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Abstract— This paper presents a new method to synthesize detect and isolate the faults. In the works cited above, the
observers for continuous time nonlinear systems described guthors assume that the weighting functions depend on a
by Takagi-Sugeno (TS) model with unmeasurable premise \haaqraple premise variables (like the input or the output
variables. First, convergence conditions are established in order f th t Th h th ighti functi
to guarantee the convergence of the state estimation error. B#se O' 1€ SYS em). € case where he weignting functions
conditions are given in Linear Matrix Inequality (LMI) for- depend on an unmeasurable premise variables (like the state
mulation. Secondly, a classical Proportional Integral Observer of the system) is studied in [7], [8], [9]. The authors progos
(P10O) is extended to the considered nonlinear systems in order an observer which is an extension of the Thau-Luenberger
to estimate the state and the unknown inputs (Ul). observer [10] and they give a methodology for synthesizing

|. INTRODUCTION the gains of the observer using an LMI approach.
Section Il gives some notations used in the paper, presents

took an important consideration. Indeed, the unceasing d&'¢ Takagi-Sugeno model structure and finally states the

mand in terms of reliability and performance of systems hagrobllem of our_studg/. gec_tmnsflllband IV present the main
led to the use of nonlinear models to represent the systen'ig'fsu ts concerning ,t € design of observer to estimate d. te St
Therefore obtained models are very complex and the ta&?d the unknown inputs of nonlinear systems described by

of model-based fault diagnosis becomes more difficult tgakagi-Sugeno models. Before concluding, simulationitesu
are given in section V.

Recently, monitoring and diagnosis of nonlinear system

achieve.
In recent years, the proposed Takagi-Sugeno structure
introduced in [1] provides a better representation of muar Il. NOTATION AND PROBLEM STATEMENT

systems in terms of mathematical complexity. Thus, highly In this paper the following notations are used
nonlinear behaviors can be represented by simple models.

The Takagi-Sugeno model structure, sometimes known as r

multiple model structure, is based on the decomposition of Zi D D MiHjHke Y HiljH

the operating range in several zones (operating points) and =LI=EL Lhk=L

the behavior of the system in each zone is represented by, is ann x n identity matrix.

a local linear model. Thanks to an appropriate choice of

the weighting functions, the blending of the local modelsy Takagi-Sugeno model

can efficiently represents the overall behavior of the syste

The contribution of each local model is quantified by the Letus consider the TS model representation of a nonlinear
weighting functions. These nonlinear functions verify theSystem given by

property of convex sum. This important property allows the

r r r

r
extension of some analysis and design tools developed in the X(t) = ¥ mi(&(t)) (Ax(t) +Biu(t))
linear system framework to nonlinear systems, which is the i+1 1)
main interest of the Takagi-Sugeno structure for the stifdy o y(t) = 3 mi(&(t)) (Cix(t) + Diu(t))

. i=1
nonlinear systems.

Concerning the state estimation of nonlinear systems repserex(t) € R" is the state vecton(t) € R™ is the control
resented by Takagi-Sugeno models, we can cite [2], [3jpput andy(t) € RP is the measurement outpu, B;, C; and
[4], where the authors extended the Luenberger observer are real known matrices with appropriate dimensions. The
and the unknown input observer (UIO) to nonlinear systemsveighting functionsy; are nonlinear iré (t) and satisfy the
These two observers are used in [4] and [5] to develop atbnvex sum property:
observer bank based method to detect and isolate actuator

and sensor faults. Another model-based approach to fault %Hi(f(t)) -1
detection for Takagi-Sugeno models is proposed in [6], wher i=1 . (2)
the authors use the techniques of sensitivity constramts t 0<m(§(t) <1lie{l,..r}

All the authors are with the Centre de Recherche enlhe premise variablé(t) can depend on measurable signals,
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B. Problem statement For the sake of simplicity(t) is omitted.

Takagi-Sugeno model has proved its effectiveness in the L€t denote the estimated state by By adding and

study of nonlinear systems. In the case of bounded nosubtracting the terny (ui(x) — i (X)) (Aix+Bju), we obtain
linearities, TS structure not only provides a mathemadical i, following equivlazltlant system:

equivalent form, but also highlights each of the linear sub-
models [1]. In the field of stability analysis and stabilipat
many works, such as state feedback control [2], [11], [12],
[13], [3] have been developed and applied in a lot of prattica

situations. The problem of state estimation has also been + zi(IJi (X) — Hi (X)) (Aix+ Bju) 4)

><.
I

3 1 (A By

studied in order to design state feedback control laws and 1=

to design a residual generator in order to detect and isolgi& explained in the previous section, thanks to convex
faults in the system and to reconfigure the control laws iproperty of the sum of the weighting functions, the follogin

the presence of faults [4], [7]. equation holds:

In the field of state estimation and diagnosis of nonlinear ] ]
systems using multiple model approach, the most of the (%) — 1 (R))X = (X U (R) (O — X 5
published works considered TS models with measurable I;(M( )~ W)X i’JZle-ll( iR i G

premise variables [4], [14]. It is clear that the choice of

measurable premise variables offers a good simplicity tyhereXi € {Ai,B;,Ci,Di}. Let us define the following nota-
generalize the methods already developed for linear sy4ons:

tems. But in the case where the premise variables are not AXij =X =X (6)
measurable, the problem becomes very hard. However, this ) .
formalism is very important both in the exact representatio en the system (4) can be transformed into the following

of the nonlinear behavior and in diagnosis method base&yStem:

on observer banks to detect and isolate actuator and sensor r
faults. Indeed in this case, the use of measurable premise X= 3 Hi(X)K;j(X)((Aj +AAj)x+ (Bj +ABjj)u) (7)
variables requires to develop two different multiple maglel =1

the first using the input(t) in the premise variable to detect the output equation can similarly be written in the follogin
and isolate sensor faults, and the second using the outgym,:

of the system for actuator faults. Considering unmeasearabl .
premise variables allows to develop only one multiple model y= 14 (X) t(R) ((C + ACi )X+ (D +ADj)u) — (8)
of the system behavior to detect and isolate actuator and ,él

sensor faults using observer banks. In the literature, a few

works are devoted to the case of unmeasurable premis8€ System (7)-(8) can be seen as an uncertain system but
variables, nevertheless, we can cite [7], [15], [8], whére t the considered uncertain termsS; are completely known

authors proposed the fuzzy Thau-Luenberger observer whigfid are constant matrices. _ _
is an extension of the classical Luenberger observer. The The proposed observer is given by the following equations:

main contribution of this paper is to propose a method to Lo R . R

estimate not only the state variables, but also the unknown X= 3 Hj(X)(AjX+Bju+Gj(y—Y))

input affecting the system. Moreover, compared to existing J?l 9)
works, the considered models are more generic since their y= 2 Hic(%) (G + Dicu)

k=1

output is a nonlinear function of the state whereas it is

often a simple linear combination. Our approach allows tdaking (2) into account, the equations (8) can be multiplied
reduce the conservatism, linked to Lipschitz conditiorfs, dy ¥i_; ti(X) to obtain:

the existing works [7] and relaxing the conditions under r

which the method is applicable. The proposed method is X = z Hi(X)uj (X) (AjX+Bju+Gj(y—9))  (10)
given for more general T-S systems because it includes the iJ=1

case where the output of the system is nonlinear with regard

to the state of the system. d

= Y HOOMR) G+ D (11
k=1

<

[1l. STATE ESTIMATION IN THE Ul FREE CASE

. . I . The weighting functiongy;(x) formally appear in (10-11

. Consider the system (1) with weighting functions depend&ilthough(\t:J the?/ are not Zﬂéil)able singespﬁot know(n. But)
ing on the state of the system: it should be noticed that since no term is indexedidn

AU . A (10-11) the computations of andy are still feasible.

Xt = glu' (X)) (Ax(t) + Biu(t)) 3) The state estimation error is given as follows:

YO = 3 W(x(0) (Gx(t)+ Diult) e=x-% a2)



Using (7), (8), (10) and (11), the dynamics of the statdhe goal is to attenuate the effect of the inp(t) onz(t). So,

estimation error is: in order to guarantee the stability of (13) with a boundednes
. r of the transfer fromu(t) to z(t):
e= Z i (X) 1 (R) i (X) (Pjce+Tijx+ Sijku) — (13) 120
L 2<y, [u®l,#0,y>0 (27)
where: ||U(t)||2
Pjk = Aj — GG we consider the following criterion:
Fijk = A — GjACik St T
Sjk = OBy — GjADj V(&) +2'z—y’u"u<0 (28)
i,j,ke{1,...,r} Substituting (26) and (15) in (28), we obtain:

r

Let us define the augmented state-Te" x']T, thus, we Z () 1 (R) e () (F (AT P+ Pt
H(X)H; ijk i
i,j k=1

have the augmented system:
r

+XT P2 ju+u' B PR) + KTHTHR— yPuTu <0

X = 2 MO0 (R (Mip&+ Biju)  (14)
ij k=1 (29)
z = hx (15) The convex sum property of the weighting functions allows
where: to write:
A= | T T | g | 2k i, 0 (16 r 2 AW %
k=| 9 a | Zk=| g [ H=[ 0 (16) Z 1 (X) 1 (R) i (%) (KT (A1 P + Pt 1) X
i k=1

The goal then is to determin®; to guarantee the stability +XTP%.ku+uTgIkpg+iTHTH;_ VZUTU) <0
of (14) while attenuating the effect of the inpuft) on z(t). . "

(30)
Theorem 1: The system (14) is stable and th#5-gain  which can be written in the matrix form:
of the transfer fromu(t) to z(t) is bounded, if there exists r
symmetric matriced? and P,, matricesK; and a positive Z Hi (X) U ()“()uk(x)FTEi ki <0 (32)
scalary, such that the following conditions hold: i,jk=1
>(:I_.Ijk eijk l-Pijk where:
Gajk Xo  PeBi | <0,¥(i,j,k) €{1,...r}°  (17) - [ AYP+PMK+HTH PHi
where: e { X }
Xik = AJP+PA —KG—CIKI +1  (18) o u _
Xo — A,-TP2+ PA (19) A sufficient coTndltlon for (29) Tto be held is:
Oijk = PAAj—Kj;ACk (20) [ //liJkP+P{lijk+H H PZijk } <0 (32)
Wik = PiABjj —KjADjk (21) %P —y
The gains of the observer are derived from: v(i,j.k) e{1,...,r}3
Gj = P K; (22) Let us choose the following structure for the matfx
and the attenuation level is : p_ [ P O ] 33)
_ |0 R
Y=\ (23)

Using the definition ofZ;;x and %;jk given in (16), and the
Proof: Considering the following quadratic Lyapunov use of the changes of variables:

function: - .
V() =x"P%, P=P" >0 (24) Ki=hG (34)
. I . N and
its derivative with regard to time is given by: —
SRR T D IR y=y (35)
V(X) = X' PX4+X' PX 25
. ® + (25) we obtain from (32) the LMI conditions expressed in (17)
By substitutingX (14) in (25), we obtain: in the theorem 1. |
] r In many practical situations, the output is given by a
V(&) = Z 1 (X) 14 (R) e (X) (KT (P set of sensors measuring a subset of the state variables.
ijk=1

Assuming that the location of the sensors does not depend
+ PA)R+K PR ju+u BPK)  (26) on the operating point, we ha® =D, = ... =D; =0 and



Ci =Cy =...=C; =C. The output of the system is then symmetric matriced?, and P, matricesK; and a positive

given by: scalary, such that the following conditions hold:
y= Cx (36) le elj l'IJI] ,
In this case, the system (14) becomes: 9,11 X PBi | <0,e{l,..r} (47)
Wi BIR, —vi
r
X o= % mOu(R) AR+ Ziju) (37) —BP  ATP-CTKT
i,j]=1 |: PA. —K.C ! _BP ! <0 (48)
z = HX (38) P
T _CTKT _K;
where: AjP+PAj-C'Kj —KjC+2aP <0 (49)
A _GiC L _GiC AB:: whereXyj, X5, ©jj andW;; are defined in corollary 1. The
Mij=|"" 0 . AA”Ai ) } , Bij = [ Bi” } (39) gains of the observer are derived from:
-1
The simplified version of theorem 1 is then given in the Gj =P K| (50)
corollary 1. _ ~and the attenuation level is given by:
Corollary 1: The system (37) is stable and thé&-gain _
of the transfer ofu(t) to z(t) is bounded, if there exists V=Y (51)
symmetric matriced; and P, matricesK; and a positive Proof:  The proof is similar to the proof of the
scalary, such that the following conditions hold(i,j) € theorem 1 using the results of eigenvalues assignment
{1,....,r}% published in [16]. [ |
Xij O W IV. STATE AND UNKNOWN INPUT ESTIMATION
9%1 Xai  PBi | <0 (40) In this section, the problem of state and unknown input
Wi B'R -y estimation is considered by extending the Pl observer de-
) veloped for linear systems to the case of TS systems with
where: 4 . ) .
unmeasurable premise variables. Firstly time, the unknown
Xy = A]Tp1+p1Aj —KjC—CTKjT +1 (41) input is assumed to be a constant signal. The convergence
T _ conditions are obtained by using the results given in the
X = AR+RA (42) previous sections. Secondly, the derivative of the unknown
Oij = PAA-KC (43)  input is assumed to be bounded. The convergence conditions
Wij = PIAB;j (44) are given in the LMIs formulation. For the sake of simplicity
. . _ the output of the considered systems is linear with respect t
The gains of the observer are derived from: the state, the input and the unknown ingdt & ... =C; =C,
Let us consider the following system:
and the attenuation level is given by: r
X= i(X) (Ax+Bju+Ef
y=Cx+Du+Ff
The performances of the observer can be increased byAssumption 1: The following assumption holds :
eigenvalue assignment in a specific region in the complex f(t)=0 (53)

plane. For nonlinear Takagi-Sugeno systems, it is negessar
to assign all of the eigenvalues of the local observers. The
performance objectives tackled in the present paper ak&
twofold: a decay rate to ensure the fast convergence aH
the observer and the limitation of the imaginary part of {

t us consider the augmented state= [x" 7], then the
gmented system is:

Xa:ilui(X) (Aixa+ Biu)
=
y = Cxa+Du

the eigenvalues of the observer to reduce the oscillatory
phenomenon. Consequently, the eigenvalues of the system
generating the state estimation error are clustered in ar]'] )
LMI region S(a,B) which is the intersection between avnere:
circle with center(0,0) and radius8 and a strip with real K { A E } 5 — { Bi } E=[c F]
part smaller than-a. The corollary 2 gives the conditions 0 0 0’
of convergence of the observer taking into account thﬁpplying the same method used to obtain (7)-(8), the system
eigenvalues assignment. (52) can be transformed into the following equivalent form:
r

Corallary 2: The system (37) is stable and tki€-gain Xq = ti ()i (R) (Aj + AR )xa+ (B +ABi)u)  (55)

of the transfer fromu(t) to z(t) is bounded, if there exists i,Jzzl 09k (A /) B i)

(54)



where: where:

AXj =X =X, X € {AB}

The PI observer is given by: Xty = AJPL+PA-LiC-CTL] +I (63)
R Xo = AP +PA (64)
{ %a= 3 Hi (%) (Aj%a+Bju+Gj(y—9)) (56) O — Pk, (65)
y = CXa+Du
The gains of the observer are derived from:
where: G
s Pj
GJ B { G|j } éj = [ g‘:l ] zplfle (66)
The estimation error is given bg, = x5 — Xg, and its :
dynamics is given by: and the attenuation level is given by:
r
€ = » HOHK)((Aj=GiC)ea+DbAjXa y=1\y (67)
R o The Proportional Integral Observer (PIO) can be applieg onl
+ Al§iju) (57) in the case where the unknown input is constant or slowly
r A time varying. In order to estimate other types of unknown
= Z Hi (X) Hj (X) (Pjea + [ OJ }x inputs, the Proportional Multiple Integral Observer (PMIO
=1 is proposed in [17].
AE;) 5
+ [ 0 } f +ABjju) (58)
r V. SIMULATION RESULTS
- IJzzlul () (%) <¢1e3+ { OJ }X+r”w> To illustrate the effectiveness of the proposed methods,

(59) numerical examples are given in this section. The first one
concerns the state estimation and the second one uses the
where: Pl observer in order to estimate the state and the unknown
o - o f - AE:; inputs.
Fij = [ AEj; AB;j ],OJ: { u }7AE” = { OIJ ]
Let us define the augmented stafe="[e] x"|T, then the A Sate estimation

augmented system is: Consider the system described in (1) defined by:

r . 2 1 1 3 2 -2
2 ol [ @i AA; }N { rij } _ _
f=S mu (R %+ w| (60 A=| 1 -3 0 |, A=|5 -3 0
3 woow | | G ol @ m= 1 -3 0 a=| s 30
Mij Ri
; 1 15
_ o) Bl_lo_sljz_{g],c_“ 1]
where: B 0.25 2
Bi:[Ei Bi]

The weighting functions are defined by:
The system (58) has the same form of (37). The objective is

to assure the stability of (58) while minimizing the influenc pa(X) = l—tarzlf(xl)
of w(t) on the estimation erraz(t). By using the corollary Uo(X) = 1— pia () = LHer) (68)
1, we obtain the sufficient convergence conditions of the PI 2

observer (54). By using the corollary 2 with eigenvalues assignment in an

. . LMI region defined bya = 0.1 and3 = 10, we obtain the
Theorem 2: The system (58) is stable and th&-gain following matrices:

of the transfer ofw(t) to z(t) is bounded, if there exists

symmetric matriced?; and P,, matricesG; and a positive —1556 8556 —1556 8556
scalary, such that the following conditions hold(i, j) € Ly=| 6919 -895 |, L,=| 6919 -8956
{1 r}Z: —-1.684 6472 —1684 6472
X1Tj ©; PAE; PAB; An output noise bounded by 1 is added to the output of
Sjj Xoi PE; PBi the system in order to simulate measurement noise. The
=T T = <0 (62) . i R R’ .
AEPL 'R -V 0 simulation results in the figure 1 illustrate the convergenc

Aéﬁj P BiTPz 0 -yl of the state estimation error in the Ul free case.



and of the Ul. The proposed approach is based on some
transformations using the convex property of the sum of
the weighting functions. The convergence of the estimation
errors are studied using the second method of Lyapunov
and the.%, technigues, and the conditions which guarantee
the convergence of the estimation errors are obtained in the
Linear Matrix Inequalities (LMIs) formulation. The future
works will concern, on the one hand, the application of
the proposed methods to develop a scheme for diagnosis of

_10 ‘ ‘ ‘ -
0 5 10 15 20 nonlinear systems, and on the other hand, the convergence
o €3 conditions will be studied in order to reduce its conseprafi
L ‘ by using for example, other kinds of Lyapunov functions.
ol
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