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Abstract— This paper deals with state estimation and fault conditions, to eliminate the Ul influence on the state and the
detfectlon in the presence of u_nknown l_)ut bounded state pe_rtur- measurement equations by using an appropriate projection
bations and measurement noise. In this context, most available matrix, [5]. Another proposed observer design uses the slid

results are for linear models. Based on interval analysis, a . d h. Slidi b . hiah f
state estimator for nonlinear dynamical systems is presented. Ing Moae approach. Sliding observer 1S a high periormance

Given the perturbation and noise bounds, the proposed method State estimator well adapted for nonlinear uncertain syste
evaluates a set estimate guaranteed to contain all values of the [14]. The sliding function of this observer is based on the
state that are consistent with the available observations. The estimation error of the available output of the system. éaije
estimator is then used to regime shift detection. A numerical i ses a classical Luenberger observer with a nonlinear ter
example is given. depending on the estimation error.

I. INTRODUCTION The last group of methods relies on the description of

The aim of process diagnosis is to detect and identiff’® uncertainties by known compact sets. In the field of
faults affecting the process. The main idea of model-baséi2gnosis, robust model-based fault detection of dynamic

fault diagnosis is to compare the behaviors of the proce§é’5tems using interval observers has been already addresse
and its model when both are fed with the same inpthne of the main techniques consists in checking whether

As the process state is generally unknown, this compaﬁhe measurements of the output belong to the interval of all

son is generally achieved between the process output aR@SSiPle estimated outputs obtained considering unogytai
the model output, this last being reconstructed by a staf) model parameters [15], [10], [13]. Original applicasan

observer. State estimation using the exact knowledge of tfe€ field of flow rate sensor diagnosis and data validation are
input and output signals is well solved for processes witRresented in [11] and [1]. Although interval approachesinee

constant and known parametemsg( using a Luenberger V€Y little a priori information (only the uncertain paratee

or a finite memory observer). However, real processes af@unds), only few published works are dedicated to process
often affected by disturbances and noises which cause tHi@gnosis, like [9] or [12].

generation of false alarms during the diagnosis. Therefore The paper is organized as follows: after a brief overview, in

state observer designs were extended to deal with disteebarpection 2, the ideal observer structure is defined. In se&jo
and measurement noise. fault diagnosis techniques for nonlinear systems are eeriv

However the situation becomes more critical when th&om the estimation method. The last section is devoted to

considered system is subjected to unknown disturbanc@snumerical example dealing with the determination of the
or unknown inputs. When the systems are subjected @&ftive mode of a system under supervision.

perturba’[ions with known statistic Characteristicsy Kaafr's Notations. In this Study, Only real intervals are considered.
filter may be used to reconstruct the system state. In fad¢ a definition, a real interval, denotéd], is a closed and
the observer design techniques for processes affected ggnnected subset @, defined by:

uncertainties may be roughly divided into three groups.

The first group relies on robust estimation. The estimator is
made robust to both exogenous signalg.(unknown inputs)
and model uncertainties. In this framework, state estionati
deals with the minimization of an induced norexg H, or
H,.) from disturbances to estimation errors.

In the second group, the state estimation is perform
on a reduced system corresponding to the unknown inpxt
(Ul) free subsystem (which exists under some restrictive’
conditions). For that, the state equation is splitted into The behavior of the system is described by a discrete-time
two parts, one being sensitive to the Ul, the other beingncertain nonlinear model. The uncertainties are induged b
decoupled from this input. It is then possible, under specifia vector of interval parameteé§k), and by the interval dis-

turbances (k) andw(k) affecting the state and measurement
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7] =[r" 2t]={zeR /2~ <z <z}

This definition can be extended to thedimension space:
an interval vectofz] of RV is anv-dimensional rectangle or
“box” of RV and is the Cartesian product of intervals. The
esdet of all boxes ofR" is denotedIR".

Problem formulation

{benoi t. marx, di di er. nmaqui n, j ose. ragot }

w(k+1) = f(z(k),u(k),0(k), v(k))
@nsem inpl -nancy. fr h

y(k) = (x(k)zﬁ(k)) + w(k) (1)



where f and i are known nonlinear functions andis the consistent with the measuremepts(k) and the uncertainty

state,y is the outputu € R" is the input,y € IR"™ andw €  bounds are defined by:

IR™ are input and output disturbances. Since the parameter , 3

vectord(k) and the disturbances(k) andw(k) are interval Dy ={y €IR?/ w™ (k) <y—ym(k) <w™(k)}

and neglecting the coupling between the state variables aﬁ‘ﬂe set of possible state valuegk) is deduced from:

the outputs, the state and output vectors will be bounded by

some boxesy € IR™ andy € IR?. The interval parameters DY ={x €IR" / h(x,0(k)) € Dy,

allow to take into account the evolution of the system i.e. ’ - +

changing operation point. The initial stat¢0) is assumed 07 (k) < 0(k) < 67 (k)} 2)

to belong to some a priori known compact $&t, € IR".  In words, DY, contains all state values(k) which could

The sequence®(k)}, {v(k)} and{w(k)} are unknown, but have led to the observatiom, (k). In most situations, nu-

are assumed to belong to known compact sets: merical algorithms are used to approximate the true domain
X(k) < X(k) < XT(k), X e {0,0,w) with ggarantee to en_close it._ _

e Prediction step. This step involves the evaluation of the
where inequalities are element wise inequality and whergiate equation to propagate the current set of estimattsssta
the indicated bounds are known at each tilelt should gnd parameters. The obtained domain, denmg(%, is the
be noticed that, excepted the inputk), all the signals are set of possibler(k + 1), predicted by the state equation,
intervals, including the outputs of the model. Nevertm|e&;0mputed with measurement and estimation up to time
the measured outpuy,,(k) € RP, is not an interval. It
should be understood in the sense that the measured outddf . ={f(z,u(k),0,v) / & € Doy, v (k) < v < vt (k),
belongs to the interva}(k) which stands for all the possible 0= (k) <60 <6+ (k)} ©)
output values consistent with the model.

A guaranteed state estimator, also named set-valued ob-Correction step. Finally, the admissible domaif®,. ;1
server (SVO) constructs sets of admissible states which agempatible with the information/;, is obtained by the
consistent with the a priori bounds™, v*, w=, wt . intersection of the two domains obtained using the model

The main idea for that construction consists in determiningquation and the measurement equation, as follows:
the set of the possible state values which are consisteht wit
the known bounds of the uncertainties, the model equation

and the current measurements (i.e. duenissible domain).  pemark 1. In some situation, depending on the measurement

The book [6] presents the basic statements of such methogs es, it is possible to obtain an empty intersection when

More recent works may be found in [7]. using (4) because of contradictory knowledges. If necgssar
1. IDEAL OBSERVER this problem may be overcome by using an expansion

perator allowing to enlarge the domain of the admissible

The first objective is to estimate the state of the system (l% H h he obiect t th o
The state estimation can be obtained, on the one hand, W)Ut' owever, when the objective of the st_ate es_tlmatpn
included in the general framework of diagnosis, this

inversing the output equation of (1) or, on the other hand, by ° o .

recursively integrating the state equation of (1). The farm ! artlc;ular situation may be analyzed in order to detect and
is based on the measuremepts(k) and the bounds of the identify faults. o ) )
output disturbances~ (k) and w* (k). The latter is based Remark 2. Repeated applications of the intersection
on the knowledge of the previous estimation, the inpit— procedure (4) generally leads to a complex shape (and
1) and the bounds of the uncertainties and the disturbancensequently a complex description) of the sBY )
6= (k — 1), 7 (k — 1), v~ (k — 1), v+(k — 1). Obviously, and may be serious drawbacks for real-time application.
the sought estimated interval of the state values, denotdd ©vercome this problem, it is possible to reduce the
D, », Must be consistent with both the measurements aff@MPlexity of the procedure by evaluating an approximated
the model, which leads to compute the intersection of thiput guaranteed) seb, .. of D, x, as suggested in several
intervals obtained by the two methods. papers €g. [3]). Consequently, the SVO algorithm is

To begin with, the initial stater(0) of system (1) is Structured as follow:

D1 =Dy N Dy iy )

assum_ed to belong to the compact #8t, € IR". Then, Algorithm 1: state estimation

for a givenk, D, i represents the set of all the state values,

x(k), consistent with the available informatiois : e Step 0.Initialize D", with Dy. Let k = 1
I =D, (@), ym (1), 00,07 (), 0™ (i), 07 @), 3 SreP 2 Collect the datau(k) and i (1)

o _ e Step 2.Compute the output domaiR,, :
w™ (i), w (i)} } ’

The estimation process is detailed in the following steps: Dy ={y / w™ (k) Sy —ym(k) < w’ (k)}

e Observation step. The observation allows to deduce thes Step 3.Compute the state domai®? , :

possible values of the staték) consistent with the measure- ’

menty,, (k). First, the sets of the output values which areD} ;, = {x € IR" /h(x,0(k)) € D, 1,0 (k) <O(k)<0"(k)}



e Step 4.Compute the admissible state domdin ;:
Dy = D‘;kil N Dg)k
e Step 5.Reduce the domain complexity:
bx,k 2Dk
e Step 6.Predict the state set
Df ) ={f(@,u(k),0,0) / & € Dyp, v~ (k) < v <o’ (k)
6= (k) <0 <07 (k)}
e Step 7.Increasek :=k + 1, go to Step 1
I11. APPLICATION TO DIAGNOSIS

When applying the previous procedure, one assumes i

If Djk is easier to compute tha®;,, the residuals (8)
are simpler to compute that (7); however, the domégj,C
results to detect less faults than the domaj,. In fact,

if Df, N Dyri1 # 0 and DS, N Dysyr = 0, then a
fault occurred but was not detected [2]. Thus the difficulty
is to define a compromise between the complexity of the
determination of the state domain or the output domain and
the tolerable rate of no detection. The reader will notice
that, compared to what was presented at the section I,
within the framework of the state estimation, the reduction
of complexity was not carried out on the same domain.
According to the difficulty of implementation, the user can
choose to do this reduction at any step of the proposed
rﬂl_gorithms, keeping in mind that this latter always gerevat

plicitly that both sources of information are coherent. Fof" @pproximation.

diagnosis purpose, it is precisely the problem of inconsis-
tency of information which prevails. The impossibility of
merging the two sources of information (the two domain
D;,_, and DY ) reveals the incompatibility between the
measurements and the model of the system. During thig

diagnosis analysis, one is particularly interested imesting

the system outputs to be compared with the measured outp
in order to generate the so-called residuals, whereas t

analysis is not possible for the system state.

A. Principle of fault detection

The output domainD,;k predicted by the model of the

system is deduced from the state domﬁlﬁk which has
been already defined (see algorithm 1):

Dy =1{y" /y" = h(a",0) +w, 2" = f(z,ulk),6,v),

Y,

2 €Dy, 0 (k+1) <0< 0% (k+1),0-(k) <0 < 07 (),
v (k) < v < ot (k) w (k) < w < wh(k))
(5)

In the same way, the admissible output domaw) s,
evaluated from the measurements, is defined by:

Dy i1 = {y/w™ (k) <y —ym(k+1) <w™(k)} (6)

The preceding formalism makes it possible to detect incon-
gistencies of data. Nevertheless, this diagnosis remditike a
vague, thus it is worth specifying how, in a more general way;,
highlight the occurrence of a fault. A solution consists i
computing the interval state estimate using only a part ef th

fétput measurements. Analogously to the design of banks of

gdicated observers in [4 domains can be built, where
each domain is computed with only one component of the
measurement vectay,, .

B. Principle for change detection of operating mode

In the framework of supervised diagnosis, one admits
that all the failures affecting a system have been listed
and associated to a known model. Therefore, each normal
operating mode or dysfunctioning mode is thus described by

a model.
M{ xi(k—’_ 1) = fl(xl(k)vu(k)’e(k)’v(k))
' yi(k) = hi(zi(k),0(k)) + w(k)
wherev and w already denotes the uncertainties affecting
the model and the measurement system.
In a more general way, the set of the models
M;, ¢ = 0...N represents all the operating modes
including the healthy modes related to the absence of

(10)

Consequently, starting from these two domains, a faultindfaults. Thus, the diagnosis consists, starting from albkdla

cator can be defined. Let us consider:

)

_p+
Th+1 =Dy N Dy ket

measurements, in determining which model, among a
set of models, is compatible with the measurements and
the bounds of the uncertainties. In our case, the selected

A fault is detected ifr,, = 0 (equality is element wise principle is the invalidation of model. At any momeht
equatlity and thus a fault is detected if at least one compioneeach model}/; allows to predict the state in an interval

of  is the empty set). One should note that, determining tHérm (defining a domairD}, ;, where the subscript is
frontiers of the two domains at every time may result ifelated to the number of the model). If a prediction is
an important computational load. For this reason, the exatcompatible with the stateD?, ,, deduced from the
domain is often approximated by a domain of simpler formneasurementg, then the corresponding model does not
for example presenting less vertice. Thus, modifying (7), geflect the current situation and thus the system does not

fault is detected if the following residual is empty:

Prt1 = ﬁ;k N Dy r+1 (8)
whereD], is an overestimation oP;,, i.e.:
9)

+ AN+
Dy,k‘ < Dy,k

operate in the corresponding mode. The algorithm to be
implemented, inspired of [9], is then the following:

Algorithm 2: state estimation (multiple modes)

« Step 0.Define the initial state domair3;, and set: = 1.
e Step 1.Collect the datau(k) andy,, (k)



e Step 2. Compute the output domain®, ;. ;, for i = where thej is the number of the component output.
0,...,N, e Step 5.Compute the interval residuals

Dy = {y/w; (k) <y —ym(k) < w; ()} (i ()] = [yi; (k) = yms (k), y5(k) = yms(K)]  (14)

e Step 3.Compute the admissible state domains starting from Step 6. Test the residual by checking if:
the output domain, foi =0,..., N: 0€lry(k)], i=0...N,j=1,....p

D} i = {w € IR"/hi(w,0) € Dy i, 07 (k) < 6 < 67 (k)} e Step 7.Increasek = k + 1 and go to Step 1.
e Step 4.Compute, at the momerdt, the admissible state  The active mode detection is computed, using the residual
domainsD; i, fori = 0,..., N: signals as follows. For a giveh, the i** mode is said

Dyyi=Df ,,NDY ., « not active, if0 & [r;;(k)], 3j € {1,...,p}
' o . active, if0 € [r;;(k)], Vj € {1,...,p}
e Step 5.Analyse the domain®,, ;_1;. If Dy x—1,, = 0,

the i, is not an active mode IV. EXAMPLE: SEARCH FOR ACTIVE MODE
e Step 6.Reduce the domains complexity, foe= 0, ..., N: Let us consider a system which can be in a normal opera-
pt Pt tion mode ¢ = 0) or in two abnormal modes of dysfunction
zki = Twk (z =1,2). Itis assumed that the three corresponding models
e Step 7.Characterize the admissible state domains usirnd the measurements of the inputs and outputs are known.
prediction based on th&" model, fori =0,...,N: The arising problem is to determine the current operating

) mode of the system at every moment.
Dj,” ={fi(z,u(k),0,v) /| © € Dy 1., A "
v (k) <v <ot (k),0 (k) <0<ot(k) @y A ystemmodds
To simplify the presentation of the numerical results, the
e Step 8.Increasek = k + 1 and go to Step 1. three models are taken as linear relations between the input

u and the state: € IR? and as nonlinear relations between

in the following way. Let us recall thab,  ;, i = 0,..., N the statez and the outputy; = (v yi2)" € _]IRQ- At
is the set of all the admissible states consistent with tHg2Ch timek, the system is running under a particular mode
measurements and the uncertainty bounds, considering fifgaracterized by a particular functidn) according to an
i" model. If D,.;, is empty, it means that the current®Xt€rnal or internal variable.
evolution is not correctly described by tii¢ mode. M z(k+1) = Az(k) + Bu(k) + Fo(k)

Obviously, if the domainsD, ;, and D, ., are not ! yi(k) = hi(x(k),0) + w(k),
simultaneously empty, there is an ambiguity. Indeed, the W,

. . . . - wit

modesi; et i, are candidates to describe the corresponding
situation. In this case, additional information is necegsa 4 _ < 0.6 0 ) . B= <1)  F= (0~05 0 )
to refine the diagnosis and to distinguish the moteand 02 05 0 0 005
is. The concept of persistence can be a useful recourse. %
The method is to build and analyze the various domains ho(x(k), 0(k)) = | 2, (k)4as (k)65 (k)
at consecutive moments, the vacuity of the domains is then 61 (k)23 (k)
analyzed over a more significant duration.

The interpretation of the various domaif, ;. ; is done

(15)

z1(k)40.54-61 (k)
h(2(k), (k) = (;@fﬁa&‘%0'5?5%’:@)
C. Residual generation and diagnostic 0.5-+01 (k)+a3 (k)

Algorithm 3: diagnosis (multiple modes)

@1 (k)+1.5601 (k)
ha(a(k), (k) = <m&z><£f;2‘;i%’?%>féé’;%k>)
« Step 0.Define the initial state domair®®; ,, and set: = 1. 1.501 (k) +a3 (k)

e Step 1.Collect the datau(k) andy,, (k). —1<wi(k) <1, —0.04 <w;(k) <0.04
e Step 2.Characterize the admissible state domains using a 0.8<6(k) <12 1.3<06y(k)<17
prediction based on th&" model, fori =0,...,N:

) Although the system has varying parameters, it is desired to
D}y =iz, u(k),0,v)/x € Dy yi, 07 (k) <O <07 (k), detect, at each timeg, in which mode the system lies.

- +
vo (k) <v=<vi(k)} (12) B. Improving, or not, the output estimation

e Step 3.Characterize the admissible output domam:s’kﬂ. The system outpuy(k) can be predicted from the input
e Step 4.Compute the bounds of the output domains x(k) using each of the three operating models:

y;; (k) = infy/y e D}, , 13) Dyri ={y/y = fi(x(k),0) +w,07 (k) <6 <67 (),
yj;(k) =supy/y € Dz—;’—,k,i w™ (k) <w < w+(k)} (16)
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Parameter and output domaidd{ model).

The figure 1 illustrates th®,, , o domain construction, at
a particular timek,, for which the state is defined k) =

[2 1]T. In this case, the parameter polytope, defined by a set

of inequalities, is drawn in the plan of the componentd of

on the left side of figure 1. The two other polytopes relating

to the parametric domains of the moddlg and M, may
be built in a similar way.
The outputsy,,.o1 andy,,o2 (15) are given by:

540
Ymo1 (ko) = % + wi (ko) (17)
Ymo2(ko) = 1+9?(k2) +wa(ko)

which has been represented on the right part of figure
Taking into account the bounds &fone obtaingg,,1 (ko) =
[0.596 0.929] andyomz2(ko) = [1.915 2.651]. However, it
should be noticed thay,,;1 and yo,,> are coupled via the
two standardized uncertainties and,. The couplings are
highlighted by eliminatingd; (ko) or 62(ko) in (15), which
can be rewritten more explicitly as:
— 2(902(ku)—21j20(1/§(f)0))(1+91 (ko)) + w1(k0)
Yo(ko)= 3462 (ko) (18)
(903 0F0)) Gyon (o)~ (R —1 T+ W2 (ko)

Fig. 2. Parameter and output domaird,;( models).
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Fig. 3.

Interval outputs estimated by the three models.

computed with the** model:

y;; (k) yi]_(k;relpywyg( ) (19a)
yii (k)= sup  y;(k) (19b)

y%j(k)eDy,k,i

The domain corresponding to this description is representewhere y;; has been defined in (15). The figure 3 shows
on the figure 1 in the plan of the outputs. The “complex'the bounds of the two outpuig:, y;2 (in columns) of each
shape of this domain (grayed zone of the right part of theodel (in rows) computed thanks to (19). The simulation was
figure) results from (15) and (18). In the sequel, in order tdone on the horizofd 50], the changes of operating mode

simplify the fault detection procedure, the selected donmsi
the smallest orthotopt&l, ;o containing the exact domain,

occured at the moments5 (switching from M, to M),
40 (switching from M, to Ms) and 45 (return to the mode

defined by (15). In other words the coupling between thdZy). On each part of the figure, the outpyt, (k) is drawn
outputs is not taken into account. Same construction appliéh dash-line in order to be compared with its estimates based

to the polytopes resulting from the two other models. Fipall

on each model. Therefore the admissible output domains are

one can state that: to the moment considered, the vect@efined for the three models. The active mode is determined
parameterd belongs to one of the three polytopes of théby analyzing the measured output of the system together with

figure 2 (left-hand side). For this particular example, oae ¢
note that the three zonotopes, . ;,7 = 1,2, 3 (right-hand
side of the figure) are almost totally disjoined.

C. Generation of the active mode indicators

The previous construction, taking into account available

measurements is carried out on-line, after each acquisitio

these three domains. In the considered example, the ostput i
corrupted by a bounded noise and can be directly compared
with the bounds of the output interval of the three models.
For each componeny,,; of the measured output and each
model M;, one defines the residuals:

ri (k) = [y;3 (k) = ym; (K), yi; (k) — ymy(R)]  (20)

measurements. In order to avoid the representation of the deith i = 0,1,2, j = 1,2 and y;; et y;; being the lower
mains obtained at every moment for every model, an intervahd upper bounds of the output of the modé) (19). The

representation is now adopted. The interfg} (k) v (k)]
denotes the bounds of; (k) the j'* component of the output

residualsr;; are shown on figure 4. Clearly, it is possible
to detect when each model presents an interval residual



Fig. 4. Residuals issued from the three models.
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containing the value. Thus, the analysis of the residuals
is based on the sign of the residual bounds:

(1= sign(y; (k) — v (R)) (yi (k) — 5 ()

B 2

(21)

Tij(k

where i and j respectively relates to thé" model and
the j** component of the output. Th&" mode is declared

active if all the components of the corresponding outputs

are consistent with the** model, that is to say: if all
the residualsr;; contain the zero value. Therefore, the
residualsr; (k) are computed by the logic multiplication of
the reSidualg'ij(k) . Tz(k’) = Til(k) and ... and Tlm(k)

V. CONCLUSION

Undoubtedly, taking benefits of any knowledge about
uncertainties is one of the fundamental points of current
research and development in system analysis. This com-
munication was focused on the bounded approach which
uses a representation of each uncertainty by an interval. Th
propagation of the intervals along the time in the system
equation results in defining interval observers, which jatev
interval estimates of the system state. Within the fram&wor
of the diagnosis, that leads to define fault indicators of the
interval type. As a further research, the separability & th
mode of functioning will be analyzed including the effects
of noise, disturbances and outliers.
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