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Abstract—In this paper, we propose a method for state a dynamic observer. The problem of regularity assumptions
estimation of nonlmear_ systems represented_ by Tgkagl- pointed out in [20] is solved by modifying th&., problem.
Sugeno (T-S) models with unmeasurable premise variables. oher classes of nonlinear systems are also studied in the

The main result is established using the differential mean literat to desi b f I ¢ f
value theorem which provides a T-S representation of the lterature 10 design observers for nonlinear systems, tor

differential equation generating the state estimation error. Linear Parameter Varying systems (LPV) [3] and for bilinear
This allows to extend some results obtained in the case of systems.

measurable premise variabl_e_s to the_L_mmeasurabIe one. Using In [22], a new structure for nonlinear representation has
the Lyapunov theory, stability conditions are obtained and  paen jntroduced. It is based on the decomposition of the
expressed in term of linear matrix inequalities. Furthermore, . .

an extension for observer design with disturbance attenuation ,Operat'”g Space Pf the system in several ZOI‘]E'.S. To each.zone
performance is proposed. Fina”y, this approach is illustrated IS aSSOC|ated a ||near m0de|. ThankS to non“near fUnCUOnS

on a DC series motor and compared to the existing approaches. satisfying the convex sum property, the overall behavior of

_ o _ the nonlinear system can be represented by the following
Index Terms— Takagi-Sugeno systems, state estimation, dif- ¢4 ~giled T-S model
ferential mean value theorem, Lyapunov stability analysis,

linear matrix inequality. (t) = ZT: s (E(6) (s (t) + Bu(t)) 0

i=1
I. INTRODUCTION AND PROBLEM STATEMENT y(t) = C{E(t)

The control and diagnosis of physical systems often rewherez(t) € R™ is the state vectow(t) € R™ is the input
quire the knowledge of internal variables of the systentéstavector andy(t) € RP represents the output vectod; €
variables). These last are often not accessible to measatemR"*", B; € R"*™, C' € RP*™ are known matrices. The
due to economic or technical reasons. In this situatione stafunctions; (£(¢)) are the weighting functions depending on
observers are used to provide an estimation of these vesiabthe variablest(¢) which can be measurable (as the input or
from input-output data and a mathematical model describiritje output of the system) or unmeasurable variables (as the
the behavior of the system. Therefore, the estimation tyualistate of the system). These functions verify the following
necessarily depends on the precision of the model of nonliproperties
ear behaviors, leading to complex nonlinear models. r

Early work on the state estimation of nonlinear systems Zui(g‘(t)) =1, 0< i (&(t) <1 Vie{l,...,r} (2)
dates back to the work of Thau [24] when he proposed i=1

an extension of the Luenberger observer [13] to systenSptaining a T-S model can be performed from different
with Lipschitz nonlinearities. Sufficient conditions afeeh  methods such as linearization of an available nonlinearehod
obtained for the convergence of the state estimation errgfound some operating points and using adequate weighting
toward zero. Thereafter, in [19], an iterative approachr@s p functions. It can also be obtained by black-box approaches
posed for observer gain design. In [20], Rajamani obtainesliowing to identify the parameters of the model from input-
necessary and sufficient conditions on the observer matr@gtput data [7]. Finally, an interesting approach to obgaii
that ensure asymptotic stability of the observer and pregos s model is the well-known nonlinear sector transformations
a design procedure, grounded on the use of a gradient baggd], [15]. Indeed, this transformation allows to obtain an
optimization method. In [20] is discussed the equivalencgxact T-S representation of a general nonlinear model with
between the Stablllty condition and tmﬁxj minimization in no information |OSS, in a Compact state space.
the standard form, and pOinted out that this deSign methOdTakagi-Sugeno model has proved its effectiveness in the
was not solvable since the regularity assumptions are ngfudy of nonlinear systems. Indeed, it gives a simpler formu
satisfied. Based on the result of Rajamani [20], [18] progosaation from the mathematical point of view to represent the
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dalil.ichal al @up. univ-evry.fr generalize some tools developed in the linear domain to the
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linear systems are proposed. In [2], [14], the authors webrkeof DC series motor is proposed to illustrate the performance
on the problem of state estimation and diagnosis of T-8f the proposed methodology.

systems. The proposed approaches in these last papers rely
on the generalization of the classical observers (Luemerg
Observer [13] and Unknown Input Observer (UIO) [9]) to the Letus consider the T-S system with unmeasurable premise
nonlinear domain. Recently, some works are dedicated to tNariable, given by

[l. OBSERVER DESIGN

relaxation of the conservatism of the stability conditiéor r
example, in [21], the Polya’s theorem is used in order to @(t) = Zui(x(t)) (A (t) + Byu(t)) 3)
reduce the conservatism related to the negativity of a sum i=1
matrices inequalities. In [12], the authors proposed a new y(t) = Cx(t) (4)

approach for discrete time T-S systems, it is based on t
evaluation of the variation of the Lyapunov function betwee
two samples taken at timésandk + m with m > 1. . . . . .

In this work the considered premise varia§le) depends a(t) = Z pi(@(1) (As(t) + Biu(t) + Ly(t) — §(1)))
on the state of the system which is not totally measurable. =t
The problems of state estimation and diagnosis of nonlinear ®)
systems using T-S model approach have been addressed with(t) = CZ(t) (6)

different methods, but most of the published works haVEet us remark that the comparison between the state

considered T-S models with measurable premise variabl8§the system and the staté?) of the observer seems to be

[1], [17], [14], [2]. Itis clear that the choice of measurabl ot '1n order to cope with this difficulty, let us introge
premise variables offers a good simplicity to generalize ththe following matrices

methods already developed for linear systems. Contrahnigy,
roblem becomes harder when the premise variables are not 1 1 «
p P Ag=-Y" A, Bo=-> B, (D
r =1 r 1=1

'ﬁe following observer is proposed

measurable. However, this formalism is very important in
both the exact representation of nonlinear behaviors by T-S
model and in observer based diagnosis for sensor/actuator
fault detection and isolation. Indeed in this case, the usghen, it is easy to rewrite the system (3) in the following
of measurable premise variables requires to develop tworm
different models. The first one uses the input) as a
premise variable and allows to detect and isolate sensor
faults. The second one, using the outp(#t) of the system as - - =
a premise variable, is dedicated to the detection and ieolat * Z'ui ((t)) (Aix(t) + Biu(t)) ©)
of actuator faults. Diagnosis based on a single T-S model =l
with unmeasurable premise variables allows to detect and y(t) = Ca(t) (10)
isolate both actuator and sensor faults using observersbaniwhere it appears that the matricds and B, play the role of
Furthermore, the T-S models with unmeasurable premismminal values of the system ant} and B; are variations
variables may represent a larger class of nonlinear system®und these values.
compared to the T-S model with measurable premise vari- The state equation of the observer (5) can also be presented
ables [25]. Only a few works are devoted to the case dh the following form
unmeasurable premise variables, nevertheless, we can cite . ) )
[6], [16], [5] where the authors proposed the fuzzy Thau- &(t) = Aoi(t) + Bou(t) + L{y(t) — §(t))
(1))

A; = A; — Ao, B; = B, — By 8)

&(t) = Aox(t) + Boul(t)

Luenberger observer which is an extension of the classical . IR -
Luenberger observer and, in [25], a filter estimating theesta * 2; ui(#) (Aid(t) + Biu (11)
and minimizing the effect of disturbances is proposed. . =

J o §(t) = Ci(t) (12)

In this paper a new method is proposed for state estimation
of nonlinear systems. It is based on the use of the Takagithich allows a simpler comparison with the state equation
Sugeno model representing the behavior of the nonlineg®)-(10). For that purpose, let us define the state estimatio
system. The contribution of this work concerns T-S modegrror e(t) by e(t) = x(t) — #(t). Using (9)-(10) and (11)-
with unmeasurable premise variables (e.g. the state of tl®2), the dynamic of the state estimation error is obtaired a
system), such a model is commonly encountered when usifglows
the sector nonlinearity approach [23]. The main results on
observer design are )g/]ivgr? in sec[tiogls Il and 1II. The first®(t) = (Ao — LO)e(t) + f(x(t), u(t)) — f(&(t), u(?)) (13)
result is devoted to the problem of state estimation and thgheref(x(t), u(t)) is denotedf (z) with z = [27 (¢) u” (£)]7
second one concerns the observer design with disturbanggd defined by
attenuation by minimizing th€,-gain from energy bounded -
unknown exogenous disturbances to the state estimation _ ) A B.
error. Finally, in section IV, an application for state asdtion 1) ; pile(B)(Aa(t) + Buult)) (4



Note that the stability analysis of (13) cannot be directlwhered;;; = a;; anda;;» = b;; and

achieved with the help of the tools developed for T-S systems %(zi) s
with measurable premise variables. Indeed, the fact that th ol (2') = 22 Y (24)
premise variable is the state of the system leads to a more Y bij — aij
complex form of the state estimation error (see equation by — Dfs (1)
(13)). The key point of the proposed observer design is to ufj(zi) =2 om e (25)
obtain a suitable form of the state estimation error in order bij — ai;
to re-use the tools proposed for stability and relaxed Etyabi , ,
analysis of T-S systems with measurable premise variables. D v%;(z') =1, 0<vl;(2) <1, 1=1,2 (26)
In conclusion, the objective is to find the gaih of the
observer (11)-(12) that stabilize (13). Using (21) and (23), the dynamic of the state estimatiorrerro
The n different entries of the nonlinear vector functionis represented by

f(z) : R**™ — R™ are denoted;(z). It follows

f(Z) _ [fl (Z) o fn(Z)]T (15) 12; ]z; lz; 'Uz] n ( )az]l + AO LC) ( )
where f;(z) : R - R, i =1,...,n + m. (27)

Using the sector nonlinear transformation method proposed

Let us denote, (i) the vector ofR?® with all entries being | )
in ([23], chap 2), it follows

null, except thei** being equal to 1 as given below

n n q

T - ~
es(i) = ( ¢ - 51 'HQI 0 ) (16) ZZZUU )en(D)ey (7)ai = Zhi(z(t))Ai
i=1 j=1 [=1 i=1
The functionf(z) can be written as follows (28)
wherez(t) depends on the'(t), A; depends on thé;;; and
(2) = Zen(i)fi(z) (17) whereq = on?, Then, the dynamic of the state estimation

error is written as

. i i . n+m q
Theorem 1:Consider f;(z) : R — R. Leta,b € Z (29)

R*T™_If f;(2) is differentiable on[a,b] then there exists

a constant vector® R™t™  satisfying z° bl (i.e.
< fying =* €Ja, bl ( with ¥, = A; +A0—LC

25 €laj,bil, for j =1,..,n +m), such that The stability of this kind of models is largely studied in
_0fi(2") the literature. Hence, interesting results exist such as th
. fila) = fi(b) = @ (a—1b) (18) guadratic stability established by using a quadratic Lyapu
ggf’r%'ng the theorem 1 on (17), it is obtained farb function candidate. Relaxed stability conditions are pssul

by using the well-known fuzzy Lyapunov functions in the
n ndm 3]01( B! continuous time case and the Lyapunov function proposed
= Z Z n+m Oz (a—b) 19) jn [11] for the discrete time case.
=1 j=1 ! In this paper, the stability analysis of the system (29) is
Using (19), the dynamic of the state estimation error (13jtudied in order to find the gaih. This analysis is performed

can be then transformed into by using the Lyapunov theorem and a quadratic Lyapunov
n n+m . function, defined b
o3 3E NG IO L y . .
< n(§)r4m(J 9z u(t) u(t) Vie(t)) =e(t)" Pe(t), P=P"' >0 (30)
1= j -
+ (Ag — LO)e(t) (20) Theorem 2:The state estim_ation error asympto_ti_cally con-
_ _ verges toward zero if there exist a symmetric positive de&fini
Sincez; = z;, for 1 < j <n, then it follows matrix P € R™" and a matrix)/ € R"*" such that the
n following linear matrix inequalities holdi =1, ..., ¢
=> > (e afz( )+A — LC ) e(t)
< L n( ax] 0 AP+ PAy+ ATP+ PA, — MC —CT"MT <0 (31)
=1 j=

4 (21)  The gain of the observer is derived from
Assumption 1:Assume thaif(z*) is a differentiable func-

. o o - L=P'M (32)
tion satisfying, fori =1,....n andj =1,...,n Proof: Considering Lyapunov function candidate (30)
ai; < 3xfz‘ (') < by (22) and definition (29), it is straightforward to obtain
) ) J
Each nonlinearity%(zz) can be represented by Zh \I/TP—|— PU. ) e(t) <0 (33)
5fz ) ZUfJ D) iiij1 (23) Then, using the defl_nltlon. oft;, with properties (2), t.he
a% =1 proof of the theorem is obvious (see [23] for more detallis).



[1l. EXTENSION TOH, PERFORMANCES convex property of the weighting functions lead to the LMIs

The system (3) is now affected by a disturbance inp@) (41). L -
Remark 1:Note that the observer minimizing th€o
(1) = (1) (Aiz(t) + Biu(t) + Ejw(t gain of the transfer from the disturbance§t) to the state
{ ) 1;M< (8)) (Aix(t) 2 ) (34)  estimation errore(t) is obtained by introducing the LMI
y(t) = Cz(t) + Ww(t) variable 5 = ~2 and by minimizing”y under the LMI

. P . 5
where E; and W are the incidence matrices defining thecOnstraints (41), wherg is substituted to;” in (41).

influences Ofw(t) on the dynamics and the OUtpUt of the 1IV. SIMULATION EXAMPLE : DC SERIES MOTOR
system. The disturbance vector is assumed to be energy,
bounded, i.ew(t) € L. As previously, the introduction of
the matricesd,, By, A; and B;, allows to write the state
estimation error as

n this section, the proposed observer design is applied to
a series DC motor in order to estimate its curréff) and

its angular velocityw(t). This kind of motors is generally
used in electrical traction due to their high torque andrthei

SN - power autoregulation. The inductor and the armature of this
€(t) = (Ao — LO)e(t) + Z“i(x(t))(Ei — LW)w(t) type of motor are connected in series, as shown in Figure 1,
- =t hence the term "DC series motor”. The parameteresd
+ 3 (sl (1)) — pa(@(1))) (A (t) + Biu(t)) 1)
=1 (TTT+—=<0
(35) R, L
The application of the previously described method leads to Crt) | o]
. . . J, F ______ -__%-_ U t
write the state estimation error as a T-S system - (t)
q T
e(t) =y Y hilz()us (@) (Lie(t) + (EB; — LW )w(t)) ‘ o
i=1 j=1
(36) Fig. 1. DC series motor
where
U, =Ay+ A, — LC (37) 1 respectively represent the resistance and the inductance o

. . the inductor (stator), whilek? and L respectively represent
Given the system (36), the problem of designing a robughe armature (rotor) resistance and inductance. The wltag

observer (5) is to find the gaifi such that U of the motor must be betweet and 1000 V and the

lim e(t) =0 if w(t)=0 (38) current! is limited to 1000 A. The nonlinear model is given

oo by the following equations

le(@lly <vllw@)lly if w(t)#0 (39)
. F L 5 Cr(t)

wherey > 0 is a positive scalar representing the attenuation 21(t) = _jxl(t) T ij%(t) T (43)
level of the disturbance. To satisfy the constraints (38) an | R L Ul(t
(r3]9), it is sufficient to find a Lyapunov functidri(e(t)) such wa(t) = —fth(t) T Kmftml(t)%(t) + LLIL) (44)
that

. T 9 T the state vector is given by(t) = [w(t) I(t)]T where
V{el®)) +e(t) elt) = vw(t) w(t) <0 (40) w(t) represents the speed of t(h?a mot[or( Z;Ifrd t(hge] armature
The following theorem provides sufficient conditions un-current. We define?; = R +r and L; = L + [. The motor
der LMI formulation, for the synthesis of an observer robusis powered by a variable voltage which is given biyt) =
to the disturbances(t). —70 exp(—%) + 70. The resisting torque,.(t) is usually
Theorem 3:Given~ > 0, the robust observer (5) for the unknown, but for this example, we consider it as a known

system (34) exists, if there exists a matiix= PT > 0 ¢ input. Both inputsU’ andC,. are illustrated in Figure 2. The
R™ " and a matrix)/ € R™ " such that the following numerical values of the motor parameters are giverkby

LMils hold 0.001485%2, r = 0.0098992, L = 0.06H, K,, = 0.04329,
I PE. — MW J = 30.1N/rad.s~', F = 0.1N/rad.s~*. The inductance
< ETp _ IZ/VTMT 7 27 > <0 (41) of the rotor is very large compared to the stator one, so we
J K have
i=1,...,q /i=1,...,r L>>1=L;=L=0.06H (45)
where The method based on nonlinear sector transformation allows

to exactly transform the system (43)-(44) into the T-S model
Iy = AP+ PA+ATP+PA,—MC—-CTMT +1 (42) ,
The observer gain is given by the equatibr= P~ /. a(t) =Y pi(x)(Aiz(t) + Bu(t)) (46)
Proof: The condition (40) expressed with the Lyapunov i=1
function V(e(t)) = €T (t)Pe(t) (with P = PT > 0) and the defined by
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The input vector isu(t) = [C.(t) U(t)]*. The weighting
functions are given by the following equations

KmLIQ(t)
p(z2(t)) = ——ao—
ey @
p2(z2(t) = — 1.037;; 7(t)

A first simulation is performed without measurement noises
to show the convergence of the observer states to the real
states, simulation results are depicted in the figure 3.

T T
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80
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Il Il Il Il Il
100 120 140 160 180
t(s)
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1(s)

200

Fig. 3. State of the motor and their estimation

A second simulation is performed by introducing a mea-
surement noise bounded B0. The goal of this second
application is to show that even if the premise variaiflg =
x2(t) can be measured, using the estimated state in the
weighting functions gives better state estimation comgbare
to that obtained when using the noisy measuremgétit as
premise variable. In order to compare the two approaches,
two observers are designed. For the first observer design,
it is supposed that the weighting functions depend on the
measured outpuj(t) = z»(¢). This observer is constructed
using the approach proposed in [17] and the estimation
results are displayed on the figure 4. For the design of the

Suppose that only the curreftis measured, which gives the second one, it is considered that the weighting functions

output equation

y(t) = [0 1z

(t)

(48)

depend on the state variable(t), then the weighting
functions of the observer depend 6n(t). The observer is

The state observer is Constructed' app|y|ng the proposéMnthesized by the proposed_ me’[hOd USing the d|ﬁerent|a|
method using the differential mean value theorem, and tHgean value theorem and nonlinear sector transformation and
obtained matricesd;,i = 1,...,8 are defined as follows

A = i —89661
As = i 8.258
As = | —8?661
Ar = i 8.((3)58

e
]
]
]

3 0 0.052
~ | 8661 -3.637
[ 0o 0052
~ | 8.658 —3.637
3 0  0.052
~ | —8.661 0476
[ o 0052

~ | 8.658 0.476

the estimation results are displayed on the figure 5. In figure
4 (resp. 5) the estimated states obtained with the first (resp
second) observer are represented by the red continuows line
while the real growths are depicted by green dashed lines. As
a conclusion, the observer usirig(t) as a premise variable
gives a better state estimation then the second observey usi
y(t) as a premise variable. In addition, using the approach
developed in [4], the LMIs have no solution because of the
high value of the considered Lipschitz constant.

V. CONCLUSION
In the present article is proposed a new method to de-

The pairs (4o + A;) are observable, then the LMIs sign observers for nonlinear systems described by the well-
conditions in the theorem 2 result in the galn of the

observer

|

—0.3891
51.3786

(49)

known Takagi-Sugeno systems with unmeasurable premise
variables. The method is based on the writing of the system
generating the state estimation error in the form of a T-S

system. To do that, the differential mean value theorem and
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the nonlinear sector transformations are used. After, @env
gence conditions are obtained by using the Lyapunov theolgl
and a quadratic Lyapunov function. An extension to robust
observer design with disturbance attenuation is propoged foj
minimizing the £, gain of the transfer from disturbances

to the state estimation error. The stability conditions ark!]
expressed in terms of Linear Matrix Inequalities. In order
to illustrate the proposed method, an example is devoted to
the state estimation of a DC series motor. For future Workéz,z]
we plan to address the problem of relaxed stability condlitio
for observer and controller design for T-S systems witli3]
unmeasurable premise variables by using Polya’s theorem
for example. [24]
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