimation error obeys to the following

nonlinear system


ėa(t)

ẋ(t)


 =

r∑

i=1

r∑

j=1

µi(xa(t), u(t))µj(x̂a(t), u(t))






Aj − LjC Ãi − Ãj + ∆̃Ai(t)

0 Ai + ∆Ai(t)




·


ea(t)

x(t)


 +


 ∆Bi(t) Ẽi − Ẽj

Bi + ∆Bi(t) Ei





u(t)

d(t)






 (A.4a)

ea(t) =
[
In+nd

0
]

ea(t)

x(t)


 (A.4b)

where ∆̃A(t)i =


∆Ai(t)

0


. Let V (ea(t), x(t)) denote the following candidate

Lyapunov function

V (xa(t), x(t)) =


ea(t)

x(t)




T 
P1 0

0 P2





ea(t)

x(t)


 (A.5)

where P1 and P2 are symmetric positive definite matrices. The objective is

to find the gains of the observer that minimize the L2-gain from the known

and unknown inputs u(t) and d(t) to the state and fault estimation error

ea(t). It is well known [38] that the L2-gain from


u(t)

d(t)


 to ea(t) is bounded

by γ if

V̇ (ea(t), x(t)) + eT
a (t)ea(t) − γ2(uT (t)u(t) + dT (t)d(t)) < 0 (A.6)
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Considering the Lyapunov function (A.5) and the trajectory of ea(t) defined

by (A.4), the inequality (A.6) can be written as

r∑

i=1

r∑

j=1

µi(xa(t))µj(x̂a(t))




ea(t)

x(t)

u(t)

d(t)




T 


Ψ11
ij Φ12

ij Φ13
ij Ψ14

ij

∗ Φ22
ij Φ23

ij P2Ei

∗ ∗ −γ2Inu 0

∗ ∗ ∗ −γ2Ind







ea(t)

x(t)

u(t)

d(t)




< 0

(A.7)

where

Ψ11
ij =S(P1Aj − P1LjC) + I, Φ12

ij = P1(Ãi − Ãj + ∆̃Ai(t)),

Φ13
ij =P1∆Bi(t), Ψ14

ij = P1(Ẽi − Ẽj),

Φ22
ij =S(P2Ai + P2∆Ai(t)), Φ23

ij = P2(Bi + ∆Bi(t))

Isolating the time varying entries ∆Ai(t), ∆Bi(t), ∆̃Ai(t) and ∆̃Bi(t), (A.7)

becomes

r∑

i=1

r∑

j=1

µi(xa(t))µj(x̂a(t))




ea(t)

x(t)

u(t)

d(t)




T 






Ψ11
ij Ψ12

ij 0 Ψ14
ij

∗ Ψ22
ij Ψ23

ij P2Ei

∗ ∗ −γ2Inu 0

∗ ∗ ∗ −γ2Ind




+S







P1M
a

i

P2M
a
i

0

0




Fa(t)




0

NaT
i

0

0




T

+




P1M
b

i

P2M
b
i

0

0




Fb(t)




0

0

N bT
i

0




T










ea(t)

x(t)

u(t)

d(t)




< 0 (A.8)

where

Ψ12
ij = P1(Ãi − Ãj), Ψ22

ij = S(P2Ai), Ψ23
ij = P2Bi
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It is known that for any matrices X, Y and F (t) of appropriate dimensions

satisfying F (t)T F (t) ≤ I and any positive scalar ε the following holds

XF (t)Y T + Y F (t)T XT ≤ εXXT + ǫ−1Y Y T (A.9)

With the previous inequality (A.9) and the property of Fa(t) and Fb(t) given

by (11), it can be stated that the LMI (A.8) is satisfied if the following holds

r∑

i=1

r∑

j=1

µi(xa(t))µj(x̂a(t))








Ψ11
ij Ψ12

ij 0 Ψ14
ij

∗ Ψ22
ij Ψ23

ij P2Ei

∗ ∗ −γ2Inu 0

∗ ∗ 0 −γ2Ind




+S




ε−1
i1




P1M
a

i

P2M
a
i

0

0







P1M
a

i

P2M
a
i

0

0




T

+ ε−1
2i




P1M
b

i

P2M
b
i

0

0







P1M
b

i

P2M
b
i

0

0




T

+ ε1i




0

NaT
i

0

0







0

NaT
i

0

0




T

+ ε2i




0

0

N bT
i

0







0

0

N bT
i

0




T







< 0 (A.10)

With some Schur complements and defining P j = P1Lj and γ = γ2, the

previous inequality becomes

r∑

i=1

r∑

j=1

µi(xa(t))µj(x̂a(t))Mij < 0 (A.11)

It follows that (A.6) is satisfied if the LMI (14) holds, which achieves the

proof.
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