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Abstract—This paper investigates the problem of fault tolerat
control (FTC) design for nonlinear Takagi-Sugeno (T-$ models
with measurable premise variables. The idea is to sthesize a
fault tolerant controller ensuring state trajectory tracking. Based
on Lyapunov theory, new less conservative approacheare
proposed in term of Linear Matrix Inequality (LMI). A PI
observer is needed to estimate simultaneously thauits and the
faulty system states in order to reconfigure the FTClaw. A
numerical example is considered to compare the comwatism of
the proposed FTC approaches with the existing one dnto
illustrate the effectiveness of the FTC technique vghe classical
controller design methodology.

Keywords- Takagi-Sugeno nonlinear models, Pl observer, state
and fault estimation, LMI, Lyapunov theory, L, norm.

. INTRODUCTION

The classical control law schemes have shown thigirest
in the system stabilization framework. Neverthelesdaults
affect the system, the classical controllers malyemsure the
system stabilization. In this case, fault tolerantrol is
introduced to take into account the faults affegtine system
components. In literature, two kinds of strateglealing with
the above problem have been proposed. The firsisooalled
robust control or passive FTC. The main idea of tchnique
is to consider the faults as non structural boundezrtainties
which effect on the system will be minimized byngsithelL,

norm. The passive control strategy is designed @rynorm
bounded faults which constitutes a major drawbatkhis
technique. The second kind is called active FT@&tatyy. This
latter requires the knowledge of the faults to rdicire the
controller to ensure the stability of the faultgtgm.

The FTC problem has already been studied in tbmtitire.
For instance, fault tolerant controller design roetilogy for
linear systems is proposed by [1], [2], [3], [4]daf5].
Recently, this study has been extended to the meanlisystems
given in Takagi-Sugeno [6] representation by
Nevertheless, the proposed approach may be cotigserva
Moreover, new approaches for trajectory trackingCFlesign
for T-S models with unmeasurable premise variahte® been
proposed by [7] and [9].

This paper aims to reduce the conservatism of ékalts
proposed in [8] and to show the effectiveness efRiiC law
compared to a classical one when faults affect dy@em
dynamics. Thus, this paper is organized as folldwshe next
section, the problem of fault tolerant controlleesin is
presented. In section 3, an active FTC approaphoposed. In
the last section, a numerical example is consideredlistrate
the efficiency of the proposed active FTC approeaimpared
to a passive one (developed in the appendix). M@amedhe
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feasibility areas of the proposed active FTC apghcand the
one given in [8] are compared.

The following notations are considered to improkie paper
readability. The single or double sums can be tesrias:

(£() @ andg, =>4 (£() 4 (£(0)4 -

%= H
i=1 i=1 j=1
The symbolO denotes the transposed element in the symmetric
positions of a matrix andiag(M,,....,M, ) is a block diagonal
matrix which diagonal entries are defined Mdy,...,M, . The

following lemma will be needed.

Lemma 1 [10]: Consider two real matricex andyY with
appropriate dimensions, for any positive scalar the
following inequality holds:

XY+Y X< X X+ Y Y 1)

. PROBLEM FORMULATION

Let us consider the following T-S model without Hau
corresponding to the reference model.

()= m (£(0) (A9 + B )
v(1)= 3 u (£(0)(C {9+ Du(9)

i=1

()

wherer is the number of submodelé(t) is the measurable
premise variable,u ({(t)) are the membership functions

verifying the convex sum propert;@s,ui({(t))sl and

(é(t))=1, x(1)OR" , y(t)OR® and u(t)OR"
i=1

represent respectively the state, the output armd itiput
vectors, {A, B, C, D,} are the submodels matrices.

Consider the faulty system given by

(=3 u (£0)(Ax (9+ By (3+ 1(3)

‘ 3)
i (=2 (£0)(Cx (9+ 0 (u (9+ 1(9))
where x, (t)OR" , vy, (t)OR" and u, (t)OR™ represent

respectively the faulty state and faulty outputteex and the
fault tolerant control signalf (t)OR™ is the fault directly



affecting the input. The fault is supposed to bastant (i.e.

df (t)/dt=0).
The objective is to design a fault tolerant conérokensuring
the convergence of the faulty state vectqr(t) to the

nominal onex(t). The methodology of controller conception
is based on the scheme depicted in Fig.1.

f(t)
(1) +%+ [
4>[ Observer

i(1)
C

ontrollel

u(t) +

System ]

>[ Reference modé

Fig.1. Fault tolerant control strategy

Let us consider the FTC law given by:

u ()= 2 (£(0) K (x(9=5% (9) + u( )= H() @

where: K, OR™" are the state feedback gain matrices to be

synthesized. The FTC design simultaneously requihes
knowledge of the faulty state vector and the faalffecting

the system. In order to estimate (t) and f(t) , the
following P1 observer is considered:
(0= 2w (€0) (A% (9+ By (3+ 1)+ #(y (3= Y 0)
(0= (€)W (3 (95 (1)
5 (9= 3w (€)% (9+ B (4 (9+ 1(D))

()

where H'OR™? and H? OR™P" are the observer's gain
matrices to be determined to estimdtét) and x, (t). A first
solution to this problem was proposed in theore4nos. [8].

In this section we propose a less conservativeoggprfor
fault tolerant controller conception. Let us redpety define
the state and fault estimation errors

e()=x(9)-% (9 and e, (t)= f(t)- ().
define the state tracking erra, (t)= x(t)- x () and the
y: (=¥ (9. By adding and
substractingK ,x, (t)in (4), one can obtain:

FAULT TOLERANT CONTROLLER DESIGN

Let us also

output estimation erroe, (t) =

defined by:

u; (8) =K, (x(9)=x (9)+ K, (% (=% (3)+ (3= H(} @)

The dynamics ok, (t) ande,(t) are given by:

&(0=(A-8K)e(d-BKe(}- Bel )
e()=Ae(d+Be(}- Hel)

According to (8), to avoid the crossing terms reésglfrom

the observer's gaingl' and system matricesQ( and D, )

multiplication, we introduce a “virtual dynamicgt the output

error e, (t) [11] [12]. This latter can be expressed as:
O¢,(1)=Ca(9+ D g()-g(}

where 0ORP? is a zero matrix.

Since the faults affecting the system are suppdsede

constant (i.ef (t)=0), the dynamics of the fault estimation

error is given by:

& (1)

The combination of (7),
formulation of the dynamics og,(t) ,

(7)
(8)

(9)

=-H:Ce()-HDe() (10)
(8), (9) and (10) allowseth
e, (1), e(t) and

e, (t) in a descriptor form:

Ee( )= A (11)
where E =diag(1110,) =( g ¢ ~§) and
A,-BK, -B, Ku -B 0
- 0 A B -H!
A, = 4 4 g (12)
g 0  -HXC, -HXD, O
0 C D -1

U H
The main proposed result can now be established.

Theorem 1 The tracking erroe, (t), the statee, (t) and fault
ed(t) estimation errors asymptotically converge to zéro
there exists some matrices= X' 20, PR, =P =20, P, =1,

Ps. Bs. Ps. B, HY, H? andK; such that the following

LMI are satisfied for ali,j =1,2,..r :

WD
(qu) Y(Z'Z)} <0 (13)
where:
AX+XA 0O O 0 0 O
-K’g" O 0 0 0
Vi = -8 I* 53 0 0 0 |
0 s 5 p-Rl 0 0
KB 0 O 0o -1 0
X 0 o 0 0 -l




X 0 0 0 00
0 PIC 0 0 00
yea_|X 0 0 0 00
| 0 0 RID 0 00O
X 0 0 0 00
0 0 0 P 00
Y®d =diag(-1 -1 -1 -1 - )
27 =RA+AR+ B C+C R

29 =RG-HC+ER+ DR,
— — T
zij3,3) - DT F3_5 _ HJZD _ DT ( HJZ)

2" =BG -H' - R,
R

Proof:
Lyapunov function:

v(e(9)=2 (} EP¢)

EP=P E20 (15)
A way to provide easily LMI conditions is to coneidthe
matrix P structure as follows:

(14)
with:

B 0 0 0
0O PR 0 0

P= (16)
0 0 B, 0
Rs R As R

According to (15), it follows thaP =R =0, B, =P >0,

P,=P.=0andP,, P,, P,, P, are free slack matrices.

The tracking erroe, (t), the statee, (t) and the faulte, (t)
estimation errors converge asymptotically to zéro i

V(&())=¢ () EP¢ )+ B( ) EPE)xO  (17)
With (11) and (14), the inequality (17) becomes:
& ()(A P+ PA)¢)<0 (18)
The inequality (18) is fulfilled if:
A P+P A <0 (19)
Indeed, with (12) and (16) the inequality (19) hees:
P 0 0 0
(2.2
CIR,-K/BJR ®2 O O <0(20)
DiR-BIR WY W 0
_Pls l'IJ(:’Z) F‘ITG Dy - Fis - Pl6_ qe

Let us consider the following candidate quadratic

Where'qJ(l'”:PA)J ARP-PBK-KEBE
eI =pic+CI R+ RA+ AR

W69 =B P -RHC,+ .G+ OR,
i =PED, + DjRs- RH; D, — D] (H) R,

i =riC,-(H) R-R.
Multiplying (20) left and right bydiag( X I I 1) where
X =PR™, and considering®, = P, = 1>0 and the bijective

variable change(sH}J)T R =H,, B,H2=HZ, (20) yields:

ol O 0 0
CIR,X-K B &2 0 I 1)
DR, X-B old I O
_Plsx (DSM) FiTe D;; Fis - Fie_ FIG
where:

=AX+ XA - B K X- XK §

o) =B8R - H2C,+ B.G,+ O P,
oI =pID, + DI P - HuDu—DT(H)
ol*d =pic, - H, - R,.

Applying lemma 1 and considering =3,=9,=9,=1, the
inequality (21) is implied by:

B
ol 0 0 0
-K1B] o2 O O
B’ ® @I g [<0¢2
u (3.2 Hy

0 RiC,-H,-R, RD-R; &
where:

S _[ AX* XA +3 B K K B+ XX
P +EIXX + XX+ 8, XX

RA+ AR+I,GREE

+0,D;R,P5D,

3;11313

P9 =pIC+C] R, +

&9 =R, - H2D, - D] (H2)'

U

= 54P13P1T3 - B~ PIG'

Applying Schur complement [13] on the BMI terméjﬂl ,
=(2,2 ~(3,3 . ..

CDEM ) and CDEM) , the sufficient LMI conditions proposed in the
theorem 1 hold. O

Remark 1: New LMI conditions can be provided from the ones
given in theorem 1 by considering only the diagamakrices



of (16) (i.e. R, B,, B, and B;). This result is given in
corollary 1.

Corollary 1: The tracking erroe, (t), the stateg, (t) and the

_1- tanh( 0.5-u(t))

#(u(1) >

14, (u(t))=1-4(u(t)). a andb are two model parameters.

D,=-0.5 , and

fault e, (t) estimation errors convergence asymptotically toFirstly, our aim is to compare the conservatism toé

zero if there exists the matrices= X" >0, P,=P >0,
R.=1, B, H', H? and K, such that the following LMI

16
are satisfied for all,j =1,2,..r

ot 0 0 0 0 O

-k/g"  Q*? O O 0 0

-8 SRS O 0 o0
o . <0(23)

0 RBG-H RD -R-BK 0 0

K/B' 0 0 0 -1 0

X 0 0 -l

e(s,z) — BT Pe _ |:|1.2C; and ei(js,a) - _|_—|_2DI _ D| (I-_|.2)T_

Remark 2: To ensure the stability of (3) even if faults occu
one has to check the existencediig( X B 1) in theorem
5.4 of [8] or the matrixP given by (16) in the proposed
approach. Indeed, the proposed approach (theorem
introduces some additional free slack variablegeiax the
existing LMI conditions. This conservatism reduntioan be
shown mathematically by considering in theorem &t th
P,=0, B,=0, B;=0 and B, =0. Then, the inequality
(22) can be rewritten as:

&L
ol 0 0 o
-K™8" o?? 0O [
w6 363 | ° (24)
-8, o)) 7 0
0 =-H, 0 o0

with @Y = A X+ XA +0,B, K, K B+ XX,
®7 =RA,+ A R and®}? =-A2D, D] (M)

approach given in theorem 5.4 of [8] and the predos
theorem 1 and corollary 1.

Let us considerad[-2 -0.6 and bO[-2 0] , using

Matlab LMI Toolbox the obtained feasibility fieldare
presented in Fig.2 and show that the proposed appes are

less conservative than in [8].
1]
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Fig.2. Feasibility fields » Theorem 1x Corollary 1 andd
1) Theorem 5.4 of [8]

Secondly, in order to illustrate the effectivene$sthe fault
tolerant controller compared to a classical onpassive FTC
controller is designed as described in appendixoroher to
minimize thel,-gain from the fault to the tracking error. The
obtained results are compared with those issueth ftioe
proposed active FTC controller.

In the fault free case, it can be seen on Fig.Blibth passive
and active FTC controllers ensure the system &abdn. The
simulation is ran fom=-2, b=-0.5, a nominal input given

by u(t):sin(cos( 2) 0.5) and the LMI problem is solved
with Matlab LMI Toolbox.

In order to compare passive and active FTC coffeichg the
occurrence of a fault, a piecewise constant faﬂ(tt) ,
occurring att =4 is considered. The simulation results are

Replacinge, (t) by its expression given in (24), one obtainsgisplayed on the Fig. 4, 5, 6, 7. The effectivenetghe

the LMI conditions of theorem 5.4 [8].

IV. SIMULATION RESULTS

In order to show the effectiveness and the applitabf the
proposed approaches, let us consider the systewit{)

a 1 1 -3 2 2 0

A=l1 -3 0|,A=|0 -3 02,B=| 1|,
2 1 -8 05 2 -5 0.25
1 -1Y 1Y

B,=|1|,C =|05|,C,=|-05|, D,=-0.8,
b 0 0

proposed FTC design can be seen on Fig.4, whdregmssive
FTC fails to ensure trajectory tracking whér(t) occurs.

V. CONCLUSION

In this paper, a trajectory tracking fault toleramgntroller
design approaches have been proposed for faultynto&els
with measurable premise variables. The objectie isnsure
the tracking between the faulty system states amel af
healthy reference model. The proposed LMI approacre
less conservative. This improvement is due to thesidered
“virtual dynamics” on the output error allows intcing
slack variables in the Lyapunov function and dediogpthe
observer gains and the system matrices.



The efficiency of the FTC law comparing with clasdione is
illustrated with a numerical T-S model whose inpist
corrected by a fault.
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Fig.4. Comparison of the reference model statdgulh), the
faulty system state with FTC (theorem 1) and thétyssystem
state with classical control law (theorem 2).
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Fig.3. Comparison of the reference model state$guit), the
system states with FTC (theorem 1) and systemssidte
classical control law (theorem 2).

Fig.7. Nominal control input and FTC input



The LMI conditions leading to synthesize the colfgroK
under the, norm bound are given in the following theorem 2.
Theorem 2 The tracking error ep(t) asymptotically
converges to zero if there exists some matrieesP >0,

P, and K and a positive scalay such that the following
LMI are satisfied for alli =1,2,..r

oy (1) 0 ()

o, O o 0o o o o
PPC BR+F 0O 0 O O O
"5 1 2 E 4 Tmsw [3 7 ) E] 10 - |TF:)L —DITF; 7 0 0 0 0
Fig.8. Membership function evolution R 0 0 -1 0 0 01<0 (27
0 BK, 0O 0 -1 0 O
VI. APPENDIX.CLASSICAL CONTROLLER DESIGN 0 R 0 0 0 -1 0
APPROACH 0 DK, 0 0 0 0 -l
The classical controller design methodology is Hase the ~Where®, =RA+ AR+
following scheme.
v (t) Proof: Let us consider the following candidate quadratic
4 > Lyapunov function:
V(e(9)= ¢ () EP¢) (28)
£t) A
+ with EP=P E=0 (29)

—{ Reference modé y(t)

Fig.9. Classical controller design scheme

_ (P 0
we considerP=[ol P]' According to (29), one can find
2

that B, =R’ 20. It is well known that thé.,-gain from f (t)

The system state representation is given by: ) )
to e(t) is bounded byy if [13]:

i (0)= 2 ((0) (A (9 BLu 3+ (1)
v (0= 244 (£0) (ox (9 B (u (9+ 1(9))

Let us define the state and output tracking erbatsveen (2)

(25) ¢ () EP )+ &( ) EPE )+ o )t €)ty* ()t ()= 0(30)

Considering (29) and substituting (26) in (30)e @an obtain:

and (25) by e(t)=x(t)-x(9) and £(t)=y(t)-v,(1) BT, +TTP+E [
respectively. To ensure the tracking of the refeeemodel, [ —/\TP ‘VZJ (31)
we consider the following control law, (t) = K &(t). _ “ _
] ) ) ) The mathematical development of (31) with (26) 488)
Introducing a “virtual dynamic” org(t) , one can obtain: leads to
RA +AR 0 O
N, f( 9 (26)
1 - 0 i PIC,- K BR ~(K G- )R-B(nK-] O|<0
where E:(O [ ) ] _[Dﬂ) and -B,R -D,B -y
A, -B,K,
r,= . Applying Lemma 1 then Schur complement on (32), the
C, ‘(D,, Ky + ') sufficient LMI conditions proposed in theorem 2 dwl

O



