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ABSTRACT: This article deals with the observer synthesis fareutain nonlinear systems affected by un-
known inputs. In order to design such an observer, the neaitiaystem is represented under the multiple model
(MM) formulation with unmeasurable premise variables. Agwrtional integral observer (PIO) is considered
and used for fault diagnosis using banks of observer to gémetructured residuals. The Lyapunov method,
expressed through linear matrix inequality (LMI) formudet, is used to describe the stability analysis and to
the observer synthesis. An application to a model of Wasmwaeatment Plant (WWTP) is considered.

1 INTRODUCTION Matrix Inequalities) (Tanaka and Wang 2001) by us-
ing the Lyapunov method and th& approach.
In the field of the observer/controller synthesis, the The variable estimation results are then used for
extension of linear methods to nonlinear systems igault diagnosis using banks of observer to generate
generally a difficult problem. The multiple model structured residuals. Several techniques can be used
(Murray-Smith and Johansen 1997) has received & cope with the fault detection and isolation (FDI)
special attention in the last two decades, in order tgroblem, among them observer-based techniques are
overcome this difficulty. Then the MM approach is largely recognized (Patton et al. 2000), (Ding 2008).
a mean to deal with nonlinear systems and to desig@bservers are employed in a FDI framework in or-
observer for such systems and is a convex combinader to provide an estimation of the interesting signals
tion of linear submodels. In this paper, the multipleto be monitored e.g. the outputs, the faults, etc. The
model formulation is obtained by applying a methodFDI of the system is carried out by testing the time-
proposed in (Nagy et al. 2010). Only the general stepgsvolution of some residual signals provided by the ob-
of this technique are reminded in this paper. server. This is realized through a comparison between
Most of the existing works, dedicated to MM in system extracted signals and estimated signals. Actu-
general and to observer design based on MM irator and sensor faults are treated.
particular, are established for MM with measurable Using these theoretical results, the diagnosis is per-
premise variables (inputs/outputs), that represents fmrmed for a wastewater treatment process (WWTP)
simplified situation (Tanaka and Wang 2001), (Marxmodeled by an ASM1 model (Weijers 2000). The
etal. 2007). The MM under study in this paper is moremeasures used for simulation process are those of the
general and involves unmeasurable premise variablesuropean program benchmark Cost 624. The choice
depending on the state variables -frequently met irof the known/unknown inputs, the measures and the
practical situations- that are not always accessible. real conditions is made by taking into account the
A proportional integral observer approach for un-properties of the Bleesbruck treatment station from
certain nonlinear systems with unknown inputs pre-Luxembourg. The numerical simulation results for the
sented under a MM form with unmeasurable premisgroposed application show good state and unknown
variables is proposed in this paper. The state and unnputs estimation performances and allow the sensors
known input estimation given by this observer is madeand actuators fault detection.
simultaneously and the influence of the model uncer- The paper presents, in section 2, the proposed PI
tainties is minimized through &> gain. The conver- observer. Then, the sensor and actuator fault detection
gence conditions of the state and unknown input esand isolation of the WWTP is realized is section 3,
timation errors are expressed through LMIs (Linearwhere the estimation results are also given.



Notation 1. The symbok in a block matrix denotes It is well known in proportional integral observer
the blocks induced by symmetry. For any square mafP10O) design that, although this assumption is needed
trix M, S(M) is defined bys(M) =M +MT. for the theoretical proof of the estimation error con-
vergence, it can be relaxed in practical applications
(Koenig and Mammar 2002). For instance, one will
see, in section 3, that good estimation results are ob-
tained even with time varying unknown input.

2 PROPORTIONAL INTEGRAL OBSERVER

2.1 Modelling nonlinear systems

Generally, a nonlinear system is given under the fol2.2 Proportional integral observer design
lowing state representation: .
In order to estimate both the system state and the un-

X(t) = f(x(t),u(t),d(t)) (1a)  known input, the following PIO is proposed:

r

yt) = Cxt)+Gd(D) (1b) (t)z_;u(i() u(t)) (AR(t) +Biu(t) + Eid(t)

x>

wherex € R" is the state variableyc R™ is the input
vector,d € RYis the unknown inputy € R’ the output +LP(y(t) - y(t))) (6a)
vector, f € R" and the matrice€ and G are known !
matrices of appropriate dimensions.

The multiple model structure allows to representd Zlul (y(t) —y(t)) (6b)
nonlinear dynamic systems (1) into a convex combi-
nation of linear submodels as follows:

y(t) =CR(t) + Gd(t) (6c)

r . . .
_ _ _ The observer design reduces to finding the gaﬁqs
X, u + AA;(t))x(t . .
i;u'( A X andL! such that the state and unknown input estima-
tion error obey to a stable generating system.

+(Bi+A4Bi(1)u(t) +Ed(t)] (28)  Theorem 1. The observer(6) estimating the state

and unknown input of the systef®) and minimiz-
y(t) =Cx(t) + Gd(t) (2b)  ing the %-gain y of the known and unknown inputs
on the state and unknown input estimation error is

the matricesA;, Bj, E;, C and G are known real qpiained by finding symmetric positive definite ma-
and constant matrices of appropriate dimensions exgjces B ¢ R4 (14) and B ¢ R™N. matrices

ceptedAA;(t) andAB;(t), denoting the time varying 5. p(n+ng)xny gng positive scalars;; and & that

system uncertainties, that satisfy the following equa- )
tions ((Marx et al. 2007), (Nagy et al. 2010) and ref- glrgmlsze the scalay under the following LMI con

erences in)
M <0,0,j=1,...,r (7

where.#;j is defined by

X(t)

AA(t) = MBFL(1)N2,  with FJ(t)Fa(t) <| (3a)

ABi(t) = MPRy (NP, with  FJ (1)Fs(t) <1 (3b)

11 pl2 14 Vs Vi
where bothF,(t) € Rf*f andRy(t) € R™2*"2 are un- @] ¢£2 0 & PlM; PlMib
known and time varying. The functiong(x,u) rep- * o5 PBi RE - PM M
resent the weights of the linear submodgs Bi,Ei} .z, = | *  * ®3¥ 0 0 0
and they have the following convexity properties: * * *  —Ylny 0 0

* * % * —é&iilf, 0

* * * * * —&il+, |

iui (x,u) =1, pi(x,u)>0, V(x,u) e R"xR™ (4) -
- (8)

One can note that the activating functigmsdepend With
on the system state that is not available to the mea-
surement. _ o ®jit =ln.ny +S(PIA] ~PiC), @ =Pi(A - A)),
In the sequel, the following assumption is made:

Assumption 1. The unknown input is constant : ot =Py (B — E)),

i) =0 (®)  of =eiNTNF+S(PA), B =eaNPTNP —Vin,



The overlined and tilded matrices are defined by

can- 3§ f

- ] - o) [

C =

0 A+ DA (t) X(t)
The observer gains are then obtained by: N AB;(t) E — Ej u(t) (122)
o Bi + AB;(t) E; d(t)
L
Lj = { {] = P, P;
L 1 J
’ est) =lnens 0|51 (120
Proof. Let us define an augmented state and its es-
_ X(t) R (t) where
timate byxa(t) = d(t) andx(t) = dt) respec-
tively. The augmented state estimation error is definedA (t) = [AAé(t)} (13)
by es(t) = Xa(t) — X4(t). Using (2a) and (5), the sys-
:gnmaind observer equations can be respectively Writqna candidate Lyapunov function for (12) is
T
S — V (Xa(t),X(t)) = 14
;u. (A + B ()%al) wat0)= 58] 5 &) 5] 0o
L whereP; andP, are symmetric positive definite ma-
(Bi +AB;(t))u(t)] (9a) trices. The objective is to find the gaihg of the
observer that minimize th&%-gain from the known
y(t) = Cxa(t) (9b)  and unknown inputsi(t) and d(t) to the state and
fault estimation erroe,(t). It is well known (Boyd
with

et al. 1994) that thez>-gain from [ggﬂ to ey(t) is
bounded byy if

V(ea(t), X(t)) +e€3 (t)ea(t) -

Y2(u' (tu(t)+dT (t)d(t)) <0 (15)

5 4y aibeb b | NPT With some Schur complements and definirg=
ABi(t) =MiF (DN, Ni = { 0 } (10) P.Lj andy = y?, the previous inequality becomes
and -« (R .
. 3, HOlt)Hi (Ral)) 4 <O (16)
r i=1/=1
%a(t) = J;“'(Xat [A%a(t) +Bju(t) It follows that (15) is satisfied if the LMI (7) holds,
which achieves the proof. O
+Lj (y(t) = 9(1))] (11a)
3 DIAGNOSIS FOR WASTEWATER
J(t) =CRa(t) (11b) TREATMENT PLANT

3.1 Diagnosis based on bank observers

One should note that in (9) the activating functionsin this section the PI observer is used to perform
depend orxy(t), whereas they depend ag(f) in (11)  fault diagnosis, which consists in generating residu-
and then the comparison of the sta{€9a) and itsre-  als based on redundancy principle. In this context, the
construction (11a) seems to be difficult. In order tocomparison between output measured signals and es-
cope with the difficulty of expressing the augmentedtimated output signals - by using an observer- is done.
state estimation error in a tractable way, (9a) is re-The residual, that is the difference between these two
written, based on the property (4). Consequently, thaignals, must, therefore, be different from zero when
augmented state estimation error obeys to the followa fault occurs and zero otherwise. However, the devia-
ing nonlinear system tion between the model and the plant is influenced not



only by the presence of the fault but also by the mod-

S s
eling error, noise or other perturbations. Thus, some J} | %, 7,(0)
detection thresholds are fixed in order to avoid false ** | xosiinear | >0
alarms, these thresholds being fixed by taking into ac- system 5. (0)
count the modeling error range. NG
A residual structuration is often needed in order @yl_() 0
to efficiently realize the fault detection and isolation. “2
This task consists in constructing residuals so that Do)
each one is sensitive to a known subset of faults and 7ﬂ£'_ 7ias(0)
insensitive to the others. In order to do this, a bank of Piaa(0)
observers will be used, each one using a part of avail- ”E—P’ Tiaa (@)
able information of the system. Ll 5200
- mon e, 0)
Sensor fault detection ’
: : P14 ()
In this case, the output of the system has the form: *E_\__’ o (®)
_ 0]
y(t) = Cx(t) +Du(t) + 5(t) e

where 5(t) Is a sensor ff?‘”'t vector. An int_ermedi' Figure 1: DOS bank observer for sensor fault detection
ate observer scheme -derived from the Dedicated Ob-
server Scheme (DOS) (Patton et al. 2000)- is usegbserver use thah

for residual structuring. This scheme uses two output input and all outputs. The other

X ﬁ1puts are considered as unknown input and conse-
among’ outputs of the system (see figure 1 for 4). guently a bank of PI1O is synthesized. The alarms as-

In general, the acronylO ij means a proportional sociated to actuator faults can be similarly defined as
integral observer of the form (6) that uses only the.

: - e . -in (18).
outputsi and | in state estimation process. The resid-

uals are defined by:

ri7j(t) = yi (t) _yi,j(t)a I = 17"'767 J € IObS (17)

where the index refers the outputs and the indgx
indicates the observer used to reconstruct the referr
outputs. Thusy;(t) (resp.yi j(t)) is theit" component

3.2 Process description

The activated sludge wastewater treatment is widely
used and studied in the last two decades (Henze et al.
87), (Alex et al. 1999), (Olsson and Newell 1999),

2 Y . (Smets et al. 2006), (Boulkroune 2009). It consists in
of y(fg (resp.yj(t) the output estimation delivered by mixing wastewater with a bacteria mixture in order to

the | observer) and degrade the pollutants contained in the water.
. B The polluted water circulates in an aeration basin in
lops =112, 13,--+, 16, 23, 24,20, ((=1)f}  \hieh the bacterial biomass degrades the polluted

Let us definel; the index set of observers using the matter. Micro-organisms gather together in colonial
outputy; and I the index set of observers that doesStructures called flocs and produce sludges. The

sociated taj (t) for alli = 1,--- , ¢ are defined as: aration of the purified water and the flocs is made by

gravity. A fraction of the settled sludges is recycled
towards the reactor to maintain its capacity of purifi-

_J 0, if |rij(t)| <threshold
Moij(t) = 1, if |rij(t)| > threshold (182)  cation. The purified water is thrown back in the natu-
’ ’ ral environment.

Only a part of the European program Cost 624

o Benchmark (Alex et al. 1999) is considered. Usu-

a(t) = ” roij(t) [ Fokj(t) (18b)  ally, a configuration with a single tank with a set-
Jelr I@Jl tler/clarifier is used. The data used for simulation are

generated with the complete ASM1 modal=£ 13)

Actuator fault detection (Henze et al. 1987), in order to represent a realistic

behavior of a WWTP. In order to ease the obtaining of
the MM representation, the observer design is based
on a reduced modeh(= 6) (Weijers 2000):

In this case, the state of the system is given by:
X(t) = Zui (x(t), u(t) +n (1) [Axt) +Bi(ut) +n(t)]  (19)

Xoco(t) = — & [¢a(t t
wheren (t) is an actuator fault vector. Xocol(t) Vi (910 + 02(1)]
The same principle as previously allows the detection +(1— fp)(Pa(t) + ¢5(t)) + Da(t)
)

and isolation of the actuator faults. A dedicated ob- _ _
= L (t) + AT 9a(t) + Da(t)

server scheme will be used in this case, wherd'the S(t) =



on this procedure the reader is referred to (Nagy et al.

2010).
SvH(t) = —ixg[d1(t) + da(t)] — <|XB+ ! ) ¢3(t) Considering the process (20), itis natural to define the
following premise variables since they mainly con-

_ _ tribute to the definitions of the system nonlinearity:
+(ixg— frixp)[@a(t) + ¢5(t)] + D3(t)

. YH . 1 Zl( ) )
t) — + —¢3(t) + Da(t ' ®) S(t)
Svo(t) 2.86YH ¢2( ) YA¢3( ) at) z(xu) = KDCOZS?DCO( t) Kon+So(t) 26
. z3(x,U) = Xocol(t) Svolt) Kon (26)
Xen(t) = @(t)+ Pa(t) — Pa(t) + Ds(t) - foeaPXecolt) fuo Siolt) Kou FolY
z(xu) = K0A+So( ) KNH,Aﬂ&H(t)XBA(t)

Xeat) = ¢3(t) — ¢s(t) + De(t) (20)

where the process kinetigg(t) (i = 1,---,5) and The system (20) can be written in a quasi-LPV
the input/output balanceBi(t) (i = 1,---,6) can be  fOrMX(®) = A(x ux(t)+B(x.uu(t) +E(x,u)d(t) with ma-
found in (Weijers 2000). For limited space reasonslICESA(X,u), B(x,u) andE(x,u) expressed by using
only ¢1(t) andD (t) are given as follows: the premise variables previously defined:

[ a 0 0 0 a a
puty = HXocoll) Sy o 0 @ 0 0 as 0
K ) K t | 0 azx -z 0 ags @
eotXocolt) Ko+ Solt) Axw=| g 22 Y e
Qm( Gin(t) Y 0 0 as O
Di(t) = [XDCOm( )— XDCO(t)} (22) L 0 &g 0 0 0 ags
e . . . r z(u) 0 0 0
The simplified model involves the following six 0 KSosa 0 0
components: the chemical oxygen demand (COD) B(u) = 0 0 E(u) = z(u O
Xpco, 0xygenSo, heterotrophic biomasXgy, am- 0 0 ’ 0 0
moniaSyH, hitrateSyp and autotrophic biomaséa. 8 8 8 2181)

The inert componentsy(, X, Xp) and the alkalinity i 27)
(Sak) are not considered. The dynamic of the sus-

pended organic nitrogeiX(p) and the ammonia pro- where:

duction from organic nitrogerfyp) is neglected.

In conformity with the benchmark of the european 21(%u) = -z(xu)
program Cost 624 (Alex et al. 1999) and with the ais(x,u) = =&z (x,u) + (1 - fp) by — BN 75(x, u)
real time condition of a wastewater treatment plant - a;g(x,u) = (1— fp)ba
Bleesbruck from Luxembourg- the output vector con- 5,y ) — 721()( U) — K ga — 457 s 24 (x,u)
sidered here is:
8g5(x, U) = YL UM 75(x, )

T ag2(X,u) = — ('XB+YA)IJAZ4(X u)

y(t) = [Xoco(t), So(t), Swu(t), Svo(t)] (23) ags(X,u) = (ixg — fpixp)bH —ixs HH Z2(X, U)

the known input vector is: ~IXBHH IN0gZ3(X,U)

and the unknown input vector is:

age(X,u) = (ixg— fpixp)ba
ut) = Xocoin(t), da(t)]” (24)  a2(xu) = g Haza(X,U)
a4s(X,U) = 5857 HH MNogZa(X, U)
(x,u) =

as5(X,U) = UH Z2(X,U) — by +2z1(x,u) {% - 1}

d(t) = [SNH,in(t), XBH,in(U]T (25) +HH NNogZa(X, u)

_ . ag2(X,U) = UaZ4(X, )
The variablesg, and g, represent the input and (1t fr)
the air flow of the bioreactor. The stoichiometric and 2s(;U) = z1(x,u) [ frt fw _1} —ba

growth/decay kinetic parameters are those of (Olsson . .
and Newell 1999). The decomposition of, j =1,---,4 (26) is realized

_ ) by using the convex polytoplc transformation:
Multiple model representation
Since the transformation of the nonlinear system (20%j(x,u) = Fj1(zj(x,u))zj1+Fj2(zj(x,u))zj2 (28)
into a MM does not constitutes the main objective
of the paper, and for lack of space, only the essen-The scalars; ; and z;, are respectively the min-
tial points are given in the following. For more details ima and the maxima ofj(x,u) and the functions



Fi 1(zj(x,u)) andFj 2(zj(x, u)) are given by:

Zj(X,u) —zj2

Fii(zj(x,u)) = 12~ 52 29

j.1(zj (%, 1)) Z1-72 (29)
zj1—zj(xu

Fi2(zj(x,u) = %J() (30)
Z],l Z].Z

By multiplying the functionsFmi,- (zj(x,u)), ther =

16 weighting functiongs(z(x,u)) (i=1,---,16) are
obtained:

Hi (Z) = Fl,oil(zl)FZ,aiz(ZZ) F37q3<23)F4v0i4(Z4)

The indexes oij

(31)

whereF,(t) has the following property:

Fi (D)Fat) < |

3.3 Results and discussions

The data used for simulation are generated with the
complete ASM1 modeln= 13) (Henze et al. 1987),

in order to represent a realistic behavior of a WWTP.
Even if the observer design is based on a MM form of
the reduced ASM1 modeh(= 6) it will be seen that
the estimation results are satisfactory.

Applying the Theorem 1, the observer (6) is designed

€ {12} and the quadruplets py finding positive scalarsy, & (i = 1, ..., 16), pos-

(g}, o2, of, a) represent the 16 combinations of itive definite matricesP, and P, and matricesP;

indexes 1 and 2. The constant matriéesB; andE;

(1 =

1,---,16) -that are not given here due to

defining the 16 submodels, are determined by usingpace limitation- such that the convergence condi-

the matrice\(x,u), B(u), E(u) and the scalara _;:
1,0

i

A = A(Zl,ai17 2 6223 03 Z4>Ui4> (32a)
B = B(Zl,oil) (32b)
E = E(Zl,ail)7 i=1,..,16 j=1,..4 (32¢)

Thus, the nonlinear model (20) is equivalently writte
under the multiple model form (2), whet®A(t) =
ABi(t)=0,i=1,...,16.

Uncertainties in the MM form of the ASM1 model

The MM form used for the ASM1 model was pre
viously proposed. In the following, its structure
slightly modified in order to take into account pi
rameter uncertainties ooy and ba. These parame:
ters appear in the coefficientss, aig, azs, azs, ass
andagg in (27), allowing to separate the uncertain p:
AA(t) from the known oné\(t) in (27). The parame-
ter variation onby (resp.ba) is of 20% (resp. 25%)
of its nominal value, i.eby € [0.25 ; 035 (resp.
ba € [0.04 ; 0.06]) (Chachuat 2001). The uncertaintie
effect, taken into account in the matricas- AA(t),
can be written as:

0 0 0 0 Q2by(t) 0.25Aba(t)
0000 0 0
|0 0 0 0 02Aby(t) 0.25Aba(t)
MG =10 0 0 0 0 0 (33)
000 0 02bu(t) 0
0000 0 025Aba(t)

tions, given in Theorem 1 hold. The value of the atten-
uation rate from the known and unknown inputs)
andd(t) to the state and fault estimation ermy(t)

isy = 1.52. A comparison between the actual state
variables, the unknown inputs and their respective es-
timates is depicted in the figure 2.

X

BH,in
3

1. 2 3 1 2
time (day) time (day)

Figure 2: Real state and unknown inputs (doted line) and thei
estimations using the P1O (solid line)

In order to diagnose the wastewater treatment plant,
the reduced model (20) is used for observer design
with the measured outputs defined in (23). Some
faults affecting the reactor outputs are simulated as

Moreover the uncertain term is written under thefo|lows:

form AA(t) = M2F4(t)N? with the matrices:
02 0 02 0 02 0O

Ma:_lOlooJ (34)
A 0

Fa(t) = b‘a(t) AbA(t)] (35)
00001 O

N* = 00000025] (36)

e 0 affects y3 = Xpco in time period

(0.25;075)[days
o & affectsy, = & in time period(2.25;275)[days
e 03 affectsys = Syy in time period(1; 1.5)[days

e 0y affectsy, = Syo in time period(3;3.25)[days



An observer bank with six observers is conceived as Further, the diagnosis technique is applied to detect
in figure 1. The analysis of the configuration of resid-actuator faults considering the same reduced ASM1
ualsry 12, r2 12, -+, r4 34 allows the detection and the model. Since the control vector is (24) we consider
isolation of sensor faults (see figure 3). These residurespectively the fault$); and n, affecting the two
als are zero if no fault or noise is present on the senactuators, according to:

sors. Between = 0.25/dayg ett = 0.75[days, the

residualsrj 1o, rj 13 andrj 14 for j € lops correspond { 0.3%0con (1), 05<t<10

to the fault free case. This information is confirmed byn, (t) = 0 otherwice

the residuals generated with the three others observers
(P10 23, P10 24, P10 34) that allows the localiza-
tion of a fault onys. Equivalently, for the time period p, () — { 0.30a(t), 25<t<30 (38)
(3;3.25)[days, the residuals | 14, 24 andrj a4 for 0, otherwise

] € lops correspond to the fault free case. This infor- . . .

mation is confirmed by the residuals generated with An observer bank with two PIO is conceived. The
the three others observeRIQ 23, PIO 24, PIO 34) residuals are similarly constructed as in (17) ifef
that allows the localization of a fault gn, and soon  1,---,mandj=1,--- /. Herem=2andl = 4. The

for the other residuals. A signature table allowing to@nalysis of the configuration of residualg allows
correctly finalize the sensor fault detection and isolathe detection and the localization of actuator faults. In

tion task is given in table 1. A “1” element indicates figure 4, the residuals 1, 121, 131 andra ; generated
thatr; ; is sensitive to the faull while “0” indicates with the first observer indicate a fault between the in-
thatr; ; does not respond to the fauit Finally, the ~Stants (6[dayg and 10[dayg which corresponds to a
symbol “?” indicates that no decision can be takenfault affecting the controKpco,n. The fault affecting
only based on this residual. Ca is localized when analysing the residugig, r2 2,

rs2 andr4 > given by the second observer. The sim-

ulation results correspond to the theoretical signature

(37)

5 P10 12 5 PI0 13 table 2
FE e S T o e Table 2: Theoretical signatures for actuator fault detectiDOS
'51 0501 15 2 25 3y E 0501 15 2 25 § i3 PIO 1 P10 2
)1 Qotromermembmsne S pont 1y 15 Otiehbpimmiiseend bt o rii a1 fan raz1 fio T22 r32 [42
Toisinie FTwisgage m 1 1110 0 0 0
- 1 iy A RN n O 0 0 0 1 1 1 1
TN N R R RS A A
TG T 5 2 503 o o o1 o125 s 3 4 CONCLUSION
fime (dav) time (day)
010 1t p1023 A proportional integral observer adapted to uncer-
[ 50 e T T ] 50@ T tain nonlinear systems affected by unknown inputs
b iy s A o Ny . . . . X
e A e A is proposed in this paper. The nonlinear system is

foosl s g 28 poar i1 B 7B 88 equivalently represented by a multiple model with un-
rz,uOWWMWWWWW g (PPl measurable premise variables which is not intensively
Dosi1ous 2 25 3x YWoigs g5 g 95 3 3 studiedinliterature because observer design or stabil-

T R ] T pllteme i ity analysis are difficult problems for this kind of sys-
SRS S e R T g tems. An application to diagnosis based on the syn-
0511 15 2 25 33t P05l 15 2 95 Ry : . ;
ot O S U SN thesis of the proposed proportional integral observer

e is realized. This theoretical points are then applied to
Vo051 By B3 Vo0l By ¥ % % arealistic model of a wastewater treatment plant that
Pl0 24 Pl034 is characterized by parameter uncertainties and un-
oot S T known inputs. The numerical simulation results for
the proposed application show that sensor and actua-
tor fault detection can be performed as well by using

this type of observer.
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