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Abstract— A new actuator fault tolerant control strategy
is proposed for nonlinear Takagi-Sugeno (T-S) systems. The
control law aims to compensate the actuator faults and
allows the system states to track a reference corresponding
to a fault free situation. The design of such a control law
requires the knowledge of the faults, this task is achieved
with a proportional integral observer (PIO). The robust
stability of the system with the fault tolerant control law is
analyzed with the Lyapunov theory and the L2 optimization.
Sufficient stability conditions are obtained in terms of linear
matrix inequalities (LMIs). The gains of the FTC are obtained
by solving these LMIs. A simulation example is finally proposed.

Index Terms— Takagi-Sugeno systems, state and fault estima-
tion, PIO, Lyapunov stability analysis, linear matrix inequality.

I. INTRODUCTION

It is well known that the classical control strategies cannot

take into account faults affecting a system. Then, if a fault

occurs in any component of the system, the stability and

the performances of the system cannot be ensured. These

last years, the problem of fault tolerant control design has

been treated and many significant results have been proposed

in [14], [2], [16], [17]. These works follow two different

ideas. The first one, called passive FTC, considers possible

fault situations and take them into account in the step of

control design; this approach is similar to the robust control

design. It is pointed out in many works that this strategy

is usually restrictive. The second approach is the active

FTC, which requires a fault diagnosis block providing on

line informations on fault detection, isolation and estimation.

The reconfigurable control block uses these informations in

order to deal with unforeseen faults, to maintain the system

stability and to provide an acceptable system trajectory even

in faulty situations.

The active fault tolerant control has been developed essen-

tially for linear systems [5], [19], [17], [14] and descriptor

linear systems [12]. Clearly, linear models do not often

represent accurately physical systems due to the presence

of nonlinear behavior. A new representation that combines

simplicity and accuracy of nonlinear behaviors, introduced

initially in [20], was known under the name Takagi-Sugeno

(T-S) models. The idea is to consider a set of linear sub-

systems. An interpolation of all these sub-models with non-

linear functions satisfying the convex sum property allows
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enue de la forêt de Haye 54516 Vandoeuvre-les-Nancy
{dalil.ichalal, benoit.marx, jose.ragot,
didier.maquin}@ensem.inpl-nancy.fr

to obtain the global behavior of the system described in

a large operating range. Some works can be mentioned in

the FTC field for nonlinear systems. For example, in [6],

the authors took into account actuator faults for nonlinear

descriptor systems with Lipschitz nonlinearities. In [18], a

method which requires only the fault isolation was proposed

for T-S systems. It was based on a bank of observer based

controllers. A switching mechanism is then designed de-

pending on the obtained residuals. More recently, Witczak

proposed in [23] an FTC strategy based on a reference model

for open-loop T-S systems.

This paper is dedicated to the design of a fault tolerant

control strategy for nonlinear systems described by Takagi-

Sugeno models. This approach is an extension of the work

proposed in [23], to T-S systems where the weighting func-

tions are affected by faults. Thus, the premise variables

of the reference model are not the same as those of the

faulty system. The main idea is to re-use the nominal

control input developed in fault-free case for which two

terms, related to the occurred fault and the tracking error

trajectory between the system and a reference model, are

added. The reference trajectory is provided from a reference

model representing the system without faults. In addition,

the control law requires the knowledge of the state of the

system and the faults affecting it. For that purpose, a PIO is

used to estimate simultaneously these signals.

A. Takagi-Sugeno structure for modeling

Let us consider a nonlinear system described by a T-S

structure














ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) =
r
∑

i=1

µi(ξ(t))Cix(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input

vector, and y(t) ∈ R
p represents the output vector. Ai ∈

R
n×n, Bi ∈ R

n×m, Ci ∈ R
p×n and Di ∈ R

p×m are known

matrices. The functions µi(ξ(t)) are the weighting functions

depending on the variables ξ(t) which can be measurable

(as the input or the output of the system) or non measurable

variables (as the state of the system). These functions verify

the following properties






r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(2)

Obtaining a T-S model (1) can be performed from dif-

ferent methods such as linearization of a nonlinear model



around some operating points and using adequate weighting

functions. It can be also obtained by black-box approaches

which allow to identify the parameters of the model from

input-output data. Finally, an interesting approach to obtain

a model in the form (1) is the well-known nonlinear sector

transformations [21], [15]. Indeed, this transformation allows

to obtain an exact T-S representation of a general nonlinear

model with no information loss, in a compact state space.

Thanks to the convex sum property of the weighing

functions (2), it is possible to generalize some tools de-

veloped in the linear domain to the nonlinear systems.

This representation is very interesting in the sense that it

simplifies the stability study of nonlinear systems and the

design of control laws and observers. In [3], [7], [10], the

stability and stabilization tools are inspired from the study

of linear systems. In [1], [13], the authors worked on the

problem of state estimation and diagnosis of T-S fuzzy

systems. The proposed approaches in these last papers rely

on the generalization of the classical observers (Luenberger

Observer [11] and Unknown Input Observer (UIO) [4]) to

the nonlinear domain.

B. Notations and preliminaries

Let us consider the matrix Yij with appropriate dimension,

and µi(.) nonlinear functions satisfying the convex sum

property. The following notation is defined

Yξξ =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))Yij (3)

Lemma 1: [22] The inequality Yξξ < 0 holds if

Yii < 0, i = 1, ..., r (4)

2

r − 1
Yii + Yij + Yji < 0, i, j = 1, ..., r, i 6= j (5)

Lemma 2: (Congruence) Let two matrices P and Q, if P
is positive definite and if Q is a full column rank matrix,

then the matrix QT PQ is positive definite.

Notation 1: For any square matrix M , S(M) is defined

by :

S = M + MT (6)

II. FAULT TOLERANT CONTROL OF T-S FUZZY SYSTEMS

A. FTC strategy

Let us consider the T-S reference model without faults

described by (1). The faulty system is given by














ẋf (t) =
r
∑

i=1

µi(ξf (t)) (Aixf (t) + Bi(uf (t) + f(t)))

yf (t) =
r
∑

i=1

µi(ξf (t))Cixf (t)

(7)

In this paper only additive faults on the form given in (7)

are treated, for instance, bias on the input signal. Note that,

the weighting functions depend on a faulty premise variable

ξf (t). Indeed, if these last are the input of the system, which

can depend on the state xf (t) in closed-loop, or the output

yf (t), necessarily the fault affects these variables.

The goal is to design the control law uf (t) such that the

system state xf (t) converges toward the reference state x(t)
given by the reference model (1) whatever the fault f(t)
should be. The control strategy is illustrated in the figure 1.
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Fig. 1. Fault tolerant control scheme

We propose the following structure for the control law

uf (t) = −f̂(t) + K(x(t) − x̂f (t)) + u(t) (8)

The matrix K is determined in order to ensure the stability of

the system even if faults occur and to minimize the state error

between xf (t) and x(t). By analyzing the structure of uf (t)
given in equation (8), the estimation of the state vector xf (t)
and faults f(t) are required. This task is performed via a

Proportional-Integral observer simultaneously estimating the

state and the faults of the system.

Let us consider the PIO

˙̂xf (t) =

r
∑

i=1

µi(ξf (t))(Aix̂f (t) + Bi(uf (t) + f̂(t))

+ H1i(yf (t) − ŷf (t))) (9)

˙̂
f(t) =

r
∑

i=1

µi(ξf (t)) (H2i(yf (t) − ŷf (t))) (10)

ŷf (t) =

r
∑

i=1

µi(ξf (t))Cix̂f (t) (11)

In fact if ξf (t) is assumed to be known, the observer

weighting functions depend on the same premise variable

as the system (7).

The output error between the system (7) and the observer

(9) is written by

yf (t) − ŷf (t) =
r

∑

i=1

µi(ξf (t))C̃iea(t) (12)

where

C̃i =
[

Ci 0
]

(13)

ea(t) = xa(t) − x̂a(t), xa(t) =

[

xf (t)
f(t)

]

(14)



The dynamic of the tracking error e(t) = x(t) − xf (t), obeys

to the differential equation

ė(t) =

r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

− µi(ξf (t))(Aixf (t) + Bi(uf (t) + f(t))) (15)

ė(t) =
r

∑

i=1

µi(ξf (t))(Aie(t) − Bi(f(t) − f̂(t))

− BiK(xf (t) − x̂f (t))) + δ(t) (16)

=
r

∑

i=1

µi(ξf (t))((Ai − BiK)e(t)

− L̃iea(t)) + δ(t) (17)

where

L̃i =
(

BiK Bi

)

(18)

δ(t) =

r
∑

i=1

(µi(ξ(t)) − µi(ξf (t)))(Aix(t) + Biu(t)) (19)

Assume that ḟ(t) = 0, the system (7) can be written in an

augmented form














ẋa(t) =
r
∑

i=1

µi(ξf (t))
(

Ãixa(t) + B̃iuf (t)
)

yf (t) =
r
∑

i=1

µi(ξf (t))C̃ixa(t)
(20)

where

Ãi =

(

Ai Bi

0 0

)

, B̃i =

(

Bi

0

)

, (21)

The pairs (Ãi, C̃j), i, j = 1, ..., r are assumed to be observ-

able (or at least detectable). The state and fault estimation

error ea(t) = xa(t)− x̂a(t) between the system (20) and the

observer (9)-(11) evolves following the equation

ėa(t) =

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))(Ãi − HiC̃j)ea(t) (22)

The concatenation of the state tracking error and the state

and fault estimation errors allows to write, from (17) and

(22), a new augmented system

˙̃e(t) =
r

∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))Ãij ẽ(t) + Γ̃δ(t) (23)

where

ẽ(t) =

(

x(t) − xf (t)
xa(t) − x̂a(t)

)

, Γ̃ =

(

In

0

)

(24)

Ãij =

(

Ai − BiK −L̃i

0 Ãi − HiC̃j

)

(25)

Remark 1: One can note that in the previous section, the

weighting functions depend on the premise variable ξf (t). It

can be an external known variable which is not affected by

faults. Indeed, in [23], the authors proposed a method for this

case with an application to the three tank system in open-

loop control. In this case, ξ(t) = ξf (t) and the equation (23)

becomes

˙̃e(t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))Ãij ẽ(t) (26)

In Takagi-Sugeno modeling, it is often considered that the

premise variable ξ(t) is the input, the output or the state of

the system, which are necessarily affected by faults. Con-

sequently, ξ(t) 6= ξf (t). In addition, if ξf (t) is measurable,

the state estimation error and the state tracking error are

expressed by (23). Now, with these considerations, when

ξ(t) = u(t) and ξf (t) = uf (t), the term δ(t) does not

converge to zero if xf (t) converges to the reference state

x(t) but if ξ(t) = y(t) and ξf (t) = yf (t), the tolerant control

allows the convergence of xf (t) to x(t) and yf (t) to y(t),
then the term δ(t) converges also to zero which gives better

results compared to the case where ξ(t) = u(t). The same

problem can appear if the output is also affected by faults. In

these cases, the fault tolerant control design aims to minimize

the difference between xf (t) and x(t) and to minimize the

L2 gain of the transfer from δ(t) to the state tracking error.

B. Fault tolerant control design

The gains K, H1i and H2i are determined by solving

the optimization problem under LMI constraints given in

theorem 1.

Theorem 1: Consider λ a positive scalar. The system (23)

that generates the state tracking error e(t) and the state and

fault estimation errors ea(t) is stable and the L2−gain of

the transfer from δ(t) to ea(t) is bounded if there exists

symmetric and positive definite matrices X1, X2, P2 and

P3, matrices H̄i and K̄ and positive scalars γ̄ solution to the

following optimization problem

min
X1,X2,P2,K̄i,H̄i,

γ̄ s.t. (4) − (5)

where

Yij =













Ψi −BiM 0 In X1

∗ −2λX λI 0 0
∗ ∗ ∆ij 0 0
∗ ∗ ∗ −γ̄In 0
∗ ∗ ∗ ∗ −In













< 0 (27)

Ψi = AiX1 + X1A
T
i − BiK̄ − K̄T BT

i (28)

∆ij = P2Ãi + ÃT
i P2 − H̄iC̃j − C̃T

j H̄T
i (29)

M =
(

K̄ X2

)

, X =

(

X1 0
0 X2

)

(30)

The controller gains and those of the observer are computed

from

Hi =

(

H1i

H2i

)

= P−1
2 H̄i, K = K̄X−1

1 (31)

and the attenuation level of the transfer from δ(t) (19) to

e(t) (17) is obtained by

γ =
√

γ̄ (32)



Proof: The gains Hi and K are obtained by stability

analysis of the system described by the differential equation

(23) using the Lyapunov theory with a quadratic function.

Let us chose the following quadratic Lyapunov function

V (ẽ(t)) = ẽ(t)T P ẽ(t), P = PT > 0 (33)

where P is structured as follows

P =

(

P1 0
0 P2

)

(34)

The time derivative of the function V (ẽ(t)) is given by

V̇ (ẽ(t)) =

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))ẽ(t)TMij ẽ(t)

+ 2ẽ(t)T P Γ̃δ(t) (35)

where

Mij = S

((

Λi −P1L̃i

0 P2Ãi − P2HiC̃j

))

(36)

and

Λi = P1Ai − P1BiK (37)

and S is a function defined in the notation 1.

In addition, the term δ(t) depends on x(t), u(t) which

are bounded, then it is also bounded. So, the objective is to

minimize the L2-gain of the transfer from δ(t) to the state

tracking error e(t), this is formulated by

‖e(t)‖2

‖δ(t)‖2

< γ, ‖δ(t)‖2 6= 0 (38)

Then, we are seeking to ensure asymptotic convergence

toward zero if δ(t) = 0 and to guarantee a bounded L2-gain

if δ(t) 6= 0. This problem can be formulated as follows

V̇ (ẽ(t)) + e(t)T e(t) − γ2δ(t)T δ(t) < 0 (39)

By replacing the expression of V̇ (ẽ(t)) (35), in inequality

(39) and after some calculation we obtain that the inequality

(39) is negative if the following conditions hold

Nξf ξf
=

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))Nij < 0 (40)

where

Nij =







S (Λi) + In −P1L̃i P1

0 S

(

P2Ãi − P2HiC̃j

)

0

P1 0 −γ2I







(41)

with the congruence lemma, we obtain

Nξf ξf
< 0 ⇔ WNξf ξf

WT < 0 (42)

with

W =





P−1
1 0 0
0 X 0
0 0 I



 , X =

(

P−1
1 0
0 X2

)

(43)

X2 is symmetric and positive definite matrix. The following

is then obtained

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))





Ξi −L̃iX In

∗ X∆ijX 0
∗ ∗ −γ2I



 < 0

(44)

where

Ξi = AiP
−1
1 + P−1

1 AT
i − BiKP−1

1

− P−1
1 KT BT

i + P−1
1 P−1

1 (45)

∆ij = P2Ãi + ÃT
i P2 − P2HiC̃j − C̃T

j HT
i P2 (46)

The negativity of (44) imposes the negativity of ∆ij which

can be analyzed using the following property

(

X + λ∆−1
ij

)T
∆ij

(

X + λ∆−1
ij

)

≤ 0

⇔ X∆ijX ≤ −λ
(

X + XT
)

− λ2∆−1
ij (47)

Consequently, (44) can then be bounded in the following way

Yξf ξf
=

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))Yij < 0 (48)

where

Yij =









Ξi −L̃iX 0 In

∗ −2λX λI 0
∗ ∗ ∆ij 0
∗ ∗ ∗ −γ2I









(49)

After the use of the lemma 1, in order to express the

inequalities in linear form with respect to P−1
1 , P2, K, and

Hi, the following change of variables are used

X1 = P−1
1 , K̄ = KX1, H̄i = P2Hi, γ̄ = γ2 (50)

In addition

L̃iX = Bi

(

K I
)

X = Bi

(

K̄ X2

)

(51)

Then, the relaxed stability conditions satisfying the attenua-

tion level of the L2 gain of the transfer from δ(t) to the state

tracking error e(t), given in theorem 1, are obtained.

Remark 2: The assumption that the fault signal is constant

over the time is restrictive, but in many practical situa-

tions where the faults are slowly time-varying signals, the

estimation of the faults is correct, and the proposed FTC

scheme can be applied. In the case where the faults are

not slowly time-varying or constant, the Proportional Integral

Observer (PIO) can be replaced by a Proportional Multiple

Integral Observer (PMIO). Such is able to estimate a large

class of time-varying signals which satisfies the assumption

f (q+1) = 0. The principle of this observer is based on the

estimation of all the qth derivatives of the signal f(t). This

observer can also be extended to the case where f (q+1) is

bounded (see [8]).

III. SIMULATION EXAMPLE

To illustrate the proposed actuator fault tolerant control

strategy for T-S systems with measurable premise variables

affected by the faults, we proposed two academic examples.



A. First case : ξ(t) = u(t)

Consider the T-S system described by






ẋf (t) =
r
∑

i=1

µi(u(t)) (Aixf (t) + Biuf (t) + Bif(t))

yf (t) = Cxf (t)
(52)

where

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 −2
0 −3 0
5 2 −4



 ,

B1 =





0
1
1



 , B2 =





1
1
0



 , C =

[

1 1 1
1 0 1

]

The weighting functions depend on the input u(t) which is

the nominal control of the system in the fault-free case ; they

are defined by µ1(u(t)) = (1− u(t))/2 and µ2(u(t)) = 1−
µ1(u(t)). To apply the proposed FTC strategy, the following

reference model is considered

ẋ(t) =

r
∑

i=1

µi(u(t)) (Aix(t) + Biu(t)), y(t) = Cx(t)

(53)

The fault f(t) is time varying and defined as follows

f(t) =

{

−u(t) t ≥ 10
0 t < 10

(54)

Notice that even if the assumption ḟ(t) = 0 is not satisfied,

the PIO is able to reconstruct time varying signals with slow

variation.

To increase the observer performances, a pole assignment

is performed in {z|ℜ(z) < −14, |z| < 20} in order to

enhance the convergence speed of the state estimation errors

toward zero and to reduce the oscillatory phenomenon.

Solving the optimization problem under LMI constraints

in theorem 1 with λ = 20, results in the following matrices

H11 =





−24.84 59.47
30.05 −29.75
31.54 −43.02



 , H12 =





−11.03 45.34
31.58 −33.25
17.80 −26.25





H21 =
[

337.82 −356.67
]

, H21 =
[

338.57 −353.93
]

K =
[

6.5179 4.9204 1.2659
]

, γ = 0.4721

The figure 2 (top) shows the time evolution of the fault

f(t) and its estimate f̂(t), while the bottom part depicts the

nominal control u(t) and the FTC uf (t). The state estimation

errors, xf (t)− x̂f (t) are shown in the top of figure 3, while

the bottom part shows the state tracking errors x(t)−xf (t).
Finally, figure 4 allows the comparison of the reference

model states with the state obtained when the system is faulty

without any modification of the control law and those of the

system when using FTC.

Even if a fault occurs, the system trajectory follows

the trajectory of the reference model which represents the

trajectory of the system in the fault-free situation. Thus, the

FTC control law compensates the fault and allows a normal

functioning of the system in the presence of faults.
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Fig. 4. Comparison between states of the system without fault, states with
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B. Second case : ξ(t) = y(t)

In this subsection, the previous system is considered, but

with weighting functions depending on the first component

of the system output vector. The figure 5 illustrates the state

estimation errors (top) and the state tracking errors (bottom).



It is clear that the use of weighting functions depending

on the output of the system provides better results than

the case where they are depending on the control input.

This is due to the fact that the system is only affected by

actuator faults and the perturbation term δ(t) converges to

zero when yf (t) converges to the reference y(t). But in the

previous simulation, the term δ(t) did not converge to zero,

in the presence of fault, because u(t) 6= uf (t) which leads

to µi(u(t)) 6= µi(uf (t)). As a conclusion, considering the
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problem of fault tolerant control of T-S systems with actuator

faults, it is more interesting to use the output of the system as

a premise variable. However, in the simultaneously occurring

actuator and sensor faults, better results are obtained by using

the state of the system as a premise variable, this is more

difficult and general case but the obtained state error tracking

is less than ones obtained above, first results on this point

are submitted in [9].

IV. CONCLUSION

This paper is dedicated to the design of an active fault

tolerant control law for nonlinear Takagi-Sugeno systems. A

reference model is used and the proposed control law is then

designed for guaranteeing the convergence of the states of the

system to the states of a reference model even if fault occurs.

This control law uses the nominal control input developed

for the system in fault-free case and two additional terms

related to the estimated fault and the trajectory tracking error.

The stability is studied with the Lyapunov theory and L2

optimization. The LMI formalism is used in order express

stability conditions in term of linear matrix inequalities.

Future works will be devoted to the study of the case when

the weighting functions depend on unmeasurable variables

as the system state. Indeed, the interest of this case is the

possibility to deal with simultaneous actuator and sensor

faults. In addition, it could be interesting to develop the FTC

law by taking into account modeling uncertainties and some

external perturbations.
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