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Abstract— This paper addresses the state estimation of two-
time scale nonlinear systems by designing an unknown input
multi-observer (UIMO). In order to design such an observer,
the nonlinear system is transformed into an equivalent multiple
model form and the fast dynamics are considered as unknown
inputs. An application to a model of Wastewater Treatment
Plants (WWTP) is considered and gives encouraging results.

I. I NTRODUCTION

Nonlinear models are often needed to represent real system
behaviors. As a consequence, there is a need to extend
linear methods to nonlinear systems (such as the observer
synthesis), which is an a priori difficult problem. In order to
overcome this difficulty, the concept of multiple model (MM)
has received much attention in the last two decades. The MM
structure gives the possibility to reduce the complexity of
nonlinear systems, by constructing linear submodels aggre-
gated using weighting functions [12]. A MM form can be
obtained by applying a method proposed in [8] to represent
nonlinear systems into an equivalent MM. Only the general
steps of these technique are given here.
Real systems can have multiple time scale dynamics. In order
to deal with such systems, the singularly perturbed theory is
often used to highlight the systematic decomposition of the
system into various scales of time. Nevertheless, it is not
obvious to model a process under the standard singularly
perturbed form.
The first difficult point is the separation of the slow and fast
dynamics. In [2], [3] this separation is realized by comparing
the kinetic parameters of the biological process. But, in a
general nonlinear case this comparison is difficult to acheive.
So, more general methods to identify different time scales
were proposed in the literature ([11]). These methods are
based on the evaluation of the jacobian eigenvalues of the
linearized system and will be used here.
After the separation of the multiple-time scale dynamics,
the standard singularly perturbed form is obtained. In the
limit case, this form has a dynamic part and a static part
expressed by an algebraic system. Thus, aseconddifficult
point is the resolution of the algebraic system which is
not always a trivial problem. The method mainly used to
deal with this problem is based on a change of coordinates
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([2], [13]) requiring a linear transformation in order to
eliminate the fast dynamic components. In order to be able
to apply this method, the nonlinear system to be studied
has to respect some structural constraints. However, not all
nonlinear systems can be put under the proposed particular
form, thus other methods of identification of the slow and
fast modes must be implemented.
By considering the standard singularly perturbed system,
an equivalent MM can be written. The classical MM form
is slightly modified in order to separate the slow and the
fast dynamics. The main contribution of this paper is to
estimate the state variables of a multiple time scale nonlinear
system. Due to the limited number of sensors, this is done
by considering the fast varying state variables as unknown
inputs, thus an unknown input multi-observer (UIMO) can be
designed by using the MM singularly perturbed form. Most
of the existing works are dedicated to MM with measurable
decision variables (inputs / outputs). Unfortunately, in many
practical situations these variables are not accessible. Only a
few works [5], [6] are devoted to the case of unmeasurable
decision variables. This last case will be treated here. The
convergence conditions of the state and unknown input
estimation error are expressed through LMIs (Linear Matrix
Inequalities) by using the Lyapunov method and theL2

approach.
In the present paper, the MM structure and the singularly
perturbed theory are used in order to deal with the complexity
of an ASM1 (Activate Sludge Model 1)[10] describing a
biological degradation process, which is characterized by
two-time scale dynamics. Most of the previous works using
the MM representation and dedicated to activated sludge
systems were based on linearization techniques despite the
drawbacks mentioned as follows: the loss of information
and the delicate choice of different operating points or
trajectories. In addition to that, the choice of the decision
variables expressing the nonlinearities of the system still
remains a delicate point.
In section II are given the essential tools for modeling
nonlinear systems, in section III is presented the observer
design. Section IV proposes a real application to WWTP.

II. M AIN TOOLS FOR MODELING

A. Multiple model representation

Generally, a dynamic nonlinear system can be described
by the following ordinary differential equations:

ẋ(t) = f (x(t),u(t))
y(t) = Cx(t)

(1)



The measure equation is generally linear and time invariant
since, in most practical situations, the sensors do not change
according to the operating point.
The multiple model allows to represent nonlinear dynamic
systems into a convex combination of linear submodels:

ẋ(t) =
r
∑

i=1
µi(x,u) [Aix(t)+Biu(t)]

y(t) = Cx(t)
(2)

wherex∈ R
N is the state vector,u∈ R

m is the input vector,
y∈ R

l the output vector,Ai , Bi , C are constant matrices of
appropriate dimensions. The functionsµi(x,u) represent the
weights of the submodels{Ai ,Bi ,C} in the global model and
they have the following properties:

r
∑

i=1
µi(x,u) = 1; µi(x,u) ≥ 0,∀(x,u) ∈ R

N ×R
m

In order to obtain the MM form, a method giving an
equivalent rewriting of the nonlinear system (1) is used (see
[8] for further details).
Firstly the system (1) is transformed in a quasi-Linear
Parameter Varying (quasi-LPV) form:

ẋ(t) = A(x(t),u(t))x(t)+B(x(t),u(t))u(t)
y(t) = Cx(t)

(3)

Secondly, some nonlinear entries of the matricesA and / orB
are considered as ”decision variables”, or ”premise variables”
and denotedzj(x,u)( j = 1, ...,q). Several choices of these
premise variables are possible (for details in the selection
procedure see [9]) due to the existence of different equivalent
quasi-LPV forms.
Thirdly, a convex polytopic transformation is performed for
all premise variables (j = 1, ...,q), as follows:

zj(x,u) = Fj,1(zj(x,u)) ·zj,1 +Fj,2(zj(x,u)) ·zj,2 (4)

where
zj,1 = max

x,u

{

zj(x,u)
}

zj,2 = min
x,u

{

zj(x,u)
} (5)

Fj,1(zj(x,u)) =
zj(x,u)−zj,2

zj,1−zj,2
(6a)

Fj,2(zj(x,u)) =
zj,1−zj(x,u)

zj,1−zj,2
(6b)

Remark 1. For q decision variables,r = 2q submodels will
be obtained. By multiplying the functionsF

j,σ j
i

the weighting
functions are obtained:

µi(x,u) =
r

∏
j=1

F
j,σ j

i
(zj(x,u)) (7)

The indexesσ j
i (i = 1, ...,2q and j = 1, ...,q) are equal to 1

or 2 and indicates which partition of thej th decision variable
(Fj,1 or Fj,2) is involved in theith submodel.
The constant matricesAi and Bi (i = 1, ...,2q) are obtained

by replacing the decision variableszj in the matricesA and
B, with the scalars defined in (5):

Ai = A(z1,σ1
i
, ...,zq,σq

i
) (8)

Bi = B(z1,σ1
i
, ...,zq,σq

i
) (9)

B. Singularly perturbed systems

The standard form of the singularly perturbed systems with
two-time scales can be expressed by the following system:

ε ẋF(t) = fF(xS(t),xF(t),u(t),ε) (10a)

ẋS(t) = fS(xS(t),xF(t),u(t),ε) (10b)

where xS ∈ R
n and xF ∈ R

p are respectively the slow and
fast state variables,fF(x,u,ε) ∈ R

p, fS(x,u,ε) ∈ R
n andε is

a small and positive parameter, known assingular perturbed
parameter.
In the limit caseε → 0, the degree of the system (10)
degenerate fromn+ p to n, and the system is approximated
by:

0 = fF(xS(t),xF(t),u(t),0) (11a)

ẋS(t) = fS(xS(t),xF(t),u(t),0) (11b)

By solving all the algebraic equations (11a) the solution
xF(t) = ϕ(xS(t),u(t)) is obtained and used in (11b) to derive
the reduced system.
Remark 2. The fast variables cannot always be explicitly
expressed from (11a). The most popular method used to deal
with this problem is based on a change of coordinates [2],
[13], requiring a linear transformation in order to eliminate
the fast dynamics. So, this method can only be applied to
systems (e.g. biochemical processes) for which this linear
transformation can be founded.
By taking into account the previous drawbacks, no change
of coordinates will be considered; the unreduced standard
singularly perturbed form (10) is taken into account in this
study.
In order to obtain the standard singularly perturbed form, the
identification and separation of slow and fast dynamics is
the keypoint. This is realized by using the mathematical ho-
motopy method for the linearized system [11]. This method
allows to link each state variable with an eigenvalue. By
comparing the eigenvalues, the biggest (resp. smallest) one
will be associated with the slowest (resp. fastest) dynamic.
Remark 3. It is important to note that the linearized system
is only used to identify the slow and fast dynamics, but not
to design the multi-observer in order to estimate the state
variables. An equivalent MM representation will be used for
this purpose.
Let us present in the following the multi-observer design.

III. STATE ESTIMATION

In [7] is presented a state estimation method for singu-
lar MM affected by unknown inputs and with measurable
decision variables. The proposed observer is not a singular
system, but in a usual form in order to simplify the imple-
mentation. We suggest to keep the idea of a classical observer



form, but to propose an extension to MM affected by
unknown inputs and with unmeasurable decision variables.
The nonlinear system is under the singularly perturbed form
with two time scales and the MM depends on unmeasurable
decision variables. The fast dynamic state of the system will
be considered as unknown inputs and will be thus estimated.
Let us start with a general nonlinear system with two time
scale dynamics:

ẋF(t) =
1
ε

fF(xS(t),xF(t),u(t),ε) (12a)

ẋS(t) = fS(xS(t),xF(t),u(t),ε) (12b)

y(t) = Cx(t) (12c)

Let us consider the multiple model form of (12) as follows:

ẋF(t) =
r

∑
i=1

µi(x(t),u(t))
[

Ai
FFxF(t)+Ai

FSxS(t)+Bi
Fu(t)

]

ẋS(t) =
r

∑
i=1

µi(x(t),u(t))
[

Ai
SFxF(t)+Ai

SSxS(t)+Bi
Su(t)

]

y(t) = [CF CS]x(t) (13)

where the matricesAi
FF , Ai

FS, Ai
SF, Ai

SS, Bi
F , Bi

S, CF andCS

are block matrices with appropriate dimensions correspond-
ing to slow and fast dynamics identified in the matricesAi ,
Bi andC:

Ai =

[

Ai
FF Ai

FS
Ai

SF Ai
SS

]

Bi =

[

Bi
F

Bi
S

]

(14)

This approach allows to decouple both time scales and the
estimation of the slow dynamicsxS is made independently
of the value ofxF . If the fast dynamic states are considered
as the unknown inputsd(t) = xF(t) then the state vector
becomes:

x(t) =

[

d(t)
xS(t)

]

(15)

With the following partitioned matrices:

Āi =

[

Ai
FF Ai

FS
0 Ai

SS

]

(16a)

Ei =

[

0
Ai

SF

]

(16b)

C̄S =
[

0 CS
]

(16c)

the system (13) is equivalently written as follows:

ẋ(t) =
r
∑

i=1
µi(x(t),u(t)) ·

[

Āi x(t)+Bi u(t)+Ei d(t)
]

y(t) = C̄Sx(t)+CF d(t)
(17)

Without any loss of information, the MM with unmeasurable
decision variables (17) can be written as a disturbed MM
with measurable decision variables:

ẋ(t) =
r

∑
i=1

µi(x̂(t),u(t)) ·
[

Āi x(t)+Bi u(t)+Ei d(t)+ω(t)
]

y(t) = C̄Sx(t)+CF d(t) (18)

wherex̂ the estimated state of the system andω(t) plays the
role of a disturbance:

ω(t) =
r

∑
i=1

(µi(x,u)−µi(x̂,u)) ·
[

Āi x(t)+Bi u(t)+Ei d(t)
]

(19)

Let us note the equivalence between the models (17) and
(18). An observer with unknown inputs can be built [5], [6]
by using the second structure (18), as follows:







ż(t) =
r
∑

i=1
µi(x̂(t),u(t)) [Ni z(t)+Gi u(t)+Li y(t)]

x̂(t) = z(t)−H y(t)
(20)

The state estimation error is given by:

e(t) = x(t)− x̂(t)

= x(t)−z(t)+HC̄Sx(t)+HCFd(t)

= Px(t)−z(t)+HCFd(t) (21)

where:
P = I +HC̄S (22)

The dynamic of the state estimation error is:

ė(t) = Pẋ(t)− ż(t)+HCF ḋ(t)

=
r

∑
i=1

µi(x̂(t))[PĀix(t)+PBiu(t)+PEid(t)

+ Pω(t)−Niz(t)−Giu(t)−Liy(t)]+HCF ḋ(t)

(23)

After reorganization of the terms in the right side of (23)
and by using the definitions ofy(t) andz(t), we obtain:

ė(t) =
r

∑
i=1

µi(x̂(t))[(PĀi −Ni −KiC̄S)x(t)

+ (PBi −Gi)u(t)+(PEi −KiCF)d(t)+Pω(t)

+ Nie(t)]+HCF ḋ(t) (24)

with Ki = NiH +Li .
If the following conditions hold:

HCF = 0 (25)

Ni = PĀi −KiC̄S (26)

PBi = Gi (27)

PEi = KiCF (28)

Li = Ki −NiH (29)

then the dynamic of the state estimation error reduces to:

ė(t) =
r

∑
i=1

µi(x̂(t))(Nie(t)+Pω(t)) (30)

showing that the dynamic of the state estimation error is
only disturbed byω(t). To synthesize the matrices of the
observer (20), several methods are proposed [5], [6], based
on Lipschitz conditions or on theL2 approach. Here, the
second method is used and presented inTheorem 1. But let
us recall firstly some tools that lead to this result.
In conformity with [1], the state estimation errore(t) tends



towards zero and theL2 gain fromω(t) to e(t) is bounded
by γ if the following inequality holds:

[

NT
i X +XNi + I XP

PTX −γ2I

]

< 0 i = 1, ..., r (31)

By using the expression ofNi from (26) and the notations
λ = γ2 and Mi = XKi ∀i = 1, ..., r, the inequality (31)
becomes for alli = 1, ..., r:

[

ĀT
i PTX +XPĀi −C̄T

SMT
i −MiC̄S+ I XP

PTX −λ I

]

< 0 (32)

By multiplying the condition (28) with the matrixX and by
using the notationsMi = XKi and (22) we obtain:

(X +SC̄S)Ei = MiCF (33)

The notationS= X H is made in order to deal with the
nonlinear term.
By using the conditions from (25) to (29) and the previous
recalls, the following result is obtained.
Theorem 1.An unknown input observer can be constructed
for (17) if there exist a symmetric matrix X, matrices Mi and
S and a positive scalarλ such that the following conditions
holds for all i= 1, ..., r:

[

ĀT
i X̃T + X̃Āi −C̄T

SMT
i −MiC̄S+ I X̃

X̃T −λ I

]

< 0 (34)

SCF = 0 (35)

X̃Ei = MiCF (36)

where the notationX̃ = X +SC̄S was used. The matrices of
the observer are given by:

H = X−1S

Ki = X−1Mi

Ni = (I +HC̄S)Āi −KiC̄S (37)

Li = Ki −NiH

Gi = (I +HC̄S)Bi

IV. A PPLICATION: WASTEWATER TREATMENT PLANT

A. Process description and nonlinear model

The wastewater treatment with activated sludge is widely
used in the last two centuries [10], [4]. It consists in putting
in contact waste water with a mixture rich in bacteria to
degrade and eliminate the polluting constituents contained
in the water, in suspension or dissolved. Various configura-
tions are possible: separated basins or single basin, different
types of reactions (aerated or not-aerated). For economic
considerations, a configuration with a single basin (where
both aerobic and anaerobic phases alternate) was developed.
The functioning principle of the process is briefly described
after. The simplified diagram, given in figure 1, includes a
basin of aeration (bioreactor) and a clarifier. In this figure
qin represents the input flow,qout the output flow,qa the air
flow, qR, qW are respectively the recycled and the rejected
flow. The reactor volume is assumed to be constant and thus:

qout = qin +qR. In general,qR andqW represent fractions of
input flow qin:

qR(t) = fRqin(t), 1≤ fR ≤ 2 (38)

qW(t) = fW qin(t), 0 < fW < 1 (39)

The polluted water resulting from an external source circu-
lates in the basin of aeration in which the bacterial biomass
degrades the organic matter. Micro-organisms gather together
in colonial structures called flocs and produce sludges. The
mixed liqueur is then sent to the clarifier where the bacterial
separation of the purified water and the flocs is made by
gravity. A fraction of settled sludges is recycled towards
the ventilator to maintain its capacity of purification. The
purified water is thrown back in the natural environment.

Fig. 1. The diagram of activated sludge wastewater treatment

The ASM1 is a commonly used model to describe this pro-
cess. Here, a reduced form of the ASM1 model is considered,
the carbon pollution of an activated sludge reactor, with three
state variablesx = [SS, SO, XBH]T :

ṠS(t) = −
1

YH
µHϕ1(t)+(1− fP)bHϕ2(t)+D1(t)

ṠO(t) =
YH −1

YH
µHϕ1(t)+D2(t)

ẊBH(t) = µHϕ1(t)−bHϕ2(t)+D3(t) (40)

where:

D1(t) =
qin(t)

V

[

SS,in(t)−SS(t)
]

D2(t) =
qin(t)

V

[

SO,in(t)−SO(t)
]

+Kqa(t)
[

SO,sat−SO(t)
]

D3(t) =
qin(t)

V

[

XBH,in(t)−XBH(t)+ fR
1− fW
fR+ fW

XBH(t)

]

(41)
The process kinetics are:

ϕ1(t) =
SS(t)

KS+SS(t)
SO(t)

KOH +SO(t)
XBH(t) (42)

ϕ2(t) = XBH(t) (43)

The variables involved are:V the reactor volume,SS the
readily biodegradable substrate,SO the dissolved oxygen,
XBH the active heterotrophic biomass. The ”R”, ” in” and
”out” indexes correspond respectively to the reactor recy-
cling, input and output.
We suppose that the dissolved oxygen concentration at the
reactor input (SO,in) is null. Thus, the vector input is defined
by:

u(t) =





SS,in(t)
qa(t)

XBH,in(t)



 (44)



The clarifier is supposed to be perfect i.e. with no internal
dynamic process and no biomass in the effluent. In this case
we can write at each time instant:

[qin(t)+qR(t)]XBH(t) = [qR(t)+qW(t)]XBH,R(t) (45a)

SS,R(t) = SS(t) (45b)

The following heterotrophic growth and decay kinetic
parameters are considered [10]:µH = 3.733[1/24h],
KS = 20[g/m3], KOH = 0.2[g/m3], bH = 0.3[1/24h]. The
stoichiometric parameters areYH = 0.6[g cell formed],
fP = 0.1 and the oxygen saturation concentration is
SO,sat = 10[g/m3]. The following numerical values are
considered here for the fractionsfR and fW: fR = 1.1 and
fW = 0.04.

B. Slow and fast variables

Let us consider the linearization of the nonlinear system
(40) around various equilibrium points(x0,u0):

ẋ(t) = A0x(t)+B0u(t) (46)

whereA0 =
∂ f (x,u)

∂x

∣

∣

(x0,u0) andB0 =
∂ f (x,u)

∂u

∣

∣

(x0,u0) .

If we considerλ1 ≤ λ2 ≤ ... ≤ λN the ordered eigenvalues
of A0, the biggest (resp. smallest) eigenvalue correspond to
the slowest (resp. fastest) dynamic. This separation will be
made by fixing a threshold of separation of both time scales,
τ, such as:

λ1 ≤ ... ≤ λn << τ ≤ λn+1 ≤ ... ≤ λN

For the considered model ASM1 (40), the slow and fast
separation is confirmed by the eigenvalues of the jacobian
A, as we can notice on figure 2 where we represented these
eigenvalues for forty operating points. We notice that two
eigenvalues (λ2 andλ3) are included between−40 and−0.7
and that the other (λ1) between−175 and−250. The math-
ematical method of homotopy (see [11] for details) requires
to consider a system, such that an obvious relation relates
the eigenvalues to the state variables (e.g. the diagonalized
matrix of the jacobian matrixA). By fixing a threshold of
separationτ = −50, we can deduct that the system has one
fast dynamic (SS) and two slow dynamics (XBH andSO).

C. Multiple model

A multiple model is built and used to design an observer
allowing slow and fast state estimation.
Considering the process equations, it is natural to define the
following decision variables:

z1(u(t)) =
qin(t)

V
(47a)

z2(x(t)) =
1

KS+SS(t)
·

SO(t)
KOH +SO(t)

·XBH(t) (47b)

z3(u(t)) = qa(t) (47c)

We consider the quasi-LPV form of the model (40) character-
ized by matricesA(t) = A(x(t),u(t)) andB(t) = B(x(t),u(t))
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Fig. 2. The jacobian eigenvalues in various points of the operating space

decomposed in the following way:

A(t) =

[

AFF(t) AFS(t)
ASF(t) ASS(t)

]

B(t) =

[

BF(t)
BS(t)

]

(48)

where

AFF(t) = −z1(t)−
1

YH
µH z2(t) (49)

AFS(t) =
[

0 (1− fP)bH
]

(50)

BF (t) =
[

z1(t) 0 0
]

(51)

ASF(t) =

[ YH −1
YH

µH z2(t)

µH z2(t)

]

(52)

ASS(t) =

[

−K z3(t)−z1(t) 0

0
(

fR(1− fW)
fW+ fR

−1
)

z1(t)−bH

]

(53)

BS(t) =

[

0 K Sosat 0
0 0 z1(t)

]

(54)

The decomposition of the three premise variables (47) is
realized by using the convex polytopic transformation, as
in (4) and by using the scalars defined inz·,· (5) and the
functionsF·,· defined in (6).
By multiplying between themselves the functionsF·,·, we
obtain ther = 8 weighting functionsµi(z(t)):

µi(z) = F1,σ1
i
(x,u)F2,σ2

i
(x,u)F3,σ3

i
(x,u)

The constant matricesAi and Bi representing the 8 sub-
models are defined as in (14) by using the block matricesA
andB and the scalars (5):

Ai
FF = AFF(z1,σ1

i
,z2,σ2

i
)

Ai
FS =

[

0 (1− fP)bH
]

Ai
SF = ASF(z2,σ2

i
)

Ai
SS= ASS(z1,σ1

i
,z3,σ3

i
)

Bi
F = BF(z1,σ1

i
)

Bi
S = BS(z1,σ1

i
) i = 1, ...,8

(55)



The model (40) is thus written equivalently under the MM
form (13) by using the separation into slow and fast states.
The output matrixC is taken under the form:

C =

[

1 0 0
0 1 0

]

D. State estimation results

As seen on figure 2 the fast state variable is the biodegrad-
able substrateSS. This variable is considered as unknown
input in the observer proposed in section III. Let us also
consider the system output under the form (18), where:

CF =

[

1
0

]

C̄S =

[

0 0 0
0 1 0

]

(56)

By applying theTheorem 1to the ASM1 model (40), which
has the equivalent MM form build in the previous section
IV-C, the following state estimation results are obtained and
presented in figure 3. The estimation of the fast dynamicSS

(considered as unknown input in the global multiple model)
is presented first and is followed by the estimation results
of the slow dynamicsSO andXBH. A noise measurement is
considered on the output as it can be remarked in figure 4.
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Fig. 3. Estimation of the fast state considered as unknown input SS and
of the slow statesXBH andSO

V. CONCLUSION

Nonlinear systems with two time scales are considered and
they are represented using the standard singularly perturbed
form. The slow and fast dynamics are identified using the
eigenvalues evaluation of the linearized system. The MM
form is obtained by equivalently rewrite the initial nonlinear
system, thus no reduction is made. In the same time, the
classical MM form is slightly modified in order to separate
the slow and the fast dynamics. This modification allows

to highlight the fast dynamics as unknown inputs. Based
on this equivalent MM representation, an unknown input
observer is proposed. The simulation results show good state
estimations for both slow and fast dynamics although a noise
measurement was considered on the outputs.
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