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Abstract— This paper addresses a new methodology to con-
struct a fault tolerant control (FTC) in order to compensate
actuator faults in nonlinear systems. This approach is based on
the representation of the nonlinear model with a multiple model
under Takagi-Sugeno’s form. The proposed control requires
a simultaneous estimation of the system states and of the
occurring actuator faults. The performance of the control
depends on the quality of the estimations, indeed, it is important
to estimate accurately and rapidly the states and the faults. This
task is then performed with an Adaptive Fast State and Fault
Observer (AFSFO). The stability conditions are established with
Lyapunov theory and expressed in linear matrix inequality
formulation to ease the design of the FTC. Furthermore,
relaxed stability conditions are given with the use of the Polya’s
theorem.

Index Terms— Nonlinear systems, Takagi-Sugeno model (T-
S), linear matrix inequality (LMI), Polya’s theorem, Lyapunov
theory, input-to-state stability (ISS), fault tolerant control
(FTC)

I. INTRODUCTION

Since several years, the problem of fault tolerance has
been treated from many points of view. Two classes can then
be considered: passive control and active control. The first
class may be viewed as a robust control. It requires the a
priori knowledge of the possible faults which may affect the
system. The control is then designed in order to compensate
them. The interest of this approach is the fact that no on
line information is needed and the structure of the control
law remains unchanged. The principal idea of this kind of
control is based on the consideration of all possible faults
as uncertainties which are taken into account for the design
of the tolerant control by using different techniques like
H∞ [15], [13]. Generally, the structure of the uncertainties
(faults) are not taken into account in order to lead to a convex
optimization problem. Furthermore, the class of considered
faults is limited, it becomes then risky to use only the passive
fault tolerant control (see [11] for more details).

The second class concerns active fault tolerant control
which is more interesting due to its possibility to take
into account a large class of faults, because of its variable
structure which may change in the presence of faults. The
knowledge of some informations about these last are required
and are obtained from a Fault Detection and Diagnosis
(FDD) block. Different ideas are developed in the literature,
for example, a Control Law Re-scheduling [9], [7], [17]. This
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approach requires a very robust Fault Detection and Isola-
tion (FDI) block which constitutes its major disadvantage.
Indeed, a false alarm or a non detected fault can lead to
degraded performance or even to instability. Other smooth
fault tolerant control laws are proposed in [5] for Takagi-
Sugeno systems and in [14] for LPV systems.

Many efforts are dedicated to the problem of designing
an active fault tolerant control of nonlinear systems, among
them, the use of Takagi-Sugeno representation that com-
bines simplicity and accuracy of nonlinear behaviors, it is
introduced initially in [18]. The idea is to consider a set of
linear sub-systems. An interpolation of all these sub-models
with nonlinear functions satisfying the convex sum property
allows to obtain the global behavior of the system described
in a large operating range. Some works can be mentioned
in the FTC field for nonlinear systems. For example, in
[4], the authors took into account actuator faults for non-
linear descriptor systems with Lipschitz nonlinearities.In
[9], a method which requires only the fault isolation was
proposed for T-S systems. It was based on a bank of observer
based controllers. A switching mechanism is then designed
depending on the obtained residuals. More recently, in [5],
the FTC strategy with trajectory tracking and proportional-
integral observer (PIO), is developed for the T-S systems with
weighting functions depending on the state of the system
which is not accessible for measure.

II. TAKAGI -SUGENO STRUCTURE FOR MODELING

The T-S modeling allows to represent the behavior of
nonlinear systems by the interpolation of a set of linear sub-
models. Each sub-model contributes to the global behavior of
the nonlinear system through a weighting functionµi(ξ(t)).
The T-S structure is given by







ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t)
(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

nu is the input
vector,y(t) ∈ R

ny represents the output vector.Ai ∈ R
n×n,

Bi ∈ R
n×nu and C ∈ R

ny×n are known matrices. The
functionsµi(ξ(t)) are the weighting functions depending on
the variableξ(t) which is accessible for measure (as the
input or the output of the system). These functions verify
the following properties







r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(2)



Obtaining a T-S model (1) can be performed from different
methods such as linearization around some operating points
and using adequate weighting functions. It can also be
obtained by black-box approaches which allow to identify
the parameters of the model from input-output data. Finally,
a T-S model can be obtained from the well-known nonlinear
sector transformations [19], [12]. This transformation allows
to obtain an exact T-S representation of nonlinear model with
no information loss on a compact set of the state space.

Thanks to the convex sum property of the weighing
functions (2), it is possible to generalize some tools devel-
oped in the linear domain to the nonlinear systems. This
representation (1) is very interesting in the sense that it
simplifies the stability studies of nonlinear systems and
the design of control laws and observers. In [19], [6], the
stability and stabilization tools are inspired from the study
of linear systems. In [1], [10], the authors worked on the
problem of state estimation and diagnosis of T-S fuzzy
systems. The proposed approaches in these last papers rely
on the generalization of the classical observers (Luenberger
Observer [8] and Unknown Input Observer (UIO) [3]) to the
nonlinear systems. Recently in [16], a new approach, derived
from the Polya’s theorem, leads to asymptotic necessary and
sufficient stability conditions.

In the remaining of the paper, the two following lemmas
are used.

Lemma 1:Consider two matricesX and Y with appro-
priate dimensions andG a positive definite matrix. The
following property is verified

XT Y + Y T X ≤ XT GX + Y T G−1Y G > 0 (3)
Lemma 2: (Congruence) Consider two matricesP andQ,

if P is positive definite and ifQ is a full column rank matrix,
then the matrixQPQT is positive definite.

λmax(M) represents the maximum singular value of the
matrix M .

III. PROBLEM STATEMENT

Under actuator faults, the system (1) can be re-written in
the following form






ẋ(t) =
r
∑

i=1

µi(ξ(t)) (Aix(t) + Bi (u(t) + f(t)))

y(t) = Cx(t)
(4)

wheref(t) is an actuator fault. Faults can affect a system
in several different ways. They can be represented by an
additive or a multiplicative external signal. In this case,they
affect the performances of the system but its stability is not
affected. It can be pointed out that if the fault depends on
the system state, it can change the structure of the model
and cause its unstability. For instance, malfunctions of the
actuator can be represented by a faulty control input defined
by uf (t) = (Inu

− γ)u(t) which can be easily re-written in
the form of an external additive signal:(u(t) + f(t)) where
f(t) = −γu(t) andγ = diag (γ1, γ2, · · · γnu

) , 0 ≤ γi ≤ 1

(i = 1, ..., nu) where






γi = 1 ⇒ total failure of theith actuator
γi = 0 ⇒ the ith actuator is healthy
γi ∈

]

0 1
[

⇒ loss of effectiveness of theith actuator

For example ifγ2 = 0.4, there is a40% loss of effectiveness
of the second actuator. Note that such multiplicative faults
can cause the system instability.

Assumption 1:In this paper, it is assumed that

• A1. the faults are assumed to have norm bounded first
time derivative

∥

∥

∥ḟ(t)
∥

∥

∥ ≤ f1max, 0 ≤ f1max < ∞ (5)

• A2. rank(CBi) = nu

• A3. Total actuator failures are not considered, i.e.γi ∈
[0 1[

In this paper, a new actuator fault tolerant control is
proposed. Using a fast adaptive observer proposed in [20]
and extended here to nonlinear T-S systems, the state and
the fault affecting the system are estimated rapidly. The
use of such an observer is motivated by the fact that if a
fault occurs, it is important to detect it quickly and with a
good accuracy in order to take it into account and preserve
the system performances. With the use of Lyapunov theory,
sufficient conditions are obtained for asymptotic stability in
the constant fault case and for input-to-state stability (ISS)
in the case of time varying faults. The LMI formulation
is used for representing the obtained stability conditionsin
an adequate form for existing LMI solvers. Finally, relaxed
stability conditions are obtained with the use of Polya’s
theorem [16].

IV. FAULT TOLERANT CONTROL FOR NONLINEAR

SYSTEMS

An adaptive observer estimating the state and the faults of
the system (4) is given by


























˙̂x(t) =
r
∑

i=1

µi(ξ(t))(Aix̂(t) + Bi(u(t) + f̂(t)) + Liey(t))

ŷ(t) = Cx̂(t)
˙̂
f(t) = Γ

r
∑

i=1

µi(ξ(t))Fi(ėy(t) + σey(t))

ey(t) = y(t) − ŷ(t)
(6)

and the proposed active fault tolerant control takes the form

u(t) = −

r
∑

i=1

µi(ξ(t))Kix̂(t) − f̂(t) (7)

The objective is to determine the parametersLi, Γ, Fi,
Ki and σ such that the state of the system converges
asymptotically to zero if the faultf(t) is constant or to
a small ball around the origin in the case wheref(t) is
time varying with norm bounded first time derivative. The
expression describing the dynamic of the faultf(t) given in
(6) depends on both the output error and the derivative of
the output error.



Let us consider the fault and state estimation errors
ex(t) = x(t)− x̂(t) andef (t) = f(t)− f̂(t). The dynamics
of the state estimation error and the closed-loop system with
the control (7) obey to the differential equations

ėx(t) =

r
∑

i=1

µi(ξ(t)) (Φiex(t) + Bief (t)) (8)

ẋ(t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t)) (Ξijx(t) + Bief + BiKjex)

(9)
whereΦi = Ai − LiC andΞij = Ai − BiKj .

Theorem 1:Under the assumptions 1, given positive
scalarsσ and β, if there exists symmetric and positive
definite matricesX ∈ R

n×n, P2 ∈ R
n×n, G ∈ R

nf×nf

(with nf = nu) and matricesMi ∈ R
nu×n andNi ∈ R

n×ny

and a positive scalarη solution to the optimization problem

min η s.t. (10)
(

ηI BT
i P2 − FiC

(

BT
i P2 − FiC

)T
ηI

)

> 0 (11)

Qij =













Sij BiMj Bi 0 0
∗ −2βX 0 βI 0
∗ ∗ −2βI 0 βI

∗ ∗ ∗ Ωj Rij

∗ ∗ ∗ ∗ Ψij













< 0 (12)

Sij = XAT
i + XAi − BiMi − MT

i BT
i (13)

Ωj = AT
i P2 + P2Ai − NiC − CT NT

i (14)

Rij = −
1

σ
(AT

j P2 − CT NT
j )Bi (15)

Ψij = −
1

σ

(

BT
i P2Bj + BT

j P2Bi

)

+
1

σ
G (16)

then the state of the systemx(t), the state estimation error
and the fault estimation erroref (t) are bounded. Further-
more, if f1max = 0, these variables converge asymptotically
to zero. The gains of the observer and the fault tolerant
control are given byFi, Li = P−1

2
Ni andKi = MiX

−1.
Proof: In order to prove both the stability of the

closed-loop system and the convergence of the state and fault
estimation errors, the proof is based on a Lyapunov function
depending onx(t), ex(t) andef (t) defined by

V (t) = xT (t)P1x(t) + eT
x (t)P2ex(t) +

1

σ
ef (t)Γ−1ef (t)

(17)
According to the equations (8) and (9), the time derivative
of V (t) is given by

V̇ (t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

+
2

σ
eT
f (t)Γ−1ėf (t)) (18)

where Πij = ΞT
ijP1 + P1Ξij and Ωi = ΦT

i P2 + P2Φi.

Knowing that ėf (t) = ḟ(t) −
˙̂
f(t) and given the expression

of f̂(t) in (6), one obtains

V̇ (t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

−
2

σ
eT
f (t)Fi(ėy(t) + σey(t)) +

2

σ
eT
f (t)Γ−1ḟ(t))

(19)

Using the differential equation (8) generatingex(t), the
following is obtained

V̇ (t) =
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

−
2

σ
eT
f (t)FiCΦjex(t) −

2

σ
eT
f (t)FiCBjef (t)

− 2eT
f (t)FiCex(t) +

2

σ
eT
f (t)Γ−1ḟ(t)) (20)

Using Lemma 1 and assumptionA1, we deduce that

2
1

σ
eT
f (t)Γ−1ḟ(t)

≤
1

σ
eT
f (t)Gef +

1

σ
ḟT (t)Γ−1G−1Γ−1ḟ(t)

≤
1

σ
eT
f (t)Gef +

1

σ
f2

1 max
λmax

(

Γ−1G−1Γ−1
)

(21)

and using assumptionA2, it is possible to obtainFi andP2

such thatBT
i P2 = FiC holds. The time derivative of the

Lyapunov function (20) is bounded as follows

V̇ (t) ≤ x̃T (t)

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij x̃(t) + δ (22)

where x̃T (t) = (xT (t) eT
x (t) eT

f (t))T , δ =
1

σ
f2

1 max
λmax

(

Γ−1G−1Γ−1
)

and

∆ij =





Πij P1BiKj P1Bi

∗ Ωi − 1

σ
ΦT

j P2Bi

∗ ∗ Ψij



 (23)

If the following equation holds
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (24)

it is established that

V̇ (t) < −ε ‖x̃(t)‖
2

+ δ (25)

whereε is defined by

ε = λmin



−

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij



 (26)



It follows that V̇ (t) < 0 if ε ‖x̃(t)‖
2

> δ, and according to
Lyapunov stability theory the statex(t), the state estimation
error ex(t) and the fault estimation erroref (t) converge to
a small ball of convergence around the origin. This ball is
smaller as the constantδ converges to zero.

In order to achieve the proof, it remains to establish some
LMI conditions to ensure that (24) andBT

i P2 = FiC holds.
The latter is first considered.

As pointed out in [20], it is difficult to solve simul-

taneously, the inequality
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0

with the equality constraintBT
i P2 = FiC. A technique for

reducing this difficulty is to formulate the equality constraint
as an optimization problem [2]

min η s.t.

(

ηI BT
i P2 − FiC

(

BT
i P2 − FiC

)T
ηI

)

> 0

(27)
For the sake of simplicity, the following notations will be
used

Yξ =

r
∑

i=1

µi(ξ(t))Yi, Yξξ =

r
∑

i=1

r
∑

i=1

µi(ξ(t))µj(ξ(t))Yij (28)

whereYi andYij are given matrices. Using this representa-
tion, the inequality (24) becomes

∆ξξ =

(

Πξξ Θξξ

ΘT
ξξ Λξξ

)

< 0 (29)

where
Θij =

(

P1BiKj P1Bi

)

(30)

Λij =

(

Ωi − 1

σ
ΦT

j P2Bi

− 1

σ

(

ΦT
j P2Bi

)T
Ψij

)

(31)

Consider a matrixX defined as follows

X =

(

P−1

1
0

0 X1

)

, X1 =

(

P−1

1
0

0 I

)

(32)

Using Lemma 2, post and pre-multiplying the inequality (29)
by X, it follows that (29) is equivalent to the following
inequality

(

P−1

1
ΠξξP

−1

1
P−1

1
ΘξξX1

X1Θ
T
ξξP

−1

1
X1ΛξξX1

)

< 0 (33)

Since the following inequality holds
(

X1 + βΛ−1

ξξ

)T

Λξξ

(

X1 + βΛ−1

ξξ

)

≤ 0

⇔ X1ΛξξX1 ≤ −β
(

X1 + XT
1

)

− β2Λ−1

ξξ (34)

and with a Schur complement, it follows that the inequality
(33) holds if (35), displayed below, is satisfied





P−1

1
ΠξξP

−1

1
P−1

1
ΘξξX1 0

ΘT
ξξP

−1

1
X1 −2βX1 βI

0 βI Λξξ



 < 0 (35)

Using the notations (28) and the definitions of the matrices
Πξξ, Θξξ and Ωξξ given in the equalities (30) and (31),
and with the changes of variablesX = P−1

1
, Mi = KiX ,

Ni = P2Li it is easy to obtain the inequalities given in
the theorem 1. Finally, the inequality (25) is satisfied, if the
optimization problem given by (10) under LMI constraints
(12) has a solution, which ends the proof.

Remark 1:Note that if the faultf(t) is constant, then
f1max = 0 andδ = 0, consequently the asymptotic stability
is achieved, sincėV (t) < 0 for every x̃(t).

Remark 2:After solving the optimization problem given
in the theorem 1, the input-to-state stability condition given
in (25) is satisfied. Thus, in the case of time varying faults
with bounded first time derivative, the statex(t), the state
estimation errorex(t) and the fault estimation erroref (t)
converge to an origin centered ball defined by the terms
δ and ε. Choosing a high value for the parameterΓ will
minimize δ without changingε (that does not depend on
Γ) and consequently will minimize the radius of the ball
in which x̃ converges. It thus improves the accuracy of the
estimation.

Remark 3:The objective of fault tolerant control is to
compensate the faults, so it is important to estimate them as
soon as possible with a good accuracy. The adaptive observer
studied in this paper can be considered as an improvement
of the classical PI observer, in the sense that convergence
of the state and fault estimations is proved (in an origine
centered ball) even in non constant fault case, whereas the
assumption of constant fault is needed to prove the estimation
error convergence when using a PI observer.

V. CONSERVATISM REDUCTION WITHPOLYA’ S THEOREM

In the previous section, the proposed result may be
conservative in the sense that common Lyapunov matrices
were sought to satisfyr2 LMIs. Recently, a new interesting
method to reduce the conservativeness of the matrix summa-
tions inequality has been proposed with the use of Polya’s
theorem [16].

Let us consider the inequality (36)

∆ξξ =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (36)

where ∆ij is defined in equation (23). Knowing that
(

r
∑

i=1

µi(ξ(t))

)p

=
r
∑

i=1

µi(ξ(t)) = 1 wherep is a positive

integer, the inequality (36) is equivalent to
(

r
∑

i=1

µi(ξ(t))

)p r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (37)

1) example:In order to better assimilate this approach, let
us consider this example wherer = 2 (two sub-models), then
the stability is ensured if inequality (36) holds. Classically,
the negativity of (36) is ensured if all the terms∆ij are
negative fori, j = 1, 2. However, using Polya’s theorem, the
negativity of the inequality (36) is equivalent to the negativity
of (37). Choosingp = 1 we obtain three summations, and
the inequality (37) is equivalent to

2
∑

i1=1

2
∑

i2=1

2
∑

i3=1

µi1µi2µi3∆i1i2 < 0 (38)



Consequently, the negativity of (36) is ensured if

∆11 < 0, ∆22 < 0 (39)

∆11 + ∆12 + ∆21 < 0 (40)

∆22 + ∆21 + ∆12 < 0 (41)

By comparison to the classical result where all inequalities
∆ij < 0 for all i, j = 1, 2 are needed, this new approach only
requires the negativity of the terms∆ij and the negativity
of the terms∆ij for i 6= j is no longer needed.

As explained in [16], the negativity of (36) is guaranteed if
inequality (37) is verified with a given parameterp. Increas-
ing p provides less conservative stability conditions and if
p → +∞ asymptotic necessary and sufficient conditions for
the negativity of (36) are obtained. The authors proposed
also an algorithm to compute finite values ofp which gives
necessary and sufficient conditions with a given accuracy.
The reader can refer to the paper [16] for more details on
Polya’s theorem based relaxation approach.

In order to reduce the conservatism introduced to ensure
(1), the Polya’s theorem is applied directly on the inequality
(35), with the changes of variablesX = P−1

1
, Mi = KiX ,

Ni = P2Li, for a suitable value ofp. Note that the obtained
conditions are only sufficient for guaranteeing the negativity
of (25). Theorem 2 is obtained by applying the Polya’s
approach to theorem 1 and by settingp = 3.

Theorem 2:(p = 3) Under the assumptions 1, given pos-
itive scalarsσ andβ, if there exists symmetric and positive
definite matricesX ∈ R

n×n, P2 ∈ R
n×n, G ∈ R

nf×nf

(with nf = nu) and matricesMi ∈ R
nu×n andNi ∈ R

n×ny

and a positive scalarη solution to the optimization problem

min η s.t. (42)
(

ηI BT
i P2 − FiC

(

BT
i P2 − FiC

)T
ηI

)

> 0 (43)

Qii < 0, i = 1, ..., r

3Qii + Qij + Qji < 0, i, j = 1, ..., r, i 6= j

3Qii + Qjj + 3Qij + 3Qji < 0, i, j = 1, ..., r, i 6= j

6Qii + 3Qij + 3Qik + 3Qji + 3Qki + Qjk + Qkj < 0

i, j, k = 1, ..., r, i < j < k

3Qii + 3Qjj + 6Qij + 6Qji + 3Qik + 3Qki

+3Qjk + 3Qkj < 0,

i, j, k = 1, ..., r, i < j < k

whereQij is defined in (12), then the state of the system
x(t), the state estimation errorex(t) and the fault estimation
error ef (t) are bounded. The gains of the observer and the
fault tolerant control are given byFi, Li = P−1

2
Ni and

Ki = MiX
−1.

VI. SIMULATION EXAMPLE

To illustrate the performances of the proposed approach,
let us consider the system (4) defined by the matrices

A1 =

(

0 1
17.2941 0

)

, A2 =

(

0 1
3.5361 0

)

,

B1 =

(

0
−17.65

)

, B2 =

(

0
−17.63

)

, C = I2

The weighting functions are given byµ1(x(t)) = 1 −
2

π
|x1(t)| andµ2(x(t)) = 1 − µ1(x(t)). Let us consider the

fault f(t) defined as follows

f(t) =















0 t < 20
1.4 sin(t) + 21 20 ≤ t < 50

7.5 sin(2t) + 7.5 50 ≤ t < 70
−0.88u(t) 70 ≤ t ≤ 100

(44)

For t ≥ 70 s, the faultf(t) describes a loss of effectiveness
of the actuator, which satisfies assumptionA3. The first
simulation is obtained by synthesizing a classical controller,
without taking into account the faults, in the formu(t) =

−
r
∑

i=1

µi(ξ(t))Kix(t) by using an approach proposed in [19].

For example, the gainsKi can be obtained byKi = MiP
−1

whereP andMi are solution of the LMIs

PAT
i + PAi − BiMj − MT

j BT
i < 0, i, j = 1, 2 (45)

With this control law, as shown in the figure 1, the states
of the system converge to zero in fault free case, but in
the faulty case the system performances are degraded from
t = 20 s to t = 70 s and the system becomes unstable for
t ≥ 70 s. The proposed fault tolerant control is designed by
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x
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(t)

x
2
(t)

Fig. 1. System states with classical control

solving the optimization problem of theorem 1. For that, the
parameter valuesσ = 0.8, Γ = 44 and β = 10 are chosen.
The obtained gains of the observer and the controller are

L1 =

(

0.52 1.22
17.24 0.27

)

, L2 =

(

0.52 1.21
3.48 0.26

)

F1 =
(

3.63 −43.14
)

, F2 =
(

3.62 −43.09
)

K1 =
(

161.81 −66.04
)

, K2 =
(

156.06 −65.28
)

The figure 2 illustrates the results of the proposed control law
obtained after solving the optimization problem of theorem
1. One can note that, with the faultf(t) defined in (44), the
performances are better than those of the classical controland
the system remains stable fort ≥ 70 (figure 2 (top)). The
observer rapidly and accurately estimates the fault as shown
in the figure 2 (bottom). In this example, the classical control
cannot preserve the stability of the system whenγ ≥ 0.88
however (based on simulations not displayed here due to
space limitation) it can be claimed that the proposed FTC
strategy can tolerate faults untilγ = 0.97.
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Fig. 2. Fault tolerant control : states of the system (top) - fault and its
estimation (bottom)

In addition, this approach provides a rapid and accurate
estimation of occurred actuator faults with the adaptive
observer (figure 2 (bottom)) which constitutes a FDI block
for diagnosis. Iff(t) = 7.5sin(2t), its derivative over the
time is bounded by15, then in this simulation example, the
term δ = 1

σ
f2

1maxλmax(Γ−1G−1Γ−1) = 0.0288, and the
term ε can be minimized by an appropriate choice ofΓ to
reduce the radius of the ball in which converge the estimation
errors and then obtain a more accurate fault estimation.

VII. CONCLUSIONS AND FUTURE WORKS

This paper is dedicated to the study of a new actuator fault
tolerant control for nonlinear systems in Takagi-Sugeno’s
form. The active fault tolerant control requires the simul-
taneous estimations of the state and fault, obtained by the
proposed adaptive observer. This observer is able to estimate
time varying faults with a good accuracy simultaneously with
the estimation of the state. Furthermore, it gives the estima-
tions rapidly which is important to preserve the performances
of the system. The stability analysis is done with Lyapunov
theory and ISS (Input-to-State Stability) is proved in the case
of time varying faults, and asymptotic stability in the case
of constant faults. Sufficient stability conditions are given
in terms of LMI. In order to reduce the conservatism of
the given conditions, Polya’s theorem is used which allows
to derive relaxed conditions for FTC design for nonlinear
systems. Future works will concern the FTC of systems
affected by both sensor and actuator fault and/or uncertainties
and/or perturbations. It will also be interesting to study the
case when a set of actuators is completely out of order, in
this situation the dimensions of the matricesBi and of the
control vectoru(t) are decreased.
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