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Abstract—In this paper, a proportional integral (Pl) and a In the context of robust observer design, one of the most
proportional multiple integral observer (PMI) are proposed  successful technique is the use of Pl observer, in which
in order to estimate the state and the unknown inputs of e ynknown inputs are estimated simultaneously with the

nonlinear systems described by a Takagi-Sugeno model with -
unmeasurable premise variables. This work is an extension States of the system. The PI observer was first proposed

to nonlinear systems of the Pl and PMI observers developed by Wojciechowsky in [25] for single input-single output
for linear systems. The state estimation error is written as a LTI systems. A generalization scheme was performed by

perturbed system. First, the convergence conditions of the sta  Kaczorek [12] to multivariable systems. Thereafter, the Pl
estimation errors between the system and each observer are opserver has been used in different studies. In [20] a linear
given in LMI (Linear Matrix Inequality) formu_latlon. Secondly, Pl ob is desi d and lied t hvsical ¢ |
a comparison between the two observers is made through an observer Is eS|gne_ and app '? oap ysmg system. In
academic example. [15] a PI observer for linear descriptor systems is proposed
However, this observer can be used only if the unknown
I. INTRODUCTION inputs are constant over the time, nevertheless in préctica
cases the approach is effective if the variations of the

Model-based approaches have been important and usefunknown inputs are slow in respect to the dynamic of the
means to construct a fault diagnosis module for nonlineaystem. In other cases, this problem can be solved by using
systems in order to detect, isolate and identify actuatomultiple integrals in the observer in order to estimate &ll o
sensor and system faults. Generally, the implementation tfe derivatives of the unknown inputs. A PMI observer was
these functions is realized with observers. Moreover, olfirstly proposed by Jiang in [11]. In [7], [13] a proportional
servers provide an estimation of accessible and inacdessimultiple integral observer is proposed to estimate a large
states, outputs and faults of nonlinear systems. The estiimaclass of signals described in a polynomial form for LTI
signals are used for example to elaborate feedback contrdgscriptor systems.
laws, fault detection and isolation procedure (FDI) andtfau
tolerant control (FTC) [18], [10].

The proposed work focuses on the class of nonlinear We propose, in this paper, a generalization of the Pl and
systems described by Takagi-Sugeno models [22] with uf®MI observers to nonlinear systems described by T-S models
measurable premise variables. The T-S model providesvéth unmeasurable premise variables. The paper is organize
useful tool to represent with a good precision a large cléss s follows. Section 2 presents the T-S structure and the
nonlinear systems [23] and can even describe exactly nertgiroblem of state estimation, and gives the motivation o thi
classes of nonlinear systems [24] by using the nonlinear segork. In section 3.A the design of Pl observer is addressed
tor transformation. In the recent years, considerablertsffo and in section 3.B the PMI observer is studied. Section
have been provided to study stability and stabilization of presents a numerical example with discussion about the
this class of systems [14], [23], [8], [5]. The topic of stateperformances of the two proposed observers. Finally, this
estimation has also been widely studied in many works. Inote is ending with conclusions and perspectives. Coftrari
[2], [19], [16], [3], the authors proposed different metisod to [9], this paper discuss the simultaneous state and unknow
in order to estimate the state of T-S systems for the purpo#itput estimation using a Pl and PMI observer. The idea is
of diagnosis. based on two steps: the first step consists to transform the TS

The advantage of T-S structure is its simplicity becausgystem with unmeasurable premise variable into a perturbed
it originates from the interpolation between local linearTS system with estimated premise variable. The perturbatio
systems. Thus, analysis and design methods developed M is due to the unmeasurable premise variable. The second

linear systems can be generalized to nonlinear systems 6P is to make the system in an augmented form by adding
used in the works cited above. integrators to estimate the unknown input. The paper [9]
deals with the state estimation using a new method congistin
~The authors are with Centre de Recherche en Automadn the transformation of the TS system with unmeasurable
tique de Nancy (CRAN), Nancy-Univeréit CNRS, 2 av- npremise variables into an uncertain TS system with estidhate
enue de la fa&t de Haye F-54516 Vandoeuvre-les-Nancy. . . . " .
{dalil.ichalal, benoit.narx, jose.ragot, premise variables, in addition, the method is extended to

di di er. maqui n}@nsem i npl - nancy. fr estimate the unknown input using a Pl observer.



I[I. PRELIMINARIES AND PROBLEM STATEMENT  develop only one multiple model using weighing functions
A. Multiple model approach Whic_h depend on the state of the system. Thus, the same
Consider the following general form of continuous-timemumpl.e mode.l can_be used to construct observer bank for
X ] detecting and isolating actuator and sensor faults. Howave
nonlinear systems: main difficulty appears due to the fact that the state equatio
{ X(t) = f(x(t),u(t)) 1) is now a nonlinear function of the state. In the literature,
y(t) = h(x(t),u(t)) only few works are developed for observer design for T-S
wherex € R, uc R™ y e RY and f and h are nonlinear systems yvith unmeasurable premise variables. Neverthe_les
functions. The representation (1) is difficult to study,eels we can cite [16], [17], [26], [4], where the authors re-write

where in literature, all of the works developed concembng t the system either as a perturbed or uncertain T-S system with

. e measurable premise variables.
nonlinear systems concern specific classes. For example, in P

[1][21], Lipschitz systems, which are represented by adine [1l. MAIN RESULT
part and a nonlinear one, are considered. The nonlinear partalong this paper, we assume that the following assump-
is assumed to be Lipschitz with respect to the siate tions hold:

As mentioned in the introduction, the T-S model ap- , A1. The system is stable

proach is a very interesting method to represent nonlinear, A2 The signalsu(t), d(t) and w(t) are bounded.

systems. Different methods exist to obtain a T-S modepyactically, these assumptions are often not restrictive.
as identification or linearization of the system (1) around

different operating points or by using the nonlinear sectoft EXtension of classical PI observer
transformation. The multiple model structure is given by:  Consider the following T-S fuzzy system with weighting
; functions; depending on the state of the system:
(1) = 3 (&) (AX(D)+Bu(t) + Ed(t) + Wa(t)) o
{ i1 (1) = 3 1(X(0) (AX(0) + Biu(t) + Ed(t) + Weolt)
1=
) y(t) =Cx(t) + Gd(t) + We(t)

whereA; € R™N, B; e R™™M C e R¥N, D € R¥*M E; € R™*S, 4)
W € R"™V and G € R9S, and W € RV, The unknown In the next, for sake of simplicity, the time variableis
inputs are modeled bgi(t) andw(t) are the noises affecting omitted. The proposed PI observer is given by the following
the state and the measurement equation. In this struchgre, £quations:

y(t) =Cx(t) + Du(t) + Gd(t) + WCa(t)

output is assumed to be linear with regard to the state of the S () (ARL B Edt Ko -

system. The weighing functiong are nonlinear and depend X= 21“' (%) (AR+Biu+Ed+Kei(y—Y))

on the decision variabl€(t) which can be measurable y=CR+Gd (5)
like {u(t),y(t)} or not measurable like the statét) of r KO

the system. The weighting functions satisfy the following d= -Zl“' (R)Ki(y=9)

properties: on which X and d are the estimates of and d. In order

3) to facilitate the comparison between the system and its
observer, the system (4) can be written as a perturbed system

with weighting functiongy; depending on the estimated state
Thus the structure of the multiple model is simple and igs follows:

considered as a universal approximator since it can represe r
any nonlinear behavior according to an adequate number X= _Zlui (X)(Ax+Bju+Ed+Ww+v) (6)
of the local models. The multiple model structure provides 1=

a mean to generalize the tools developed for linear systetféere:

to nonlinear systems due to the properties expressed in (3).

org Li(é(t) <1
i;M(E(t)) =1

V= Zl(ui(X)—ui(f())(AiX—i-Biu-k Eid+Ww) (7
B. Problem statement =

Diagnosis of nonlinear systems is often based on abank-g‘i."S term is seen as a bounded vanishing perturbation to

observers to detect and isolate actuator and sensor fRalts. MT'HMIZE. Indeed, _due_ to the gssumptlon_s AL, A2 and the
designing observers, it is often assumed, in the literathate definition of the weighting functions (3),(t) is bounded and

the weighting functiong; depend on measurable premiseéf X— x thenv — 0. The unknown inputsi(t) are assumed

variables u and/or y. Thus, to perform diagnosis, it is fo be constant:

necessary to develop two different multiple models. The firs *® A3.d= O. .

one where the weighting functions depend only on the outpdf’® assumption 1 allows to make the system (6) in the
of the system in order to detect and isolate actuator faul@ugmented form:

The second one with weighting functions depending only LR _

on the input of the system in order to detect and isolate Xajél“'(x) (Axa+Biu+Ti ) (8)
sensor faults. To reduce this difficulty, it is interesting t y=Cxq+ D&



where: The gains of the observer are derived from:

X A| Ei 5 Bi o | VV, ~ v S — pP~1IMm:
-[5 5 )a-[ 3]0 (o ][ 2] e
3 . 0 x and the attenuation level is calculated by:
C=|C G |,D= ,xaz{ } =
[ } [W] d Y=\ (16)

A similar reasoning makes it possible to transform the  Proof: According to the assumptionsl andA2, (t)

proposed PI observer (5) in the following augmented formis tzounded. Then,. by applying lemma 1 wile,(t)|]2 <
y||@(t)||2, we obtain:

. r ~ ~ ~ .
Xazizlui()() (Aixa+B|U—|—K|(y_y)) 9) A1TP+Pe\i*P|ZLCjCTKiTP+| Pri*PKiﬁ “0
§=Cxy MP-DTK'P —A
here: (17)
Where- . Kpi The LMI formulation in theorem 1 is obtained by using the
Ki = { Kpi } following changes of variables:
Let us consider the augmented state estimation error: M =PKi, y= y2
€a=Xa—%a (10) O

Remark 1. The minimization of y may result in slow
; dynamics of the state estimation error. This problem can be
&, = Z“i ®) (A —Ki€)ea+ (i —KiD)@)  (12) solved by pole assignment of the matridég—KiC) in the
= left half complex plane defined by:

whose dynamic is given by:

The goal is to determine the gain matric&s of the {z| Re(z) <—=A}, A>0 (18)
observer in order to stabilize the system (11), i.e. to guar-
antee the convergence of the state estimation error towal@us, the LMIs in theorem 1 are solved simultaneously with
zero when the perturbatiotd is nul and to attenuate the the following constraint (to imposBe(Ai) < —A, whereAj;
transfer gain from the bounded perturbatid(t) to the state are the eigenvalues @ andA > 0):

estimation erroe,(t) whené(t) is different from zero @(t) PA + A1)+ (A +A)TP-ME—ETMT <0 (19)
|

's bounded since as_sumptions AL and A2. are satisfied). \;q ¢ precise pole clustering can be obtained by adding LMI
In order to establish the existence conditions of the Plonstraints [6]

observer in theorem 1, let us first introduce the following This approach remains effective in practical cases where

IenL1ma: 1- [24] Consider th i i TS ¢ the assumption 1 is not satisfied. However, the unknown
q f.emg]i - [24] Consider the continuous-time TS-sys ®Mnputs must vary slowly. Otherwise, bad state and unknown
etined oy inputs estimation are obtained by using this method. In the
r . .
X(t) = (X)) (AX(E) + Bt next section, anpther method to estimate the state aqd the
® i;u'( () (Ax(t) + Biu(t) (12)  unknown inputs is proposed. It is based on the proportional
y(t) = Cx(t) multiple integral observer. This observer is interestireg b

The system (12) is stable and verifies t#e-gain condition: ~Cause the assumption 1 is not required in the theoretic proof
Ily®)||2 < yllu(t)||2 if there exists a symmetric positive SO ILIS possible to estimate a larger class of unknown inputs

definite matrixP such that (13) is satisfied for=1,...,r:
ATP+PA +C'C  PB 0 13

{ B/ P —VA } < (13) Let us consider the multiple model with unmeasurable
premise variables described in (4). The unknown input is

assumed to be a bounded time varying signal with gtfll

Theorem 1. The PI observer (9) for the system (8) isderivative:
determined by minimizing/ under the following LMI con- o A4 d(t)=0

straints in the variableB =P > 0, Mj andy fori=1,...,r:
ATP+PA -~MC—-C"Mi+1 Pl —MmD

B. Proportional multiple integrals observer

Generally, the use of a PI observer requires the condition
that the unknown input is constant (i.al:= 0), thus, the

} <0 (14 unknown inputs which satisfie®4. cannot be estimated with



a good precision. Then, PMI observer is more adequate farhere:
this problem, because the observer estimates(dhe 1) T A E 7

L . ) L A E O 0 O Kpi
derivatives of the unknown input and gives a good precision 0 0 I 0 0 KO
of the estimated unknown inputs. e . Klii

Consider the generalization of the proportional multipleé= . A= ©c 00 00 Ki= :
integrals observer to T-S systems of the PMI observer eq' S S S (-2
roposed in [7] for linear descriptor systems: -2 0 0 0 0 01 li
prop [7] ptor sy & 1 _00000%_ K

. r ~
)A(:_zlﬂi()z)(Ai)A(+BiU+Eid0+KPi(y*y)) é=[Cc G o0 0 0]
1= ~
y =CX+Gd .
== TR Fi=[rT o o]"
do= 3 Hi(R)Kpi(y—y)+ds . . . .
L7t R In the following, we are only interested with particular
di= ¥ HRKiy—9) +d (20) component andep of &
i=1
: { ; } e (24)
A r _ ~ ~
dg2= 3 MK *(y—9) +dg-1
R =1 . where:
dy 1= 3 WK YY) c=[ Mol o .o
i=1 0 Is ‘
whered}, i=12,..,(q—1) are the estimation of thgg—1) O represents null matrix with appropriate dimensions.
first derivatives of the unknown inpul(t). Theorem 2: The PMI observer (20) for the system (8)

The state and unknown inputs estimation errors are:  that minimizes the transfer fron(t) to [e(t)" eo(t)"]
is obtained by finding the matrice8=PT > 0, M; and y

e=x—X e=d— d'“07 ooy B 1=0g1— qu_l that minimize y under the following LMI constraints for
i=1,..r:
Their dynamics are given in the following form: ~ ~ - = - — . —

Y g J ATP+PA —MC-C'M +C'C Pl — MW
o _ FTP_WTMT yi <0
e=2H (R) (A —KpiC)e+ (I — KpiW) 0+ (Ei — KpiG)ep) ! ! (25)

i=
& = % 14 (R) (—K2Ce+ &, — KOW@ — KOGep) The gains of the observer are derived from:

i=1 ~ _

&= 3 W(R)(—KiCet e~ KW KiGey) Ki = P~*M; (26)
i=1
and the attenuation level is calculated by:
r — =
&2= 3 H(R(-KICe+eq 1 — K AWe— K *Gey) y=+Y 27)
. T -t E e LGl Proof: The proof of theorem 2 is similar to the proof
&-1= 3 Hi(X)(=Kjj "Ce—-KjWm - K| "Gep) of theorem 1 by using the lemma 1 with the system (22)

(21) Remark 2: When the conditionA3.is not satisfied i.e.
where: d@ £ 0 butd@ is bounded then, we can consider
M= [ ln W ]7\,7,: [ 0 W¢ ] derivatiye ofd(t) as a perturbation. The new perturbation
vector is then given by:

The equations (21) can be rewritten in the following

D(t) = T T damT 1"
augmented form: ot =[ vl w® dot)T ]
; The additional componei; is added in the state vector. The
g = ZM (R) (A —KiC)&+ (I —KiW)@) (22) matricesA;, Ty, W, C are augmented. Then, the Theorem 2
i=

can be applied in order to design the Proportional Multiple
_ B (23) Integrals Observer with minimization of the new bounded
N perturbationd(t).



IV. NUMERICAL EXAMPLE AND SIMULATIONS ’
r Y — . estimated d

In this section, the proposed method is illustrated through
an academic example Consider a continuous-time T-S sys-*
tem (4) defined by: o=

-3 2 -2 Nl
Ap = 5 -3 0 |,

—4

1 1 - 15517

11 1 5 0
C:[l 0 1}762{1 0}

The unknown inputs vectad(t) is made up ofdy(t) which

0 5 10 15 20 25 30 35 40 45 50

and

Fig. 2. Unknown input estimation with Pl observer

affects only the outputs of the system adglt) affecting 3 —=
only the dynamic of the system (see the matriegsE, and 2
G). For example, we can considdf as a sensor fault and 1
dy as an actuator one. 0

The weighting functions depend on the first component -
of the state vectok and are defined as follows: -2

{ ul(x) — ].—mfnf(xl) (28) 2 5 10 15 20 2 3 % 20 s 50
p2(X) = 1— p1(x)

The weighting functions obtained without perturbations
and unknown inputs are shown in figure 1. This figure shows
that the system is clearly nonlinear singe and 1, are not
constant functions.

1k

1

0.8 0 5 10 15 20 25 30 35 40 45 50

] Fig. 3. Unknown input estimation with PMI observer
0.4

02f

Pl observer gives an acceptable state and unknown inputs
estimation even if the assumptié8. is not satisfied. How-
Fig. 1. Weighting functiongi and i, ever, in this example, the unknown inputs have fast variatio
resulting on bad state and unknown inputs estimation (fggure
The perturbationso are chosen as random signals uni2 and 4) compared to the results given by the PMI observer
formly distributed in[—0.5 0.5]. The considered unknown (figures 3 and 5).
inputs are given byd; (t) anddy(t) are time varying signals
with neglected fourth derivatives. After synthesizing a PI
observer according to the theorem 1 and a PMI observer with The design of proportional integral (PI) and proportional
g =4 according to the theorem 2, we obtain the simulatiomultiple integrals (PMI) are studied in this paper. This kvor
results depicted in the figures 2, 3, 4 and 5. is an extension of the Pl and PMI observers developed for
Figures 2 and 3 show the unknown inputs and theiinear systems to nonlinear T-S systems with unmeasurable
estimations with Pl and PMI observers. It is known that th@remise variables. The convergence conditions of the state

10 15 20 25 30 35 40 45 50

V. CONCLUSIONS AND FUTURE WORKS



(7]

(8]
% 5 0 15 2 2 20 3 20 P 50
9]
Fig. 4. State estimation error with Pl observer
[10]
b
[11]
J [12]
s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ [13]
0 5 10 15 20 25 30 35 40 45 50
Fig. 5. State estimation error with PMI observer
(14]

estimation error are given in the LMI formulation. The
observers are robust since they are synthesized in order[t6]
minimize the effect of noises on the state estimation error
by using an.#, approach. The Pl observer is interesting;g
for the estimation of constant or slowly varying unknown
inputs and it is less sensitive to noises compared to tg%]
PMI observer [7]. In the other hand, PMI observer is
good way to obtain a more precise estimation of states affi$]
unknown inputs. The future works will concern, firstly, the 19]
improvement of the PMI observer by introducing a stablé
weighting functions on the perturbatiodgt) which allows
to reflect the expected frequency contentégt), secondly,
the use of these observers in nonlinear system diagnosis.

[20]
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