New fault tolerant control strategy for nonlinear systems with multiple
model approach
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Abstract— This paper addresses a new methodology to con- approach requires a very robust Fault Detection and Isola-
struct a fault tolerant control (FTC) in order to compensate  tion (FDI) block which constitutes its major disadvantage.
actuator faults in nonlinear systems. This approach is based on Indeed. a false alarm or a non detected fault can lead to
the representation of the nonlinear model with a multiple model ’ . .
under Takagi-Sugeno’s form. The proposed contral requires degraded performance or even to mstab!hty. Other smoqth
a simultaneous estimation of the system states and of the fault tolerant control laws are proposed in [5] for Takagi-
occurring actuator faults. The performance of the control Sugeno systems and in [14] for LPV systems.
depends on the quality of the estimations, indeed, it is important Many efforts are dedicated to the problem of designing

to estimate accurately and rapidly the states and the faults. This ; ;
task is then performed with an Adaptive Fast State and Fault an active fault tolerant control of nonlinear systems, agon

Observer (AFSFO). The stability conditions are established with them, the l_ls_e of Takagi-Sugeno rep_resentation _that _co_m-
Lyapunov theory and expressed in linear matrix inequality ~bines simplicity and accuracy of nonlinear behaviors, it is
formulation to ease the design of the FTC. Furthermore, introduced initially in [18]. The idea is to consider a set of
relaxed stability conditions are given with the use of the Polya’s |inear sub-systems. An interpolation of all these sub-r®de
theorem. with nonlinear functions satisfying the convex sum propert

Index Terms— Nonlinear systems, Takagi-Sugeno model (T- . - .
S), linear matrix inequality (LMI), Polya’s theorem, Lyapunov allows to obtain the global behavior of the system described

theory, input-to-state stability (ISS), fault tolerant control N a large operating range. Some works can be mentioned
(FTC) in the FTC field for nonlinear systems. For example, in

[4], the authors took into account actuator faults for non-
I. INTRODUCTION linear descriptor systems with Lipschitz nonlinearitids.

Since several years, the problem of fault tolerance hdgl: @ method which requires only the fault isolation was
been treated from many points of view. Two classes can théoPosed for T-S systems. It was based on a bank of observer
be considered: passive control and active control. The firg@sed controllers. A switching mechanism is then designed
class may be viewed as a robust control. It requires the @¢Pending on the obtained residuals. More recently, in [S],
priori knowledge of the possible faults which may affect thdh® FTC strategy with trajectory tracking and proportienal
system. The control is then designed in order to compensdfégral observer (P10), is developed for the T-S systentis wi
them. The interest of this approach is the fact that no of€ighting functions depending on the state of the system
line information is needed and the structure of the contrd¥hich is not accessible for measure.
law remains unchanged. The principal idea of this kind of
control is based on the consideration of all possible faults
as uncertainties which are taken into account for the designThe T-S modeling allows to represent the behavior of
of the tolerant control by using different techniques likenonlinear systems by the interpolation of a set of linear sub
Hoo [15], [13]. Generally, the structure of the uncertaintiesnodels. Each sub-model contributes to the global behavior o
(faults) are not taken into account in order to lead to a convahe nonlinear system through a weighting functjoié (¢)).
optimization problem. Furthermore, the class of considereThe T-S structure is given by
faults is limited, it becomes then risky to use only the paessi -
fault tolerant control (see [11] for more details). (t) = > pwi(€(t))(Aiz(t) + Biu(t))

The second class concerns active fault tolerant control i1
which is more interesting due to its possibility to take y(t) = Ca(t)
into account a large class of faults, because of its variabigherez(t) € R” is the state vectom(t) € R™ is the input
structure which may change in the presence of faults. TRexctor,y(t) € R represents the output vectot; € R"*",
knowledge of some informations about these last are redjuirg, ¢ R"*"« and ¢ € R™*" are known matrices. The
and are obtained from a Fault Detection and Diagnos@inctionsy;(£(t)) are the weighting functions depending on
(FDD) block. Different ideas are developed in the literafur the variable¢(t) which is accessible for measure (as the
for example, a Control Law Re-scheduling [9], [7], [17]. $hi input or the output of the system). These functions verify
nthe following properties

II. TAKAGI-SUGENO STRUCTURE FOR MODELING
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Obtaining a T-S model (1) can be performed from differenfi = 1, ..., n,,) where
methods such as linearization around some operating poin
and using adequate weighting functions. It can also b
obtained by black-box approaches which allow to identify
the parameters of the model from input-output data. Fipally i
a T-S model can be obtained from the well-known nonlinegegr examp|e |f72 = 0.4, there is a10% loss of effectiveness

sector transformations [19], [12]. This transformatioloa@b  of the second actuator. Note that such multiplicative fault
to obtain an exact T-S representation of nonlinear modél witcan cause the system instability.

no information loss on a compact set of the state space.  Assumption 1:In this paper, it is assumed that

Thanks to the convex sum property of the weighing | a1 the faults are assumed to have norm bounded first
funct|o_ns (2), _|t is p053|bl_e to generallz_e some tools deve_l time derivative
oped in the linear domain to the nonlinear systems. This
representation (1) is very interesting in the sense that it Hf(t)” < fimazs 0 < fimaz < 00 (5)
simplifies the stability studies of nonlinear systems and
the design of control laws and observers. In [19], [6], the  A2. rank(CB;) = n,
stability and stabilization tools are inspired from thedstu  « A3. Total actuator failures are not considered, #e€
of linear systems. In [1], [10], the authors worked on the [0 1]
problem of state estimation and diagnosis of T-S fuzzy In this paper, a new actuator fault tolerant control is
systems. The proposed approaches in these last papers @gposed. Using a fast adaptive observer proposed in [20]
on the generalization of the classical observers (Luembergand extended here to nonlinear T-S systems, the state and
Observer [8] and Unknown Input Observer (UIO) [3]) to thethe fault affecting the system are estimated rapidly. The
nonlinear systems. Recently in [16], a new approach, derive!se of such an observer is motivated by the fact that if a
from the Polya’s theorem, leads to asymptotic necessary af@ilt occurs, it is important to detect it quickly and with a

~; = 1 = total failure of thei" actuator
v; = 0 = the i*" actuator is healthy
€ ] 0 1 [ = loss of effectiveness of thé" actuator

sufficient stability conditions. good accuracy in order to take it into account and preserve
In the remaining of the paper, the two following lemmaghe system performances. With the use of Lyapunov theory,
are used. sufficient conditions are obtained for asymptotic stapiilit

Lemma 1:Consider two matricest and Y with appro- the constant fault case and for input-to-state stabili§S{l

priate dimensions and? a positive definite matrix. The in the case of time varying faults. The LMI formulation
following property is verified is used for representing the obtained stability conditioms

an adequate form for existing LMI solvers. Finally, relaxed
XTY +YTX < XTGX +YTG-lY G >0 (3) stability conditions are obtained with the use of Polya’s

Lemma 2: (Congruence) Consider two matricsand@, theorem [16].
if P is positive definite and i) is a full column rank matrix,
then the matrixQ PQ” is positive definite.

Amaz (M) represents the maximum singular value of the _ _ .
matrix M. An adaptive observer estimating the state and the faults of

the system (4) is given by

IV. FAULT TOLERANT CONTROL FOR NONLINEAR
SYSTEMS

Ill. PROBLEM STATEMENT

)
. . 1
Under e_lctuator faults, the system (1) can be re-written i §(t) = Ci(t)
the following form - i

B0) = 32 (E0) (i) + B w0 + 70Dy L e0) =0 -0 "
y(t) = Ca(?) and the proposed active fault tolerant control takes then for

where f(t) is an actuator fault. Faults can affect a system r . .

in several different ways. They can be represented by an u(t) = _Z“i(g(t))Kix(t) - f@) @)
additive or a multiplicative external signal. In this catey =1

affect the performances of the system but its stability is nd'he objective is to determine the parametdrs I', F;,
affected. It can be pointed out that if the fault depends oK; and o such that the state of the system converges
the system state, it can change the structure of the modeymptotically to zero if the faulif(¢) is constant or to
and cause its unstability. For instance, malfunctions ef tha small ball around the origin in the case whef&) is
actuator can be represented by a faulty control input defingidne varying with norm bounded first time derivative. The
by us(t) = (In, — 7)u(t) which can be easily re-written in expression describing the dynamic of the faf(t) given in

the form of an external additive signdk:(¢) + f(¢)) where (6) depends on both the output error and the derivative of
f(t) = —yu(t) andy = diag (v1,72, - Vn,),0<7; <1 the output error.



Let us consider the fault and state estimation errorshere Il;; = E?}Pl + PiE;; and Q; = <I>iTP2 + Pr®;.

eo(t) = x(t) — &(t) andey(t) = f(t) — f(t). The dynamics  nowing thate,(t) = f(t) — f(t) and given the expression
of the state estimation error and the closed-loop systeim wif,¢ (1) in (6), one obtains

the control (7) obey to the differential equations

bnlt) = im(&(t)) (Diea(t) + Bies (1)) ®) V() = ;;m(i(t))uj(€(t))(xT(t)Hijﬂr(t)
=l + el (1) Qey(t) + 207 () PLBi K je(t)
(6) = 32 3 (€O (E(0) Gagolt) + B + Bike) B e e S
=li= ©) - e () Fi(éy(t) +oey(t)) + ~¢5 ()T f(t))
where®; = A; — L;,C and Eij =A; — BlKJ (19)

Theorem 1:Under the assumptions 1, given positive
scalarso and g, if there exists symmetric and positive
definite matricesY¥ € R"*", P, € R"*" G € R *X"s

Using the differential equation (8) generating(t), the
following is obtained

(with ny = n,) and matrices\/; € R™=*" andN; € R"*"v : U, .
and a positive scalaf solution to the optimization problem V) = D mi(€)m ()" ()T (t)
i=1 j=1
min n  s.t. (10) + eg(t)Qiez(t) + 2:(;T(t)PlBinem(t)
( 0l BIP, — FiC ) o + 20T OPBies (1) + 20 (O P2Bies (1)
(BTP, - F,C)" nl — G WOF0%es(t) — ~ef ()FCBjes (1)
Sy BiM; B 0 0 — 2L () F,Cey(t) + EeT HL (¢ (20)
s G £ () (t) + —ep (T F(2))
Q;j = * * =281 0 pI <0 (12) Using Lemma 1 and assumptiél, we deduce that
* * * Qj Rij 1 .
l T l'T 1 =114
S;; = XA+ XA, —-B;M;— MBI  (13) S JertGep+ 2 f (O GTT /()
1 1
Q0 = AZ?;PQ + PyA; — N;,C—CTNT  (14) < —ef (Ges + —fimachmas (T71GTITTY) (20)
T T ArT
Rij = _;(Aj Py — OO N; )Bi (19 and using assumptioA2, it is possible to obtairf; and P,
_ 1, T 1 such thatB] P, = F;C holds. The time derivative of the
Vij = s (B! P2B; + Bj P2Bi) + ;G (16) Lyapunov function (20) is bounded as follows

then the state of the systenit), the state estimation error . o L :
and the fault estimation error;(t) are bounded. Further- V() <2 (t) SO miE®)n (E()AGE®L) +6 (22)

more, if f1.,q = 0, these variables converge asymptotically i=1j=1
to zero. The gains of the observer and the fault toleranfhere 77(¢) = (27(t) eI(t) ef(@)7, § =
. —1 1 z f '
control are given bWZv L; = P2 N; andK; = M; X~ . lfQ A (F—lG—lr—l) and
e o J 1 max/‘max
Proof: In order to prove both the stability of the
closed-loop system and the convergence of the state arid faul Il;; PiB:K; P B;
estimation errors, the proof is based on a Lyapunov function Ay = * Q; —10TP,B; (23)
depending one(t), e,(t) andey(t) defined by * * 5

If the followi tion hold
V(t) = 27 () Pra(t) + € (1) Paca(t) + —es (T e (1) & TOTOWInG edriation TS
ag
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According to the equations (8) and (9), the time derivative
of V(¢) is given by

>N € (E() A < 0 (24)

i=1 j=1

it is established that

HOREED I E O EOICHONRED V(t) < —e |2 + 6 (25)
T ;2(;)}21%(75) T 2xT(t)P1Binex(t) wheree is defined by
4+ 22T(t)PyBiey(t) + 2eX (t) PoBiey(t) ror
= Amin | — % j Aij 26
n %e}"(t)r—léf(t)) (18) € ( ;;u (&(8))m; (£(2)) ) (26)



It follows that V() < 0 if ¢ ||Z(¢)||> > 0, and according to N; = P,L, it is easy to obtain the inequalities given in
Lyapunov stability theory the statgt), the state estimation the theorem 1. Finally, the inequality (25) is satisfied hié t
error e, (t) and the fault estimation errar;(¢) converge to optimization problem given by (10) under LMI constraints
a small ball of convergence around the origin. This ball i§$12) has a solution, which ends the proof. [ ]
smaller as the constantconverges to zero. Remark 1:Note that if the faultf(¢) is constant, then

In order to achieve the proof, it remains to establish somf ... = 0 andd = 0, consequently the asymptotic stability
LMI conditions to ensure that (24) and] P, = F;C holds. is achieved, sinc& (t) < 0 for every Z(t).
The latter is first considered. Remark 2: After solving the optimization problem given

As pointed out in [20], it is difficult to solve simul- in the theorem 1, the input-to-state stability conditiomegi

: LR e _ 3 in (25) is satisfied. Thus, in the case of time varying faults

taneously, the mequallt)g:l J; HiE(O)i (E0) Ay < 0 with bounded first time derivative, the stat¢t), the state
with the equality constrainB! P, = F;C. A technique for estimation errore, () and the fault estimation errary(t)
reducing this difficulty is to formulate the equality cormsiit  converge to an origin centered ball defined by the terms
as an optimization problem [2] 0 and e. Choosing a high value for the paramefterwill
minimize § without changinge (that does not depend on

I BI'p, — F,C . N )
min 7 s.t. ( T n T i 2 >0 I") and consequently will minimize the radius of the ball
(Bz' Py = Fic) nl @7) in which Z converges. It thus improves the accuracy of the
For the sake of simplicity, the following notations will be estimation.

Remark 3: The objective of fault tolerant control is to
compensate the faults, so it is important to estimate them as
soon as possible with a good accuracy. The adaptive observer
2“7 )Yi, Yee = ZZ”’ §(1))Yi; (28) studied in this paper can be considered as an improvement
. . ) ) of the classical Pl observer, in the sense that convergence
whereY; andY;; are given matrices. Using this representayf the state and fault estimations is proved (in an origine

used

=1 1=1

tion, the inequality (24) becomes centered ball) even in non constant fault case, whereas the
Mee Ope assumption of constant fault is needed to prove the estimati
Age = <0 (29) i
133 6?5 Ace error convergence when using a Pl observer.
where V. CONSERVATISM REDUCTION WITHPOLYA’S THEOREM
0;; = ( P\B,K; P B; ) (30) In the previous section, the proposed result may be
- conservative in the sense that common Lyapunov matrices
A — Q; - —5 2 2B (31) were sought to satisfy? LMIs. Recently, a new interesting
“ —2 (T P,B;) ¥ method to reduce the conservativeness of the matrix summa-

_ . . tions inequality has been proposed with the use of Polya’s
Consider a matrixX defined as follows theorem [16].

v P70 X - Pt oo (32) Let us consider the inequality (36)
0 X1 0 1
Using Lemma 2, post and pre-multiplying the inequality (29) Z Z 14 (& §(t))Ai; <0 (36)

by X, it follows that (29) is equivalent to the following i=1j=1

inequality where A;; ispdefined in equation (23). Knowing that

( PrMIee Py PO X, ) <0 (33) (Z wi(E(t ))) Zuz( (t)) = 1 wherep is a positive

— =1
X10LP " XiAg Xy integer, the inequality (36) is equivalent to

Since the following inequality holds
. (Z wi(€ ) ZZM E(t)A;; <0 (37)
(X1 480G Aee (X1 4801 ) <0 =i
= XiAee Xy < =B (X1 + X1T> _ 52/\5_51 (34) 1) ex_ample;ln order to better assimilate this approach, let
us consider this example where= 2 (two sub-models), then
and with a Schur complement, it follows that the inequalitthe stability is ensured if inequality (36) holds. ClasBica
(33) holds if (35), displayed below, is satisfied the negativity of (36) is ensured if all the termds;; are
1 _ 1 negative fori, j = 1, 2. However, using Polya’s theorem, the
PP P7'OeXy 0 negativity of tfieinequality (36) is equgi]vale?l/tto the négt

T —1
O¢e1 0 X _QﬁIXl fI <0 (35) of (37). Choosingp = 1 we obtain three summations, and
p & the inequality (37) is equivalent to
Using the notations (28) and the definitions of the matrices
IIee, O and Qg given in the equalities (30) and (31), Z Z Z i, fhig Pis i iy < O (38)

and with the changes of variableé = P!, M; = K;X, oyl



Consequently, the negativity of (36) is ensured if By = ( 0 ) , By = ( 0 ) , C=1

(39) —17.65 —17.63

A <0, A < 0 39

A :A N A22 < 0 (40) The weighting functions are given by, (z(t)) = 1 —

11 12 21 2 121(t)] and pa(2(t)) = 1 — py (z(t)). Let us consider the

Agg + Ao + A1z < 0 (41)  fault f(¢) defined as follows

By comparison to the classical result where all inequalitie 0 t < 20

AVY < 0 forall i, j = }, 2 are needed, this new approac_h _only Ft) = L4sin(t)+21  20<t <50 (a4)

requires the negativity of_ the terms;; and the negativity . T ) 7.5sin(2t)4+7.5 50<t<70

of the termsA;; for ¢ # j is no longer needed. —0.88u(t) 70 <t <100

As explained in [16], the negativity of (36) is guaranteed if
inequality (37) is verified with a given parameterincreas- Fort > 70 s, the fault f(¢) describes a loss of effectiveness
ing p provides less conservative stability conditions and iff the actuator, which satisfies assumptiéB8. The first
p — 400 asymptotic necessary and sufficient conditions fofimulation is obtained by synthesizing a classical coterpl
the negativity of (36) are obtained. The authors proposeithout taking into account the faults, in the forait) =
also an algorithm to compute finite valuesofvhich gives _ S i(€(t)) Kz (t) by using an approach proposed in [19].
necessary and sufficient conditions with a given accuracy. i=1 . _ .
The reader can refer to the paper [16] for more details O}éor example, the gain&’; can be obtained b; = M; P
Polya’s theorem based relaxation approach. where P> and M; are solution of the LMis

In order to reduce the.conse.rvatis.m introduced_ to ensure pAT | pA, — B;M, — M]TB;f <0, i,j=1,2 (45)
(1), the Polya’s theorem is applied directly on the inegyali
(35), with the changes of variable® = Plfl, M, = K;X, With this control law, as shown in the figure 1, the states
N, = P,L;, for a suitable value of. Note that the obtained of the system converge to zero in fault free case, but in
conditions are only sufficient for guaranteeing the neggstiv the faulty case the system performances are degraded from
of (25). Theorem 2 is obtained by applying the Polya’s = 20 s tot = 70 s and the system becomes unstable for

approach to theorem 1 and by setting= 3. t > 70 s. The proposed fault tolerant control is designed by
Theorem 2:(p = 3) Under the assumptions 1, given pos-
itive scalarso and g3, if there exists symmetric and positive  *° —
definite matrices¥ € R"*", P, € R"*" G € R *"s
(with ny = n,) and matrices\/; € R™*™ andN; € R"*"v
and a positive scalaf solution to the optimization problem * i
min 7  s.t. (42)
77_[ BTP2 — FZC % 1‘0 2‘0 3‘0 4‘0 5‘0 e‘o 7‘0 ab s;o 100
! >0 43 ®
( (BT P, — FiC)" nl “3)

Fig. 1. System states with classical control
Qii <0, 1=1,..,r
. C solving the optimization problem of theorem 1. For that, the
3 7,1+ 7,+ 'i<07 ) :1a"'a ) ’

Qi +Qy + 9 “J , r i ., . parameter values = 0.8, ' = 44 and § = 10 are chosen.
8Qii + Qjj +3Qij +3Q; <0, 4,j=1..11#]  The obtained gains of the observer and the controller are
6Qu + 3Qi; + 3Qk +3Q;: + 3Qki + Qi + Quj < 0
,Qf Qi .Q”‘_ Qii 3Qni + Qi + L 0.52 1.22 0.52 1.21
Lihk=1.,ni<j<k Bi=1 1724 027 )" 2=\ 348 0.26
3Qii +3Q; +6Q;; +6Q;; + 3Qu1 + 3Qk;
+3Q,r +39y; <0,

i k=1,..,ri<j<k Ky = (16181 —66.04 ), K,=( 156.06 —65.28 )

Fy= (363 —43.14 ), F,=(3.62 —43.09 )

where Q;; is defined in (12), then the state of the systenThe figure 2 illustrates the results of the proposed cordrel |
z(t), the state estimation errer;(¢) and the fault estimation obtained after solving the optimization problem of theorem
error ey (t) are bounded. The gains of the observer and the. One can note that, with the fayltt) defined in (44), the
fault tolerant control are given by, L; = P;'N; and  performances are better than those of the classical cartebl
K;=MXx " the system remains stable for> 70 (figure 2 (top)). The
observer rapidly and accurately estimates the fault as show
_ in the figure 2 (bottom). In this example, the classical aantr
To |Ilustr§te the performances qf the proposed glpproac@\,_mnot preserve the stability of the system whesr 0.88
let us consider the system (4) defined by the matrices 1, yever (based on simulations not displayed here due to
A = ( 0 1 ) Ay = ( 0 1 ) space limitation) it can be claimed that the proposed FTC

VI. SIMULATION EXAMPLE

17.2941 0 3.5361 0 strategy can tolerate faults until= 0.97.
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Fig. 2. Fault tolerant control : states of the system (topaultfand its
estimation (bottom)
[10]

In addition, this approach provides a rapid and accurate
estimation of occurred actuator faults with the adaptivétll
observer (figure 2 (bottom)) which constitutes a FDI bloclflz]
for diagnosis. If f(t) = 7.5sin(2t), its derivative over the
time is bounded byl 5, then in this simulation example, the
term 6 = 2 /2 oAmae(D7IG7IT7Y) = 0.0288, and the
term ¢ can be minimized by an appropriate choiceloto
reduce the radius of the ball in which converge the estimatid4l
errors and then obtain a more accurate fault estimation.

[13]

VIl. CONCLUSIONS AND FUTURE WORKS 1ol

This paper is dedicated to the study of a new actuator faylts
tolerant control for nonlinear systems in Takagi-Sugeno’s
form. The active fault tolerant control requires the simul-
taneous estimations of the state and fault, obtained by the
proposed adaptive observer. This observer is able to dstima
time varying faults with a good accuracy simultaneoushhwit [18]
the estimation of the state. Furthermore, it gives the estim
tions rapidly which is important to preserve the performemc
of the system. The stability analysis is done with Lyapuno{/lg]
theory and ISS (Input-to-State Stability) is proved in thse
of time varying faults, and asymptotic stability in the casd20]
of constant faults. Sufficient stability conditions are agiv
in terms of LMI. In order to reduce the conservatism of
the given conditions, Polya’s theorem is used which allows
to derive relaxed conditions for FTC design for nonlinear
systems. Future works will concern the FTC of systems
affected by both sensor and actuator fault and/or uncéiain
and/or perturbations. It will also be interesting to stutg t
case when a set of actuators is completely out of order, in
this situation the dimensions of the matricBs and of the
control vectoru(t) are decreased.
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