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Abstract— This paper addresses fault diagnosis for observer-
based residual generators for linear discrete-time systems sub-
ject to unknown input. The proposed approach is a new method
allowing to characterize a class of unknown inputs from which
the estimation error is decoupled. This contribution is divided
into two parts. The first one concerns the design of the UIO
satisfying either an exact decoupling or an L2-attenuation of the
unknown input to the state estimation error. The second part
is dedicated to the implementation of a bank of such observers
for sensor fault detection and isolation.

I. INTRODUCTION

Due to an increasing demand for higher performances,
safety and reliability, fault diagnosis for uncertain systems
with Unknown Input (UI) has received considerable interest.
Since in many cases a part of the system input is inaccessible
(e.g. plant disturbance or actuator failure), a conventional
observer that requires the knowledge of all inputs cannot be
used directly ; then Unknown Input Observers (UIOs) were
developed to estimate the state of uncertain systems despite
the existence of UIs or disturbances [3], [1], [6], [9], [10],
[11].

Classically, the state estimation of a system subject to UI
can be obtained by means of the so-called UIO. The goal
of the UIO is to provide state reconstruction of the system
with some robustness with respect to possible UI. Design of
UIO has been extensively investigated in the literature and is
based either on the decoupling such that the estimation error
do not depend on the UI [22] [11] [6], or on the synthesis
of an Integral Observer for the estimation of disturbances
[20] [12] [13]. These strategies frequently require structural
and rank constraints on the system matrices.

In this paper, the proposed strategy consists to decom-
pose any UI into two terms. The first one is a sum of
exponential functions from which the state estimates can be
exactly decoupled. For a given system, the class of the UI
satisfying that property is clearly established. The effect of
the remaining part of the UI on the state estimates is then
attenuated in an L2 framework.

Then, the proposed UIO design will be applied to
investigate a sensor fault detection and isolation problem.
A method based on the design of an observer bank will be
used. This approach uses the proposed observer in a bank
of observers. Residues corresponding to each observer are
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generated and defined in such a way to detect the fault
occurrence ; coupled with a residual analysis methods, the
faulty instrument (sensor in the considered case) is identified.

Different schemes of bank observers can be used for
fault diagnosis (Dedicated Observer Scheme, Generalized
Observer Scheme,..), see [4] [14] [7]. In this paper, a
Generalized Observer Scheme (GOS) is applied. The bank
consists of N + 1 observers that include N fault observers
and one normal condition observer. The ith observer is
driven by all inputs and N − 1 outputs of the system
and generates the corresponding residual vector ri

k. Then,
these residual vectors are evaluated for fault detection and
localisation.

This paper is organised as follows : Section II presents
a second order system to introduce the decoupling strategy
and the Uknown Input Class for exact decoupling notion and
how to generate this class. Section III is a generalization
of the second section. In section IV, we introduce the
notion of partial decoupling and the linear matrix inequalities
conditions to ensure the L2 attenuation of the UI effect on
state estimates. In order to improve the obtained results, a
pole assignment is also implemented.
However, the usual linearization approaches are not suitable
to the present problem since BMIs (Bilinear Matrix Inequali-
ties) are to be dealt with. A gain adjustment technique is then
applied. This synthesis linearize the inequalities by fixing one
of the unknown variable [16]. This kind of procedure can be
found in the centrage-XY procedure [15], the D-K iteration
mentionned in [19] or Yamada’s approach [21].
In section V, simulations are presented to show the efficiency
of the proposed approach. And finally, in the last section, as
an application, a residual generator design in a case of a
sensor fault is addressed.

II. ILLUSTRATIVE EXAMPLE

To begin with, the procedure is introduced with the help of
a simple example being a second order system. The different
steps leading to the Uknown Input Class for exact decoupling
are detailed. Consider a second order system described by :{

xk+1 = Axk +Buk +Dηk−1
yk = Cxk + eηk−1

(1)

where xk ∈ R2, uk ∈ R, ηk ∈ R and yk ∈ R are the system
state, input, unknown input and the output vector respecti-
vely. The system matrices are real valued, constant and of
appropriate dimensions :



xk =

[
x1k
x2k

]
A =

[
a11 a12
a21 a22

]
B =

[
b1
b2

]
C =

[
c1 c2

]
D =

[
d1
d2

]
(2)

The proposed Proportional Integral Observer (PIO) of gain
K and the UIO depending on an auxiliary variable zk ∈ R
are respectivelly given by the following equations : x̂k+1 = Ax̂k +Buk +Dη̂k−1 +Kỹk

ŷk = Cx̂k + eη̂k−1
ỹk = yk− ŷk

(3)

{
zk+1 = γ1ỹk +λ1zk
η̂k+1 = γ2zk +λ2η̂k

(4)

with :
K =

[
k1
k2

]
It can be noted that the UIO has a filter structure with as an
input the output reconstruction error ỹk. The filter parameters
γ1, γ2, λ1 and λ2 allow to modify the gain and time constants
of the UIO. Depending on the value of the UIO parameters,
we can have either a proportional observer, an integral or a
multiple integral observer. In this particular case, the choice
λ1 = 1 or λ2 = 1 introduces the two integrators in this filter
structure.
In the following, the state and UI estimation errors are
expressed as function of the UI. Since the system and its
observer are linear, the time shift operator q (q fk = fk+1), is
adequate to express the reconstruction errors :

x̃k = xk− x̂k
η̃k = ηk− η̂k

(5)

From equations (1), (3) and (4), the state reconstruction error
of the UI is given by :{

x̃1k =
N1(q)
D(q) ηk

x̃2k =
N2(q)
D(q) ηk

(6)


N1(q) = (q−λ1)(q−λ2)(ã12d̃2− ã22d̃1 +qd̃1)
N2(q) = (q−λ1)(q−λ2)(ã21d̃1− ã11d̃2 +qd̃2)
D(q) = ((q−λ1)(q−λ2)+ γe)((q− ã11)(q− ã22)− ã12ã21)
+γc1(ã12d̃2− ã22d̃1 +qd̃1)+ γc2(ã21d̃1− ã11d̃2 +qd̃2)

(7)
with : 

ã11 = a11− k1c1
ã12 = a12− k1c2
ã21 = a21− k2c1
ã22 = a22− k2c2
d̃1 = d1− k1e
d̃2 = d2− k2e

(8)

From (6), conditions for the estimation errors to be inde-
pendent from the UI can easily be derived. Then, the UI
familly satisfying an exact decoupling is solution of :{ N1(q)

D(q) ηk = 0
N2(q)
D(q) ηk = 0

(9)

In order to find the solution ηk assuring the previous condi-
tions, it is imposed that polynomials N1(q) and N2(q) have
the same roots. However, before that, it should also be
checked if some solutions are common to D(q) and N1(q)
(or N2(q)).
That leads to :

q0 =
ã21d̃1− ã11d̃2

d̃2
(10)

which is a common root between N1(q), N2(q) and D(q).
Thus condition (9) is reduced to :

(q−λ1)(q−λ2)ηk = 0 (11)

The solution is given by an UI being the sum of two
exponential functions :

ηk = A1λ
k
1 +A2λ

k
2 (12)

where coefficients A1 and A2 are arbitrarily set. Finally, the
choice of the observer values λ1 and λ2 (4) gives the UI
class assuring the exact decoupling of the state error from
ηk for any values of the coefficients A1 and A2.

III. RECONSTRUCTION ERRORS : DISTURBANCES
DECOUPLING

Let us now return to the general case by using the
following system equations :{

xk+1 = Axk +Buk +Dηk−1
yk = Cxk + eηk−1

(13)

Vectors xk ∈ Rn, uk ∈ Rm, ηk ∈ R and yk ∈ Rp are the
system state, input, unknown input and the output vectors
respectively. The system matrices A ∈ Rn×n, B ∈ Rn×m,
D ∈ Rn×1, C ∈ Rp×n et e ∈ Rp×1 are known real values.
The proposed system observer of gain K and the UIO are
respectivelly given by the following equations : x̂k+1 = Ax̂k +Buk +Dη̂k−1 +Kỹk

ŷk = Cx̂k + eη̂k−1
ỹk = yk− ŷk

(14)

{
zk+1 = Γỹk +Λzk
η̂k+1 = γzk +λη̂k

(15)

with appropriate dimensions : zk ∈Rq, K ∈Rn×p, Γ ∈Rq×p,
γ ∈ R1×q, Λ ∈ Rq×q and λ ∈ R.
By following the same steps as in the previous section, the
state and UI reconstruction errors are expressed ; we get from
equation (15) with the time operator q :

η̂k = (q−λ )−1
γzk (16)

(qIq−Λ)zk = Γỹk (17)

which leads to :

[(qIq−Λ)+Γe(q−λ )−1q−1
γ]zk = ΓCx̃k +Γeq−1

ηk (18)

The state error dynamics is obtained from (13) and (14) :

x̃k+1 = Ax̃k +Dη̃k−1
A = A−KC
D = D−Ke

(19)



That gives the state estimation error :

x̃k = (qIn−A)−1Dq−1
ηk− (qIn−A)−1Dq−1(q−λ )−1

γzk
(20)

By replacing this expression in (18), we have :

zk = Z−1
Ληk (21)

with :
Λ = ΓC(qIn−A)−1D+Γe
Z = q(qIq−Λ)+Λ(q−λ )−1γ

(22)

Finally, replacing (21) in (16) and (20) leads to :{
η̂k = (q−λ )−1γZ−1

Ληk

x̃k = (qIn−A)−1Dq−1
[
1− (q−λ )−1γZ−1

Λ

]
ηk

(23)

The UI estimation error becomes :

η̃k =
[
1− (q−λ )−1

γZ−1
Λ

]
ηk

From (23) the state estimation error decoupling condition
from the UI can be written as :

(qIn−A)−1Dq−1
[
1− (q−λ )−1

γZ−1
Λ

]
ηk = 0 (24)

In order to decouple the state from the UI and assure its
exact estimation, the following condition has to be verified :[

1− (q−λ )−1
γZ−1

Λ

]
ηk = 0 (25)

Equation (25) may be extended as N(q)
D(q)ηk = 0. Solving this

last equation gives roots defining the UI class that ensure an
exact decoupling of the estimation error from the UI. This
class is written as : ∑i Aiλi where the λi correspond to the
roots of (25) and Ai are totally free parameters.

IV. PARTIAL DECOUPLING OBSERVER

In the previous section, was detailed how to find the class of
UI ensuring an exact decoupling of the UI in respect to the
state estimation error. In the following section, a general case
with an UI that does not satisfy the decoupling condition is
considered. In this case, the problem is solved by attenuating
the effect (transfer) of the UI to the estimation error and
propose linear matrix inequalities to determinate the observer
gain so that the estimated state asymptotically tends to the
real one.
In addition to the two previous cases (exact and partial de-
coupling), we also have a third one, which is a mix between
the two solutions. In fact, any UI may be decomposed into a
sum of two terms ηk = ηd

k +ηa
k . The first term corresponds

to the exact decoupling term obtained as explain in section
III, and the second one is the approximaion term onto L2
attenuation is applied. In subsection A, we only present
the attenuation approach ; but, in the simulation section the
combined approach will be illustrated.

A. L2 Attenuation

System and observer equations are given by : x̃k+1 = Ax̃k +Dη̃k−1
η̃k = ηk−ληk−1− γzk−1 +λη̃k−1
zk+1 = ΓCx̃k +Γeη̃k−1 +Λzk

(26)

The corresponding matrix form is given by :

ek+1 = A1ek +B1η
a
k (27)

with :

A1 =


A D 0 0
0 λ 0 −γ

ΓC Γe Λ 0
0 0 1 0

 B1 =


0 0
1−λ

0 0
0 0

 ,

ek =


x̃k

η̃k−1
zk

zk−1

 η
a
k =

[
ηk

ηk−1

]
(28)

In particular, (27) gives the UI influence on the estimation
errors. To focus on the impact of the UI on the state
estimation x̃k, a new observer output is considered :

gk =C1ek (29)

with : C1 =
(
I 0 0 0

)
.

Considering the Real Bounded Lemma [2], the system (27) is
stable and the L2 gain from ηa

k to gk is bounded by ‖gk‖2
‖ηa

k ‖2
<

µ if there exists a positive symmetric matrice P and a positive
scalar µ such that the following condition holds : AT

1 PA1−P AT
1 PB1 CT

1
BT

1 PA1 BT
1 PB1−µ2I 0

C1 0 −µ2I

< 0 (30)

According to [8] and [18], the previous problem can be
reformulated by searching a positive symmetric definite
matrice P, gains K and G such that :

−P AT
1 PB1 CT

1 AT
1 GT

BT
1 PA1 BT

1 PB1−µ2I 0 0
C1 0 −µ2I 0

GA1 0 0 −G−GT +P

< 0

(31)
where A1 defined in (28) with the help of (19), depends
on K. Due to this dependence, let us remark that inequality
(31) is not linear. For that reason some transformations are
needed to obtain LMIs.
Let us write the matrix A1 such that :

A1 = A1−RKB1 (32)

with :

A1 =


A D 0 0
0 λ 0 −γ

ΓC Γe Λ 0
0 0 1 0

 R =


I
0
0
0

 B1 =
[
C e 0 0

]
(33)



Replacing A1 by (32) in (31), we have :
−P AT

1 PB1 CT
1 AT

1 GT

BT
1 PA1 BT

1 PB1−µI 0 0
C1 0 −µI 0

GA1 0 0 P−G−GT

+MT N+NT M < 0

(34)

with M =


−BT

1 KT

0
0
0


T

, N =


0

BT
1 PR
0

GR


T

and µ = µ2

Let us recall the following lemma [23]. Consider two real
matrices Π and Λ with appropriate dimensions, for any
positive matrix Σ the following inequality holds :

Π
T

Λ+Λ
T

Π≤Π
T

ΣΠ+Λ
T

Σ
−1

Λ (35)

Applying this lemma, (34) becomes :
−P AT

1 PB1 CT
1 AT

1 GT

BT
1 PA1 BT

1 PB1−µI 0 0
C1 0 −µI 0

GA1 0 0 P−G−GT

+
MT

ΣM+NT
Σ
−1N < 0 (36)

Applying Schur’s complement, we get :
−P AT

1 PB1 CT
1 AT

1 GT BT
1 KT 0

BT
1 P BT

1 PB1−µI 0 0 0 BT
1 PR

C1 0 −µ 0 0 0
GA1 0 0 −G−GT +P 0 GR
KB1 0 0 0 −Σ−1 0

0 RT PB1 0 RT GT 0 −Σ

<0

(37)
At last, by congruence, (37) becomes :
−P AT

1 PB1 CT
1 AT

1 GT BT
1 FT 0

BT
1 P BT

1 PB1−µI 0 0 0 BT
1 PR

C1 0 −µ 0 0 0
GA1 0 0 −G−GT +P 0 GR
FB1 0 0 0 −ΣT 0

0 RT PB1 0 RT GT 0 −Σ

< 0

(38)
with F = ΣK. The LMI must be solved in respect to P, G,
F and the gain K is obtained by K = Σ−1F .

B. Pole Assignment
The minimization of the attenuation factor µ may result

in slow dynamics of the state estimation error. This problem
can be solved by pole assignment of the closed loop system
in a specified region. The considered region is a disk centred
at (q,0) with radius α . Thus, the condition to answer this
constraint is given by the following : find P = PT > 0 and
Q = QT > 0 such that the following LMI [5] holds :[

−αQ −qQ+QA1−GC
(−qQ+QA1−GC)T −αP

]
< 0 (39)

with G = QK. We have to solve this LMI regarding to Q and
G then we deduce K. Thus, to ensure the stabilty and pole
assignment, the conditions (38) and (39) must be fulfilled
simultaneously.

C. Gain Ajustement

From matrices F and G definitions, there is a dependence
between the two LMIs (38) and (39). Then we have to
solve simultaneously these two LMIs which can be noted
LMI1(P,K) and LMI2(Q,K). The proposed method is based
on an ajustment technique allowing to set some variables
and calculate others in an iterative way. More precisely, if the
gain K is fixed, we solve LMI1(P,K) regarding to P. Then we
solve LMI2(Q,K) regarding to Q and K and use the obtained
result K for the next iteration (see table 1). This procedure
was chosen in reason of its simplicity, but one should be
aware that no optimality or convergence guarantee is given.
However, since our study goal is to find a solution to the
given conditions, an optimal solution is not a necessity.

Iterative optimisation for gain K :
1) Set i = 0. Choose a stabilisable value K0. Put

K(i) = K0.
2) L2 attenuation : Find P(i+1) > 0 solution of

LMI1(P,K(i)).
3) Pole assignment : Find Q(i+1) and K(i+1) solution

of LMI2(Q,K) .
4) Stopping condition :

– If ||K(i+1) − K(i)|| < ε stop the algorithm :
K f inal = K(i+1).

– Else, set i = i+1 and go back to step 2.

Table1 : Adjustment algorithm

V. SIMULATIONS

Consider the system (13) described by :

A =


0.6 −0.2 −0.1 0.1 0
−0.1 0.7 −0.1 0.1 −0.1
0.4 0 0.9 0.5 −0.3
0 0.2 0 0.8 −0.2
−0.1 0.2 0 0 0.5

D =


0.2
−0.3
0.1
0.1
0.2



C =

 1 0 0 1 0
0 0 0 0 1
0 1 1 0 0

B =


−0.3 −0.4
0.5 −0.4
−0.1 0.6
−0.2 0.7
0.2 0.1

e =

 −1.5
−1.5
−1.5


with the observer parameters :

Λ = 0.33

 1 1 1
0 1 1
0 1 1

 λ = 0.7

Γ = 0.2I3 γ =−0.4
[
1 1 1

]
At the first step, let us determine the observer gain K with
the proposed iterative algorithm. The obtained gain K and
attenuation µ for a pole assignment in a disk centred at
(0.3,0) with radius 0.2 are :

K =


0.0662 0.3073 −0.0162
0.3557 −0.6401 −0.2057
−0.3790 0.8853 0.8290
0.5571 −0.2525 −0.2071
−0.0666 0.6001 0.1166

 µ = 24.09 (40)



The second step consists of finding the UI class for an exact
decoupling. Let us recall that the state decoupling condition
from the UI with its exact estimation of the UI is given by
(25). In this example, it corresponds to an UI composed of
a linear combination of seven exponential functions : two
roots of (25) are complex conjugate and the others have real
values given by :

λ1 = 1 ; λ2 = 0.7 ; λ3 = 0.83 ; λ4 = 0.15 ; λ5 = 0.5
λ6,7 = 0.085±0.23i

Then, the class of UI for an exact decoupling is given by :

η
d
k =A1λ

k
1 +A2λ

k
2 +A3λ

k
3 +A4λ

k
4 +A5λ

k
5 +A6ak cos(φk+ψ)

(41)
with :
a =

√
Re(λ6)2 + Im(λ6)2 and cos(φ) = Re(λ6)

2

2
√

Re(λ6)2+Im(λ6)2

The UI is defined by :

ηk = 0.1−0.1(0.7)k−0.5(0.83)k+

0.3(0.15)k−0.4(0.5)k +0.4(0.47)k cos(1.78k) (42)

Finally, the considered UI ηk can be written as
ηk = ηd

k + ηa
k where ηd

k corresponds to the UI for
exact decoupling and ηa

k to the approximation er-
ror. The following figures are obtained for the initial
conditions x0 =

(
0.5 0.1 0.2 −0.1 0

)T and x̂0 =(
−0.5 0.5 −0.4 0.2 0.2

)T . Fig.1 shows the system
inputs. Fig.2 represents the UIs (for the exact ηk = ηd

k and
partial decoupling cases ηk = ηd

k +ηa
k ) and their estimates

and Fig 3. represents the system state and their estimate
for both situations of exact and partial decoupling. In both
situations, the state estimation is satisfactory.

Fig. 1. System inputs

Solving the LMIs (38) may cause slow dynamics of the
observer, so an eigenvalue assignment in a D-region allows
to increase the performances of the observer.

VI. RESIDUAL GENERATOR DESIGN

The residual generator design is addressed in this section.
Based on the system structure, a bank of observers is then
designed using the developed UIO in order to detect and
isolate a sensor fault through the estimation of system outputs
using measurable signals and the model of the system. The
procedure is performed by analysing the time-evolution of
the residual signals obtained by the comparison between the

Fig. 2. UI and its estimate

Fig. 3. System states and their estimates : exact decoupling (left) L2-
attenuation (right)

measured outputs and the estimated outputs [17] [7]. A GOS
structure for the observer bank is adopted (Fig.4).
In theory, the residual signals (i.e. the output estimation
error) are null under normal operating conditions of the
system. The residual signal structuring, in order to generate
appropriated fault indicators, can be obtained by replacing
the use of only one observer by the use of a bank of observers
where each observer is driven by a partial set of the available
signals.
Let us consider the case of a sensor fault occuring at the
first sensor of magnitude 1 in the time interval t ∈ [8,15].
For the simulation, a normally distributed noise of standard
deviation equal to 0.1 is added to all the outputs whose
magnitudes are varying between −5 and 8. The first row
of Fig.5 represents the residuals under normal operating
conditions with measurement noise.
A fault signature localization method had been considered.
By comparing the theoretical study (truth table) [17] [7] and
the obtained residues (simulations), the faults susceptible to
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Fig. 4. GOS Structure

Fig. 5. Residues of the bank observer

be at the origin of the observed symptoms can be isolated
(first sensor).

Summurising this section, an observer bank for residual
generator was considered. From the obtained results we
showed that the previously developped UIO can be used
for the detection and isolation of faults when the system
is subject to UIs, fault sensors and measurement noise.

VII. CONCLUSION AND PERSPECTIVES

This paper addresses new method to design observers
with unknown inputs. The proposed approach is based on
a partial decoupling of the state estimation from the UI
without any rank constraints on the system matrix. The main
result is about the way to find the UI class ensuring an
exact decoupling. The proposed work can be extended to
the nonlinear case, in particular, systems with Takagi-Sugeno
representation.
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