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Abstract— This paper proposes two observer-based FDI the observer design complexity. Besides, the use of appro-
strategies for nonlinear systems represented by a particat  priated black-box identification techniques must be pdssib
class of multiple model using heterogeneous submodels. The i, orger to obtain the parameters of such models in an

structure of this interesting multiple model is firstly presented in . . .
order to design two kinds of state observers. The first obsesr, experimental manner [16]. Theultiple mode([10] is among

known as proportional observer (PO), is an extension of the this interesting category of nonlinear models.
classic Luenberger observer, in this way, it can be used to  Multiple model approach [10] is an appropriate tool for

obtain an estimation of the system state. The second propate modelling a large class complex nonlinear systems using
observer, known as proportional-integral observer (P10),makes a mathematical model which can be used for analysis,

it possible the simultaneous state and unknown input (e.g. - . .
a fault) estimation of the system under investigation. The controller and observer design. The basis of the multiple

convergence towards zero of the estimation errors providetyy =~ Model approach is the decomposition of the operating space
these observers is investigated with the help of the Lyapuno of the system into a finite number adperating zones
method. The P observer as well as the Pl observer are employed Hence, the dynamic behaviour of the system inside each
in a FDI strategy in order to accomplish the detection, the operating zone can be modelled using a singplemodelfor

localisation and eventually the estimation of sensor faudt acting | I del. Th tributi f h submodel
on the system. These two strategies are finally validated in example a finear model. The contribution or each submoade

simulation by considering a simplified model of a bioreactor IS quantified thanks to aveighting function Finally, the
approximation of the system behaviour is performed by
|. INTRODUCTION taking into consideration the respective contributionshef
Nowadays fault detection and isolatiofFDI) is increas- submodels via an interpolation strategy.
ingly integrated in many real-world applications to pravid The interpolation of the submodels can be operated us-
fault symptoms which can be used to take appropriate deditg many architectures [7], two main architectures can be
sions when the expected behaviour of the monitored systegistinguished among them. In the first architecturakagi-
is abnormal. Several techniques can be used to cope witgeno multiple modethe set of the used submodels shares
the FDI problem, among them observer-based techniques e same state space and consequently the submodels are
largely recognised [5], [14]. Observers are employed in & FDhomogeneousn the second oneheterogeneousubmodel
framework to provide an estimation of the interesting signacan be used because each submodel has its own state
to be monitored e.g. the outputs, the faults, etc. The FDI @pace eventually of different dimension. Many contribagio
the system is carried out by testing the time-evolution ogoncern the analysis, the control and the state estimation
someresidual signalsprovided by the observer. In theory, of systems modelled by the first multiple model [1], [4],
a residual signal is null when the system behaviour iELO], [17]. Concerning the heterogeneous multiple model, i
according to the expected behaviour in the normal operating already employed for dealing with the identification [[11]
conditions. [19] and/or control [8], [9]. However, much less studies are
Accurate mathematical models, in the whole operatingevoted to the state estimation and the FDI of nonlinear
range of the system, are often necessary to accomplish&btems represented by this kind of model [11], [12], [18].
the FDI. However the observer design becomes extremely Heterogeneous multiple models are successfully exploited
arduous and even impossible when the used model is téio [18] in order to design an observer-based FDI strategy
complex. Indeed, the observer design complexity is stgong(Neuro-Fuzzy Decoupling Fault Detection ScheFDS)
related to the choice of the model structure (linear ofor nonlinear systems. Interesting results are obtainedism
nonlinear) used in the modelling stage. Hence, an intexgstiway but the theoretical analyse of the state estimatiorr erro
issue is to propose state estimation techniques based ignnot truly proposed in this work and the proof of the
nonlinear models able to capture complex nonlinear dynam@@nvergence towards zero of the estimation error is missing
behaviours with asimple mathematical structure to reduce In this work, a procedure to design two kinds of observers,
proportional observer (P0) and proportional-integralkster
R. Orjuela i§ with the Laboratoire M_odéli_s’ation Intelligz (PIO), is respectively proposed in sections Il and IV. A
Processus Systéemes (MIPS) EA 2332, Université de Halsaea, . . .
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Notations : The following notations will be used all along [1l. PROPORTIONAL OBSERVER DESIGNPO)
this paper. P> 0 (P < 0) denotes a positive (negative) definite  Recently, the observer design procedure of a proportional

tity matrix of appropriate dimension and di&s,....An}  peen proposed in [11], [12]. This observer takes the folgwi
stands for a block-diagonal matrix with the matricesd® 5, chitecture -

the main diagonal. Finally, we shall simply wriig(&(t)) =

Li(t). Xi(t+1) = AX()+But) +Ki(y(t) —¥(t)), (3a)
%) = Gx(), (3b)
Il. ON THE HETEROGENEOUS MULTIPLE MODEL yt) = Z:':llli (Oit), (3¢)

The multiple model strategy is based on the basic idea th@ghere x* ¢ R" is the estimated state vector of thH&
cqmplex dynamic pehaviour_s can t_)e accurately represer!tglgiomodehy(t) the multiple model output vector(t) the
with the help of an interpolation of simple submodels. Isthi ggtimated output vector provided by the observer End

paper, heterogeneous multiple model will be employed [7}rnxp the jth observer gain to be determined.
The state space representation of this multiple model is:  The use of the augmented state vector:

X(+1) = Ax(t)+Bul), 18 &) = [&TO-RTO-TO) RV n=F" n
yit) = Gxi(t), (1b)  enables to rewrite the observer equations (3) under the
yt) = ziL:lui(E(t))yi (), (1c) following compact form:

whereL is the number of the submodels < R™ andy; € RP X(t+1) = AN‘)A(JF Bu(t) + K(y(t) —y(t)), (4a)
are respectively the state vector and the output ofithe yit) = C{UX (4b)
submodel;u € R™ is the input andy € RP the measured Where

output. The matricegy € R"*M, B; € R"*M C € RP*M A = diag{As,---,Aq} € R™", (5a)
ar(_a”l](nown aln? apptr.ct).priat?g] dimenstipned. o t B = [B],..,Bl|T eR™™, (5b)

e complete partition of the operating space of the system X -

is performed using aecision variableg (t) that is assumed C(t~) - [ulT(t)Cl"'T' ’T“L(t)q] €R™ (5¢)
to be known and real-time available (e.g. the inputs and/or K = [K{, KW € R™P. (5d)

exogenous signals). Notice that the contribution of each 4o observer gaik must be determined to ensure for

submoo!el is quantifigd by the weighting fungtion$£(t)) example the exponential convergence towards zero of the
that satisfy the following convex sum constraints: state estimation error:

ziL:lHi(f(t)) =landO0<pi(§(t)) <1, Vi=1l.LVt. (2) et) = x(t)—X(). (6)
It should be remarked that each submodel has its o 'H"le time-evolution of the state estimation error (6) is give
state space because the blending between the submodel Ys
performed _through a weighted sum of th.e submodel outputs et+1) = Agpgt)e(t) (7
(see equation (1c)). Consequently, the dimension of the sta . .
vectorx; of each submodel can be different and a homogd?hereAas(t) is defined by
neous description of the dynamic behaviour of the system, Agpst) = A—RC(). (8)
inside each operating zone, is avoided in this way. Indéwd, t ) ) ) ) o )
submodel complexity can be well adapted according to thEhe equation (7) is easily obtained by considering the time-
complexity of the system in each operating region. Henc&volution of the equation (6) and using the augmented
the number of the parameters needed to provide an accur&fations of the multiple model and the observer (4).
representation of the system under investigation can be re-Remark 2: The time-varying matrixC(t) in (7) can be
duced with the help of heterogeneous submodels. Therefof@Written, using the weighting functions properties (23, a
this structure is well adapted for modelling strongly noakr  the following weighted sum of constant matrices:

systems whose structure varies with the operating regione, f Gt =St umné 9
example, when the complexity of the dynamic behaviour is 5 ®) Z':lu'( S, ©
not uniform in the operating range. whereC; is a constant block matrix given by:

Remark 1: The outputsyi(t) of each submodel must be &=[0 -~ G - 0 (10)
considered asntermediary modelling signalsnly used in ’
order to provide a representation of the nonlinear systersuch that the terr@; is found on the™ block column ofG;.
Hence, they cannot be employed for driving an observer Notice that the individual design of each observer related
because they are not physically available and consequentty each submodel, using for example standard linear tech-
no measurement is possible. Only the global ouygtit of niques, cannot be used to obtain the global observer (4)
the multiple model can be used for this purpose. related to the multiple model. Indeed, the convergence of



the state estimation error (6) is not guaranteed in this mannwherex, € R" andy; € RP are respectively the state and the
because the interpolation of the submodel outputs is netitakoutput of thei™ submodel,u € R™ is the measured input,
into consideration in the observer design. The interpatedf 7 € RY the unknown inputy € RP the measured output. The
the submodel outputs for any initial conditions of the syste matricesA; € R, B; € R™ D; € R, G e RPN

x(0) and the observer(0) must be taken into account in theandV € RP*! are known. The additional matric& andV
global observer design procedure. Therefore, the obserwepresent respectively the impact of the Ul on the state and
design is carried out from equation (7) using the Lyapunoen the output e.g. a sensor or actuator fault (see section V).

method. The following theorem proposesfficient condi- The simultaneous state and Ul estimation is obtained with
tionsensuring the exponential convergence of the estimaticdhe help of a proportional-integral observer [3], [15] give
error (6). by:
Theorem 1: The state estimation error (6) between the ~ ~ .
multiple model (1) and the PO (3) converges exponentially %(t+1) = AX()+Bu®)+Dbin) (17a)
towards zero if there exists a symmetric, positive definite +Ki(y(t) —y(1)),
matrix P € R™" and a matrixG € R™P solution of the Alt+1) = At)+K(yt)—yt)), (17b)
constrained LMI problem: Gt) = G, (17¢)
_ ATp_CIgT ~ L N ~
(1-20)P APP-GIGH o i_1..L. (1) yU) = S HORM)+VA), (17d)

PA— GG P
for a given decay rate & a < 0.5. The observer gain is wherex; is the state estimation of iEs submodelé/(t) the
. s o1 system output estimation provided by the obsergér) the
obtained byK = P~*G. oo ; nx »
. . . A Ul estimation. The observer gaiifs € R"*P andK, € R9*P
Proof. This theorem is obtained by considering a quadratiC . . .
. must be determined. This observer can be considered as a
Lyapunov function: :
particular Ul observer.
V(et)) =€'(t)Pet), P>0, P=PT. (12) Notice that the use of the two gaimé andK; is at the
. o , origin of the “proportional-integral” terminology. Inddethe
The exponentllal convergence of the estimation error IS-9Ua, gains ensure a proportional correction according to the
anteed by [2] : output estimation erroy(t) — y(t). On the other hand, thi§
P=PT >0, a>0:AV(et))+2aV(et))<0, (13) 9ain provides a correction in the integral loop given by the
_ equation (17b). The Ul estimation is then provided thanks
whereAV (e(t)) =V (e(t+1)) —V(e(t)) and wherea is the to this integral action when the Ul is a constant signal [3],
decay rateto ensure the convergence velocity. By using (12)15).

the inequality (13) becomes: Assumption 1: The unknown inputr(t) is assumed as
T constant signaln (t +1) = n(t).
t+1)Pe(t+1) — (1—20a)V(e(t 0 14
e (t+1)Pe(t+1) —( aV(ED) <0, (14) The gainsk; and K, of the PI observer are designed in
which can be rewritten as follows considering (7): order to ensure that the state estimation error:
e’ (t) { AGps) PAopg(t) — (1 —20)P}e(t) <0,  (15) et) = x(t)-K() (18)

Finally, the LMIs in theorem (1) are obtained using the welland the unknown input estimation error
known Schur complement [2], considering remark 2 and the R
weighting functions properties given by (2). O et) = n@t)—-n) (19)

Let us notice that adequate eigenvalues placement of tESnverge exponentially towards zero.

observer can.be obtained by an appropriate choice of .theThe time-evolution of the state estimation error (18) is
decay ratea in theorem 1. For example, the asymptotic iven by:

convergence of the estimation error (6) is obtained by corg—
sideringa = 0. ett+1) = (A—KC(t))e(t)+ (D—KV)e(t), (20)

IV. PROPORTIONAL-INTEGRAL OBSERVER DESIGNPIO)  \whereA, K, é(t) are already defined in (5) and where

In this section, unknown inputs (Ul) acting on the system < T T nxl
are considered. Ul can be used, for example, to take into D = [Dg,,D]" €RT (21)
consideration faults acting on the system. The heterogeneorhe equation (20) is obtained by considering the both multi-
multiple model, already defined by (1), is modified as followsyle model and PIO augmented equations. The time-evolution
to take into account the unknown inpgft) acting on the of the UI estimation error (19) is given by:

system: :
AleD) = Aw4LBUO+DN0 (L68) Et+1) = Nt+1)-A0-KyO-I0) (22
yit) = Gx(t) , | | ’ (16b) which can be simplified as follows:

H = Z:_:lui(t)Yi(t)‘i‘Vrl(t), (16c) Et+1) = e&t)-KC(tet)-KVet)  (23)



according to the assumption 1 (i.g(t+ 1) —n(t) =0). substrate, reaction of typ§(t) — X(t), can be described
Finally, equations (20) and (23) can be gathered as followasing the following nonlinear model [6]:

[e<t+1>] _ {A— KC(t) D- KV} [em] (24) St) = D)(Sn(t)—St)—kr(t),  (29a)
glt+1) —KC(t) I-K\V] [g(t) X(t) = —=DO)X(t)+r(t), (29b)
which can be rewritten as whereS(t) andX(t) are respectively the concentration of the
B carbon substrate rat®(t) and the biomass raté(t), where
Calt +1) = (Aa— KaCa(t))&a(t), (25) D(t) > 0 is the dilution ratek a coefficient of productivity,
where Sin(t) is the rate of substrate feed concentration gty the
~ a ~ reaction velocity (i.e. the biomass production). The rieact
eat) = [ggﬂ . Aa= {'g '?] . Ka= [KKJ ,(26) velocity rater(t) can be characterised by the expression:
Calt) = [é(t) v]. rt) = HmaSHX()/(Ks+S(1)) . (30)

where max andKs are two constant which represent respec-
th tal £ th timati tively the maximum specific growth rate and a saturation
ensure the exponential convergence ot the estimation el stant. The parameters used in the simulationugsg =

g'\fl_er? by theZ_P_II_Oh (1?.t i bet " IO.33h’1, Ks = 591!, k= 20. The rate of substrate feed
_ 1heorem 2. € state estimation error between th€ Mu'e, o ntration is considered const&pt=20gl~* and the di-
tiple model (16) and the PIO (17) converges exponentiall

towards zero if there exists a symmetric, positive definit%([J tion rate inside the range of variatidne [0.0 0.22] h.
. . ’ i can be noted that the considered bioreactor presents a
matrix P € R(MP)*("+P) and a matrixG € R(™P)*P solution P

. nonlinear dynamic behaviour in this operating range.
of the constrained LMI problem: y P g rang

(1-2a)p AlP-C'GT

The following theorem proposesufficient conditiongo

B. Multiple model representation of the bioreactor

PA, — GG = >0, i=1--,L, (27) The goal of this section is to represent the dynamic

behaviour of the bioreactor (29) with the help of a hetero-

where — ~ geneous multiple model (1) in an experimental manner. Two
G = [Ci V] (28) sequences of pseudo-measures of the carbon substrate rate

for a decay rate given by @ a < 0.5. The observer gain is S(t) and the biomass raté(t) are available to accomplished
given byK, = P-1G. the identification and the validation tasks. These measures

are generated by considering the dilution rate as a pieeewis

Sketch of the proofNotice the similarities between the ] ] ! )
put signal with random amplitude and duration.

estimation error (25) and the estimation error provided bSp

the PO previously proposed (7). Hence, LMI conditions (27} The dgcision vgriaplef(t) .is -her.e_ the input sign_all(t).
are obtained in a similar way by considerig, Ko and his ar.b|trary ph0|ce is easily justified on the basis t_hzet th
Ca(t) instead ofA, K andC(t). inputsignal drives the system through the different opegat

Remark that the PIO offers some robustness degree wi ints_ Le. the _operating mode_s. The operating space of
respect to Ul varying slowly in the time i.e71(t + 1) ~ the bpreactor is dgcomposed_m_to two operating regions
ni(t) (see section V-D). Besides, the PIO principle can bgccordlngto the static characteristic of the bioreacttpois.

generalised to the multi-integral case to take into accoua—the as.somated weighting fqnct!on of each qperatlng_ region
polynomial unknown inputs as recently sugested in [13]. IS obtained from the normalisation of Gaussian functions:

WED) = @EO)/Y @ED), (&)

N2/ 2
Two FDI strategies, based on the two P and Pl observers, @ (&) exp(—(E(t) —a)/o ) ’ (32)

are proposed in the following sections. The sensor faU\Wherecl =0.02, ¢, = 0.20 ando = 0.247. The parameters
indicator signals provided by these FDI strategies aredestof the submodels are identified according to the identificati
using a simplified bioreactor model. procedure proposed in [11].

As can be see from figure 1, the identified multiple
model (hnamelyM.M.) provides a good representation of the

A bioreactor may refer to any device or system thaglobal nonlinear behaviour of the bioreactor (nanigiy). It
supports a biologically active environment. The term refershould however be noted that a small discrepancy between
to a bioreactor vessel in which runs a bio-chemical reactiothe dynamic behaviour of the bioreactor and the multiple
A biological reaction that normally involves three kindsmodel appears in the transitional phases. Indeed, thepiaulti
of variables: biomass (e.g. micro-organisms), substeg ( model fails to fully follow the transient behaviour of the
carbon sources in the diet) and the biomass production (egystem. However, this representation with a reduced number
enzymes). of sub-models (it only has two submodels) can be used

The dynamic behaviour of a continuous bioreactor homawith success for the FDI purpose as shown in the following
geneously mixed (completely mixed) and limited by a singlsections. Remark that the multiple model representation of

V. OBSERVERBASED FDI| STRATEGIES

A. Bioreactor model presentation



the bioreactor, obtained in this section, is only used ireord estimation performed by the R@ then corrupted and

to design appropriated PO and PIO. These observers are the direction of the residual signats; are unknown

however driven by the inputs/outputs of the bioreactor .(29) due to the non linearity of the observer and since
compensation phenomena which can appear. Hence,

—7 the value of residual signals; may remains null in

= --M.M . .
5WM presence of faults. Therefore, “?” element indicates
0

1

n _ AL that no decision can be taken.
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 2) On the Other hand’ the state estimation performed by

o the PQ is correctly performed because this observer
D%MW DWM is driven by the outpuy, free of fault. Therefore, the
residual signaty, is undoubtedly sensitive to a fault
“© 500 1000 %?/?)0 2000 2500 3000 0% 500 1000 }?)(I)Jo 2000 2500 3000 ’71 (“1" element is used) Wherea’iz is not sensitive
to this same fault (“0” element is used). Hence, this
Fig. 1. Time-evolution of the carbon substrate r&te) (left) and biomass configuration will be exploited to conclude about the
rate X(t) (right) presence of a fault on the outpyit

C. Residual sianal . ina P ob 3) The PQ is simultaneously driven by the two outputs
- Residual signal generation using P observers and consequently the state estimation is corrupted (“?”
The residual fault generation based on observers is ac-  element is used).

complished through the estimation of system outputs UsiRfhe second line of the incidence matrix can be built in a

measurable signals and the model of the system. The FRlyiiar way.

procedure is performed by analysing the time-evolution of

the residual signals obtained by the comparison between PO, PO, PO;
the measured outputs and the estimated outputs [5], [14]. rig [ raa [ riz [r22 [ ri3 | raa
In theory, the residual signals (i.e. the estimation erisr) N1 ? ? 1 0 ? ?
null under normal operating conditions of the system. The nz | O 1 ? ? ? ?
residual signal structuring, in order to generated ap fatgu TABLE |

fault indicators, can be obtained by replacing the use of onl INCIDENCE MATRIX

one observer by the use of a bank of observers where eachrhe considered faults acting on the system outputs of the
observer is driven by a partial set of the available Signa'%ioreactor (29) are Step 5igna|s of amp"tude equa| to 10%
The well knownDedicated Observer Scher(iOS) [5], [14]  of the maximal amplitude of each output. The sensor fault
can be employed in order to obtain structured residual 8gna; appears on the outpyi(t) att = 1880 and vanishes at
for sensor faults isolation and detection. In this case,the t — 2380. The sensor fauli,, acting on the outpuya(t),
observer is driven by all inputs and th# output of the appears at = 625 and vanishes at= 1240. The FDI tasks

system. are accomplished by monitoring the residual sigmgjsand
Here, only sensor faults acting on the bioreactor outputg,, according to the incidence matrix I.

S(t) = ya(t) and X(t) = y»(t), are considered. They are

respectively notedy; (t) andn,(t). The DOS strategy related N \ \ , \ .

to the sensor fault problem of the bioreactor is accomptishe o rHfrsiesumubsmuingrmbiighissss T Tt

with the help of three PO: the first observer (B@ driven 0z ™ e e 0 e oo

by the input and the first output;, the second observer o w‘“““ T e e 4ol

(PQ,) by the input and the second outpwt(t) and the o O o O o B0 e ol 00

third observer (Pg) by the input and the two outputs= 720 s AN b el

[yi y2]". In the sequelyi; is the fault indicator signals W0 0 w0 | o 1 oo Fo oo

obtained from the error between ti{& output of the system "22 o bty g i',w»wmww

and tha'" output estimated by thg" observer. The isolation 025 0 o B Jemem e e

of a sensor fault); is performed via an iNCIAENCE MALTIX 1 s perpbapminirisamavoimpomminpbspms TN i

which takes into account the time-evolutions of the redidua i 0 7000 o0 200 w00 3000

signals according to the sensor faults acting on the syste .|, T S IS

(see table I). In this matrix, a “1” element indicates that -0z - P = = i oo

the residual signal;; is sensitive to the faulty while a t(n)

“0” element indicates that the residual signg] does not Fig. 2. Time-evolution of residual signats;

respond to the faully. Finally, the symbol “?” indicates that

no decision can be taken only based on this residual. The figure 2 shows the time-evolution of the residual
The incidence matrix is built according to the followingsignals obtained from the DOS strategy. During the absence

discussion [12]: of faults ¢ < 625 ort > 2500) the residual signals are statis-

1) The outputy; is corrupted by a sensor faulf; £ 0 tically null. In the time-interval 625t < 1240, the residual
but the outputy, is free of faultn, = 0. The state signalsri; andr, 1 are according to the fault signaturp



on the outputy,. This information is also verified by the input observer. Sufficient conditions, under LMI form, are
residual signals generated by the two observers. During tlestablished to ensure the exponential convergence of the
time-interval 1880<t < 2380 , the residual signats, and estimation errors. We have shown how the two proposed
r,» are according to the fault signaturgp on the output observers can be exploited in a FDI framework of nonlinear
y1. Notice however that the isolation of sensor faults actingystems. Two FDI strategies are proposed for detection,
simultaneously on the outputs becomes impossible. In ordsolation and identification. The first strategy uses thd-wel

to avoid this problem, the PIO proposed in section IV caknown principle of a bank of observers where each observer
be used for residual signal generation. is devoted to a particular fault. The second one takes djrect
into account the fault estimation provided by the proposed

D. Residual signal generation using Pl observers unknown input P1O. They are validated through a simulation

Unknown input observers are employed as an alternatiexample of a bioreactor.

of PO to generate structured fault signals. Indeed, the PIO
previously proposed is a particular class of unknown input
observer which makes it possible the simultaneously statél]
and output estimations. Hence, the unknown input estimatio[ ]
provided by this observer can be directly used as a residua%
signal, i.e. sensor fault indicator, because the sensdisfau
are considered as unknown inputs to be estimated.

Here, the matrice® andV used to take into account
the impact of the faults on the states and on the outputi
respectively are givenD = Ouxz) and V = diag{1,1}

because only sensor faults are considered. 5]

(6]

0 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000
t(h) t(h)

El

Fig. 3. Comparison between sensor faujtsand their estimated;

The figure 3 shows the injected sensor faujisdashed [10]
line) acting on the bioreactor outputs and their estimates
fi (plain line). Remark that the time-evolution of the es{1l
timated faultsf); are according to the time-evolution of the
sensor faults. Hence, the sensor fault isolation can be wegib]
accomplished even if simultaneous sensor faults appear in
the outputs at = 620. The sensor faults estimated in thig3
manner can then be considered in a FDI as fault indicators
(i.e. residual signals). The FDI task (detection, isola@mnd
identification) can then be carried out according to the {imgy4;
evolution of the unknown input estimation provided by the
PIO. Let us notice that the proposed PIO is able to providddd]
fault estimation of time-varying faults. Indeed, the calesed
fault ni(t) is not truly constant but varying slowly in the [16]
time.

VI. CONCLUSION [17]

This paper shows how observers for nonlinear systems rep-
resented by heterogeneous multiple models can be desigrg%
and employed in a FDI strategy. The state estimation problem
is tacked with the help of two kinds of observers: propor-

tional and proportional-integral observers The PO pros/idélgl
the state estimation of the system under investigation. The
PIO makes it possible the simultaneous state and unknown
input estimations, in this way this observer is an unknown
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