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Motivations

Objective of diagnosis and fault tolerant control
◮ To detect, isolate and estimate the actuator fault (diagnosis)
◮ To modify the control law to accommodate the fault (FTC)
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◮ To detect, isolate and estimate the actuator fault (diagnosis)
◮ To modify the control law to accommodate the fault (FTC)

Difficulties
◮ Taking into account the system complexity in a large operating range
◮ Nonlinear behavior of the system
◮ The faults are time varying

Proposed strategy
◮ Takagi-Sugeno representation of nonlinear systems
◮ Extension of the existing results on linear systems
◮ Observer-based fault tolerant control design
◮ Consideration of an a priori model of the fault
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Multiple models principle

◮ Operating range decomposition in several local zones.
◮ A simple submodel represents the behavior of the system in a specific zone.
◮ The overall behavior of the system is obtained by aggregating the submodels

with adequate weighting functions.
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Takagi-Sugeno approach for modeling

The main idea of Takagi-Sugeno approach
◮ Define local models Mi , i = 1..r
◮ Define weighting functions µi (ξ ), s.t. 0 ≤ µi ≤ 1 and ∑r

i=1 µi (ξ ) = 1

→ the global model is obtained by aggregation : M = ∑r
i=1 µi (ξ )Mi
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Interests of Takagi-Sugeno approach
◮ The specific study of the nonlinearities is not required.
◮ Analysis (stability, performance, robustness, etc.) and design (controller,

observer, etc.) are based on the linear submodels.

→ Possible extension of the theoretical LTI tools for nonlinear systems.
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i=1 µi (ξ )Mi

Interests of Takagi-Sugeno approach
◮ The specific study of the nonlinearities is not required.
◮ Analysis (stability, performance, robustness, etc.) and design (controller,

observer, etc.) are based on the linear submodels.

→ Possible extension of the theoretical LTI tools for nonlinear systems.

The difficulties
◮ How many local models ?
◮ How to define the domain of influence of each local model ?
◮ On what variables may depend the weighting functions µi ?
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Takagi-Sugeno approach for modeling

Obtaining a Takagi-Sugeno model
◮ Identification approach

◮ Choice of premise variables
◮ Choice of the structure of the local models
◮ Parameter identification

◮ Transformation of an a priori known nonlinear model
◮ Linearization around some points

◮ how to chose the linearization points ?
◮ how to define the weighting functions, minimizing the approximation error

◮ Nonlinear sector approach

Equivalent rewriting of the model in a compact set of the state space







x(k +1) = f (x(k),u(k))

y(k) = h(x(k),u(k))

⇒







x(k +1) =
r
∑

i=1
µi (ξ (k))

(
Ai x(k)+Bi u(k)

)

y(k) =
r
∑

i=1
µi (ξ (k))

(
Ci x(k)+Di u(k)

)
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Takagi-Sugeno system

Reference model






x(k +1) =
r
∑

i=1
µi (ξ (k))(Aix(k)+Biu(k))

y(k) =
r
∑

i=1
µi (ξ (k))(Cix(k)+Di u(k))

• Interpolation mechanism
r
∑

i=1
µi (ξ (k)) = 1 and 0 ≤ µi (ξ (k)) ≤ 1, ∀k , ∀i ∈ {1, ..., r}

• The premise variable ξ (k) are measurable (like u(k), y(k)).
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x(k +1) =
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∑
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µi (ξ (k))(Aix(k)+Biu(k))

y(k) =
r
∑

i=1
µi (ξ (k))(Cix(k)+Di u(k))

• Interpolation mechanism
r
∑

i=1
µi (ξ (k)) = 1 and 0 ≤ µi (ξ (k)) ≤ 1, ∀k , ∀i ∈ {1, ..., r}

• The premise variable ξ (k) are measurable (like u(k), y(k)).

The faulty system






xf (k +1) =
r
∑

i=1
µi (ξ (k))(Aixf (k)+Biuf (k)+Gi f (k))

yf (k) =
r
∑

i=1
µi (ξ (k))(Cixf (k)+Di uf (k)+Wi f (k))

• f (k) represents the fault vector to be detected and accommodated.
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Fault tolerant control design

Objectives : estimation + diagnosis + FTC
◮ estimate the faulty system state xf (k)

◮ estimate the occurring fault f (k)

◮ reconfigure the control law for trajectory tracking xf (k) → x(k)
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Fault tolerant control design

Objectives : estimation + diagnosis + FTC
◮ estimate the faulty system state xf (k)

◮ estimate the occurring fault f (k)

◮ reconfigure the control law for trajectory tracking xf (k) → x(k)

Fault tolerant control scheme

reference

model

controller

observer

system

u

x

uf

f̂

x̂f

−

+

yf

fFAULT TOLERANT CONTROLLER
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Observer and FTC law structures

Faulty system






xf (k +1) =
r
∑

i=1
µi (ξ (k))(Aixf (k)+Biuf (k)+Gi f (k))

yf (k) =
r
∑

i=1
µi (ξ (k))(Cixf (k)+Di uf (k)+Wi f (k))
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Observer and FTC law structures

Faulty system






xf (k +1) =
r
∑

i=1
µi (ξ (k))(Aixf (k)+Biuf (k)+Gi f (k))

yf (k) =
r
∑

i=1
µi (ξ (k))(Cixf (k)+Di uf (k)+Wi f (k))

PI Observer







x̂f (k +1) = ∑r
i=1 µi (ξ (k))

(

Ai x̂f (k)+Biuf (k)+Gi f̂ (k)+H1
i (yf (k)− ŷf (k))

)

f̂ (k +1) = ∑r
i=1 µi (ξ (k))

(

H2
i (yf (k)− ŷf (k))+ f̂ (k)

)

ŷf (k) = ∑r
i=1 µi (ξ (k))

(

Ci x̂f (k)+Diuf (k)+Wi f̂ (k)
)
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Observer and FTC law structures

Faulty system






xf (k +1) =
r
∑

i=1
µi (ξ (k))(Aixf (k)+Biuf (k)+Gi f (k))

yf (k) =
r
∑
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µi (ξ (k))(Cixf (k)+Di uf (k)+Wi f (k))

PI Observer







x̂f (k +1) = ∑r
i=1 µi (ξ (k))

(

Ai x̂f (k)+Biuf (k)+Gi f̂ (k)+H1
i (yf (k)− ŷf (k))

)

f̂ (k +1) = ∑r
i=1 µi (ξ (k))

(

H2
i (yf (k)− ŷf (k))+ f̂ (k)

)

ŷf (k) = ∑r
i=1 µi (ξ (k))

(

Ci x̂f (k)+Diuf (k)+Wi f̂ (k)
)

FTC law

uf (k) = u(k)+
r

∑
i=1

µi (ξ (k))
(

Ki (x(k)− x̂f (k))− f̂ (k)
)
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Considered faults

Exponential faults

fi (k) = eαi k+βi , with αi ,βi ∈ R, i = 1, ...,q

αi = α0,i +∆αi

where α0,i and ∆αi are respectively the nominal and the uncertain parts of αi

Let us define :
α = diag(α1, ...,αq)

α0 = diag(α0,1, ...,α0,q)

∆α = diag(∆α1, ...,∆αq)

The uncertain part can be bounded as :

(∆α)T ∆α ≤ λ

where λ ∈ R
q×q is a known diagonal positive definite matrix.
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Controller design – the exponential fault case

Estimation errors






ep(k) = x(k)−xf (k) : state tracking error
es(k) = xf (k)− x̂f (k) : state estimation error

ed (k) = f (k)− f̂ (k) : fault estimation error
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ed (k) = f (k)− f̂ (k) : fault estimation error

Notation and hypothesis

Xµ =
r

∑
i=1

µi (ξ (k))Xi Xµµ =
r

∑
i=1

r

∑
j=1

µi (ξ (k))µj (ξ (k))Xij fi (k +1) = eαi fi (k)
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Controller design – the exponential fault case

Estimation errors






ep(k) = x(k)−xf (k) : state tracking error
es(k) = xf (k)− x̂f (k) : state estimation error

ed (k) = f (k)− f̂ (k) : fault estimation error

Notation and hypothesis

Xµ =
r

∑
i=1

µi (ξ (k))Xi Xµµ =
r

∑
i=1

r

∑
j=1

µi (ξ (k))µj (ξ (k))Xij fi (k +1) = eαi fi (k)

Dynamics of the tracking and estimation errors





ep(k+1)
es(k+1)
ed (k+1)





︸ ︷︷ ︸

e(k+1)

=





Aµµ−Bµ Kµ −Bµ Kµ −Bµ
0 Aµ−H1

µ Cµ Gµ−H1
µ Wµ

0 −H2
µ Cµ I−H2

µ Wµ





︸ ︷︷ ︸

Aµ





ep(k)
es(k)
ed (k)





︸ ︷︷ ︸

e(k)

+





Bµ−Gµ
0

α−I





︸ ︷︷ ︸

Bµ

f (k)
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Controller design – the exponential fault case

The tracking, state estimation and fault estimation errors are ruled by :

e(k +1) = Aµµ e(k)+Bµ f (k)

The FTC design reduces to find the controller and observer gains : Ki , H1
i and H2

i
satisfying the two main objectives.

Tracking, state and fault estimation error convergence in the fault free case

Find a positive definite Lyapunov function such that

∆V (k) = V (k +1)−V (k) < 0

Here, a quadratic Lyapunov function is chosen :

V (k) = eT (k)Xe(k), with X = X T
> 0
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i
satisfying the two main objectives.

Tracking, state and fault estimation error convergence in the fault free case

Find a positive definite Lyapunov function such that

∆V (k) = V (k +1)−V (k) < 0

Here, a quadratic Lyapunov function is chosen :

V (k) = eT (k)Xe(k), with X = X T
> 0

Attenuation of the fault effect

The L2-gain from the fault f (k) to the errors e(k) is bounded by a positive γ

N

∑
k=1

eT (k)Qe(k) ≤ γ2
N

∑
k=1

f T (k)f (k)
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Controller design – the exponential fault case

Summary

The tracking error ep(k), state and fault estimation errors es(k) and ed (k) must
therefore satisfy the following inequality :

eT (k +1)Xe(k +1)−eT (k)Xe(k)+eT (k)Qe(k)− γ2f T (k)f (k) < 0

This inequality is fulfilled if :

(
Q−X 0

0 −γ2I

)

+

(

A
T
µµ

B
T
µ

)

X
(
Aµµ Bµ

)
< 0
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Summary

The tracking error ep(k), state and fault estimation errors es(k) and ed (k) must
therefore satisfy the following inequality :

eT (k +1)Xe(k +1)−eT (k)Xe(k)+eT (k)Qe(k)− γ2f T (k)f (k) < 0

This inequality is fulfilled if :

(
Q−X 0

0 −γ2I

)

+

(

A
T
µµ

B
T
µ

)

X
(
Aµµ Bµ

)
< 0

◮ Chosing the Lyapunov matrix structure : X =





X1 0 0
0 X2 0
0 0 X3





◮ knowing that µi (ξ (k)) ≥ 0
◮ with some matrix manipulations (Schur complement, S-procedure)

→ sufficient LMI conditions are derived
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Controller design – the exponential fault case

Theorem 1

The tracking and estimation errors asymptotically converge to zero in the fault free
case and the L2-gain from f to e is bounded by γ, if there exists matrices X1 ≥ 0,
X2 ≥ 0, X3 ≥ 0, Ki , L1

i and L2
i and scalars γ̄ and τ such that, for i = 1,2, ..., r




















Q1−X1 0 0 0 ∗ 0 0 0 0 ∗ 0
0 Q2−X2 0 0 0 ∗ ∗ 0 0 0 ∗
0 0 Q3−X3 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 τ−1λ−γ̄I ∗ 0 ∗ 0 ∗ 0 0

X1Ai 0 −X1Bi X1(Bi−Gi ) −X1 0 0 0 0 0 0
0 X2Ai−L1

j Ci X2Gi−L1
j Wi 0 0 −X2 0 0 0 0 0

0 L2
j Ci X3−L2

j Wi −X3 0 0 −X3 ∗ 0 0 0
0 0 0 0 0 0 a0X3 −τ−1I 0 0 0
0 0 0 0 X1 0 0 0 −2I 0 0

Bi Kj 0 0 0 0 0 0 0 0 −I 0
0 Bi Kj 0 0 0 0 0 0 0 0 −I




















< 0

The observer gains and the attenuation level are obtained by :

H1
i = X−1

2 L1
i , H2

i = X−1
3 L2

i and γ =
√

γ̄
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Controller design – the polynomial fault case

Polynomial faults

fi (k) = aik +bi , with ai ,bi ∈ R, i = 1, ...,q

As well as for exponential function, defining different diagonal matrices, a = a0 +∆a,
with ∆a verifying :

(∆a)T ∆a ≤ δ

where δ ∈ R
q×q is a known diagonal positive definite matrix.
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Polynomial faults

fi (k) = aik +bi , with ai ,bi ∈ R, i = 1, ...,q

As well as for exponential function, defining different diagonal matrices, a = a0 +∆a,
with ∆a verifying :

(∆a)T ∆a ≤ δ

where δ ∈ R
q×q is a known diagonal positive definite matrix.

Dynamics of the tracking and estimation errors

Defining eT (k) = [eT
p (k) eT

s (k) eT
d (k)], it follows

e(k +1)=





Aµµ−Bµ Kµ −Bµ Kµ −Bµ
0 Aµ−H1

µ Cµ Gµ−H1
µ Wµ

0 −H2
µ Cµ I−H2

µ Wµ





︸ ︷︷ ︸

Aµ





ep(k)
es(k)
ed (k)





︸ ︷︷ ︸

e(k)

+





Bµ−Gµ
0
0





︸ ︷︷ ︸

Eµ

f (k)+





0
0
a




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Controller design – the polynomial fault case

Theorem 2

The tracking and estimation errors asymptotically converge to zero in the fault free
case and the L2-gain from f to e is bounded by γ, if there exists matrices X1 ≥ 0,
X2 ≥ 0, X3 ≥ 0, Ki , L1

i and L2
i and scalars γ̄ ρ and τ such that, for i = 1,2, ..., r























Φ1,1 0 0 0 0 ∗ 0 0 0 ∗ 0 0
0 Φ2,2 0 0 0 0 ∗ ∗ 0 0 ∗ 0
0 0 Φ3,3 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 −γ̄I 0 ∗ 0 0 0 0 0 0
0 0 0 0 Φ5,5 0 0 ∗ 0 0 0 0

X1Ai 0 −X1Bi Φ6,4
i 0 −X1 0 0 ∗ 0 0 0

0 Φ7,2
ij Φ7,3

ij 0 0 0 −X2 0 0 0 0 0

0 −L2
j Ci Φ8,3

ij 0 X3a0 0 0 −X3 0 0 0 ∗

0 0 0 0 0 X1 0 0 −2I 0 0 0
Bi Kj 0 0 0 0 0 0 0 0 −I 0 0

0 Bi Kj 0 0 0 0 0 0 0 0 −I 0
0 0 0 0 0 0 0 X3 0 0 0 −τ−1I























< 0

Φ1,1 = ρI +Q1 −X1 Φ2,2 = ρI +Q2 −X2 Φ3,3 = ρI +Q3 −X3 Φ5,5 = −ρεI + τ−1δ I

Φ6,4
i = X1(Bi −Gi ) Φ7,2

ij = X2Ai −L1
j Ci Φ7,3

ij = X2Gi −L1
j Wi Φ8,3

ij = X3 −L2
j Wi

The observer gains and the attenuation level are obtained by :

H1
i = X−1

2 L1
i , H2

i = X−1
3 L2

i and γ =
√

γ̄
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Simulation results

Takagi-Sugeno model






x(k +1) =
2
∑

i=1
µi (u(k))(Aixf (k)+Biuf (k)+Gi f (k))

y(k) =
2
∑

i=1
µi (u(k))(Cixf (k)+Di uf (k)+Wi f (k))

with

A1 =

(
−0.5 0.1
−1 −1

)

A2 =

(
0 0.2

−0.45 −0.7

)

B1 =

(
0.4
0.5

)

B2 =

(
0.6
0.4

)

G1 =

(
0.2
0.4

)

G2 =

(
0.5
0.5

)

C1 =
(
0.2 0

)
C2 =

(
0.4 0.1

)
W1 = −0.3 W2 −0.4

µ1(u(k)) =
1− tanh(0.5−u(k))

2
µ2(u(k)) =

1+ tanh(0.5−u(k))

2

The nominal input signal is : u(k) = 0.5cos(sin(0.1k)0.1k).
The FT Controller is designed for : α0 = 0.1 and λ = 1.3
The fault affecting the system is : f (k) = e0.5k−10, for 9 ≤ k ≤ 17
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Simulation results – state and fault estimation
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Simulation results – trajectory tracking
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◮ The problem of FTC design is expressed via an optimization
problem subject to LMI (Linear Matrix Inequality) constraints.

◮ A similar solution has been proposed for FTC of continuous time
Takagi-Sugeno systems (MED’2011)

Perspectives

◮ Study of the unmeasurable premise variable case (ξ (t) = x(t)).

◮ Comparison with multiple integral observer approach

◮ Implementation of a bank of different controller each of them
dedicated to a particular kind of fault and design of a switching
control law depending on the measured performances.
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