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Abstract

This paper addresses the analysis and design of unknown input observer in order to provide both state and unknown

input estimation of complex systems modelled with the help of a particular classof multiple model. The proposed

observer uses the multi-integral strategy successfully employed in the classic linear control theory and known for

its robustness properties. The observer design is based on the representation of the system via a multiple model,

known asdecoupled multiple model. This structure of multiple model allows to use submodels with different

number of states and this fact constitutes the main advantage of the proposed observer with respect to the classic

multiple model structure where the submodels have the same dimension. Itis shown how the gains of the suggested

observer can be obtained by solving a LMI optimal problem. An academicexample is also proposed in order to

illustrate the proposed methodology.

Keywords. nonlinear systems, multiple models, state estimation, unknown input multi-integral observer,

1 Introduction

In many real-world applications the direct measurement of the state variables of a system can be very difficult to

obtain, or even impossible, due for example to physical constraints and/or economical restrictions. The use of an

estimation of the state, using an observer, instead of its measured value, provided by sensors, is a solution largely

adopted in order to avoid these problems. However, it is wellknown that in many situations some inputs of the

system are inaccessible or considered for simplicity as such. These unmeasurable signals, denoted as unknown

inputs (UI), have a serious impact on the state reconstruction and can be at the origin of biased estimations if they

are not correctly taken into consideration.

Hence, both state and UI estimations have been intensively investigated for years because these estimations

are of great use in several engineering applications such ascontrol, supervision and fault-tolerant control. Indeed,
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an actuator/sensor failure or an abnormal behaviour of an internal component of the system can be regarded as

unmeasured signals modelled by UIs. Hence, the UI estimations can be considered as fault symptoms of the

system for fault detection and isolation in order to improvethe safety of the system.

The so-called unknown input observer (UIO) is usually employed as a mean to provide both state and UI

estimations of a system. There are several approaches for unknown input observer design for system represented

by linear time-invariant models. In a general way, the UIO design consists in finding a projection operator or a

matrix transformation fulfilling a set of algebraic equations in order to decouple the UI and the estimation error

(see [1, 2, 3, 4, 5] and references therein). Note however that, as pointed out in [6], output derivatives are required

in order to perform an UI estimation. Undoubtedly the sensornoises are unavoidable and derivative of such signals

may be unsuitable.

Another attractive way to obtain a simultaneous estimationof the states and the UI is to use the Proportional-

Integral observer (PIO). This observer known for its robustness properties [7, 8] has been successfully employed

in order to cope with the state and the UI estimations when theUI is characterised by low frequency signals

(constant or slowly varying signals) [9, 10, 11, 12, 13]. Recently, in [14] the concept of PIO has been generalised to

Multiple-Integral Observer (MIO), by replacing the integral action by a chain of integral actions. Thanks to these

extra integral actions, the MIO is able to provide robust state estimations when the considered UI takes a polynomial

form which is more general than the considered constant unknown input. Recently, other implementation schemes

based on the MIO principle and their extension to Lipschitz nonlinear systems with single output are investigated in

[15]. For generalised linear time-invariant state space systems (or descriptor system), the MIO design is addressed

in [16, 17].

Moreover, nowadays the complexity of many physical systemsis undoubtedly increased involving nonlinear

dynamic behaviours which are governed by complex physical laws. Hence, the use of a single linear model for

modelling the dynamic behaviour of such systems in the wholeoperating space is unsuited because a linear model

provides only a local approximation in a small neighbourhood of an operating point (local modelling). On the other

hand, rigorous modelling of complex systems in a wide operational range (global modelling) can be in practice very

difficult and even if this modelling is possible the available model takes typically a nonlinear form which cannot be

generally used in a systematic way for designing an observer.

However, a global representation of such systems can effectively be expressed by blending judiciously a set of

linear local modelswhich describes the dynamics of the system in some small region of the operating space. In this

modelling framework, the obtained model is known aslocal model networkor multiple model(see [18, 19, 20] and

references therein). From a practical point of view, a multiple model is built by reducing the system complexity

via a decomposition of its operating space in a finite number of operating zones within which the dynamics are

characterised by a local model, also calledsubmodel, with relatively simple structure, often linear. The global

dynamic behaviour of the system is finally captured by considering the relative contribution of each submodel by

means of aweighting functionassociated to each operating zone. In brief, multiple modelapproach provides a
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suitable framework for modelling nonlinear systems by an association of a set of submodels blended throughout an

interpolation scheme.

It should be noted that the interpolation scheme used for blending the submodels plays an important role in

this context. Indeed, the same set of submodels can be associated in various ways which provide several kinds

of blended multiple models. However as pointed out in [21], two main structures of multiple models can be

distinguished. In the first one, the multiple model is made upof homogeneous submodelsin the sense that the

submodels have the same structure and share the same state space across the operating space. In the second one,

heterogeneous submodelscan be used because their state spaces are decoupled. It should be noted that these two

multiple model realisations don’t have an identical dynamic behaviour.

The so-calledTakagi-Sugeno multiple modelis the main example of homogeneous multiple models. It has

been initially proposed, in a fuzzy modelling framework, byTakagi and Sugeno [22] and in a operating regime-

based modelling framework by Johansen and Foss [23]. This multiple model has been extensively considered

in the literature for modelling, control and state estimation of nonlinear systems [18, 24, 25]. In this multiple

model representation, the parameters of the submodels are combined by means of the weighting functions and

then a common state vector appears in the dynamic equation ofthe overall model. It should be noted that this

same multiple model structure is encountered in a number of quite diverse similar modelling frameworks such as

piecewise linear model, polytopic models, hybrid systems,switched systems, markovian switching systems, etc.

Despite different names, these approaches share the same modelling philosophy. In these different frameworks, the

problem of estimating the state and the UI is tackled in several ways. For systems represented by Takagi-Sugeno

multiple models, Luenberger observers including a slidingterm to compensate the effect of the unknown inputs

are used in [26]. For polytopic models, a polytopic unknown input observer design for providing actuator fault

estimation in active fault tolerant control strategy is proposed in [27]. For markovian switching systems a finite

memory observer is considered in order to cope with this estimation problem [28]. For hybrid systems an extension

of the moving horizon estimation using a transformation of the original PieceWise Affine (PWA) system into Mixed

Logical and Dynamical (MLD) systems is proposed in [29]. Nevertheless, these contributions are proposed on the

basis of homogeneous local models across the operating space.

The second multiple model realisation , known asdecoupled multiple model, can be used in order to take into

consideration heterogeneous submodels. This model introduce some degree of flexibility in the modelling stage,

since the dimension (e.g. the number of state variables) of each submodel can be adapted to the complexity of the

system inside each operating zone and this constitutes the originality of the proposed approach (details are given

in section 2). Nonlinear systems identification using decoupled multiple model is addressed in [30, 31, 32] and

the control laws design in [33, 34, 35, 36]. It should be notedthat the state estimation problem of a nonlinear

system using this multiple model has been poorly consideredin the literature [37, 38]. In [37] the state estimation

problem is addressed in order to setting up a fault diagnosisstrategy. However just a note on the estimation error

convergence is proposed by the authors and no analytic proofof the convergence of the estimation error is given.
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These works show the relevance and the successful implementation of this structure for state estimation.

The main contribution of this paper is an extension of MIO design for linear systems to nonlinear discrete-time

systems represented by decoupled multiple models. The MIO is designed in order to provide both state and UI

estimations by minimising the influence of external disturbances on the estimation error. An analytic proof of the

convergence of the estimation errors is clearly established by using the well known Lyapunov theory. The robust

L2 existence conditions of the MIO are expressed in the form of aset of linear matrix inequalities (LMIs) [39].

So far, the proportional and integral observer (PIO) designfor linear discrete time systems seems only reported in

some recent papers [40, 41]. Hence, the proposed results canalso be used for designing a MIO in the single model

linear case because single model and PIO are a particular case of multiple models and MIO.

The outline of this paper is as follows. The decoupled multiple model representation is presented in section 2.

Preliminaries and the suggested MIO are presented in section 3. In section 4, robustL2 observer design is proposed

and the gains of the observer are obtained by LMI optimization. The last section gives a simulation example to

illustrate the effectiveness of the proposed approach.

Notations. The following standard notations will be used. P> 0 (P < 0) denotes a positive (negative) definite ma-

trix P; XT denotes the transpose of matrix X, I is the identity matrix ofappropriate dimension and diag{A1, ...,An}

stands for a block-diagonal matrix with the matrices Ai on the main diagonal. TheL2−norm of a signal, quantify-

ing its energy, is denoted and defined by‖e(k)‖2
2 =

∞
∑
0

eT(k)e(k). Finally, we shall simply writeµi(ξ (k)) = µi(k).

2 On the decoupled multiple model representation

Multiple model framework is an attractive way in the field of complex systems modelling because a large class of

nonlinear dynamic behaviours can be captured using this representation. Note also that multiple model makes it

possible the partial extension of some results obtained in the linear control theory to nonlinear systems avoiding

specific analysis of the non-linearity of the system. In brief, multiple model offers good accuracy representation by

means of an usable model.

The structure of the decoupled multiple model, firstly proposed in [21], is here slightly modified using a state

space representation as follows:

xi(k+1) = Aixi(k)+Biu(k)+Diη(k)+Viw(k) , (1a)

yi(k) = Cixi(k)+Eiη(k) , (1b)

y(k) =
L

∑
i=1

µi(ξ (k))yi(k)+Ww(k) , (1c)

wherexi ∈ R
ni andyi ∈ R

p are respectively the state vector and the output of theith submodel;u∈ R
m is the known

input vector,η ∈ R
l the UI vector,y∈ R

p the measured output andw∈ R
r a disturbance (noise, etc.). The matrices

Ai ∈ R
ni×ni , Bi ∈R

ni×m, Di ∈R
ni×l , Vi ∈R

ni×r , Ci ∈R
p×ni , Ei ∈R

p×l andW ∈R
p×r are known and appropriately
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dimensioned.

Remark 1. In this paper, the UIη(k) is interpreted as an interesting variable to be estimated (e.g. faults, etc.) and

w(k) is a disturbance signal (e.g. noise, modelling errors, etc.).

Remark 2. The same UI appears in both local states and local outputs. However, different UIs in the local states

and in the local outputs can be taken into consideration by choosing adequate structure of Di , Ei and η(k), for

example, Di = [D̄i 0], Ei = [0 E] and η(k) = [ηa(k) ηs(k)]
T . Note that a common matrix Ei is used for

modelling an UI acting on the multiple model output (e.g. a sensor fault).

The so-calleddecision variableξ (k) is used in order to take into account the current operating point of the

system. It is assumed known and real-time accessible, currently the inputs and/or measured variables of the system

are employed as decision variable. The relative contribution of each submodel according to the operating point of

the system is quantified by the weighting functionsµi(ξ (k)) which satisfy the following convex sum constraints:

L

∑
i=1

µi(ξ (k)) = 1 and 0≤ µi(ξ (k)) ≤ 1 , ∀i = 1...L, ∀k. (2)

The role of the weighting functions is to allow a transition,often smooth, between the contribution of the

submodels. Hence the contribution of several submodels canbe taken into account at the same time because the

weighting functions take intermediary values over the range 0 to 1. So the dynamic behaviour of the multiple model

can therefore be considered as truly nonlinear instead of a piecewise linear behaviour.

As it can clearly be seen from equation (1), the submodels arerun using a parallel scheme and the multiple

model output is obtained via a weighted sum of the submodel outputs. Therefore, the submodels do not share the

same state space and consequently their dimension (i.e. thenumber of state variables) and structure can be different

across the operating space of the system. Hence, it can be expected that the decoupled multiple model accurately

describes nonlinear systems with a relatively small numberof parameters. Indeed, the use of heterogeneous sub-

models provides flexibility in the modelling stage because each submodel can be well adapted to the complexity of

the system inside each operating zone. In a black box modelling, this feature can be used in order to cope with the

so-calledcurse of dimensionalityproblem where the number of parameters needed for an accurate representation

increases extremely rapidly as the order of the nonlinear dynamic system increases. This multiple model structure

is then suited for a black box modelling of complex systems with variable structure in the operating range. Note

that the local outputsyi(k) of the submodels are “artificial modelling signals” only used to provide a representation

of the real system behaviour but can neither be related physically to the true system nor measured.

3 Preliminaries

Firstly, the aim of this section is to introduce a compact rewriting of the decoupled multiple model in order to

reduce the further mathematical manipulation. Secondly, based on this new compact form, the proposed MIO is
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presented and the estimation errors are established. Finally, a brief discussion about sufficient conditions for the UI

decoupled state estimation is proposed.

3.1 Compact representation of the multiple model

Notice that by using the following augmented state vector:

x(k) =

[

xT
1 (k) · · · xT

i (k) · · · xT
L (k)

]T

∈ R
n, n =

L

∑
i=1

ni , (3)

the decoupled multiple model (1) can be rewritten in the following compact form:

x(k+1) = Ãx(k)+ B̃u(k)+ D̃η(k)+Ṽw(k) , (4a)

y(k) = C̃(k)x(k)+ Ẽ(k)η(k)+Ww(k) , (4b)

where

Ã = diag{A1 · · · Ai · · · AL} , (5)

B̃ =

[

B1
T · · · Bi

T · · · BL
T

]T

, (6)

D̃ =

[

D1
T · · · Di

T · · · DL
T

]T

, (7)

Ṽ =

[

V1
T · · ·Vi

T · · ·VL
T

]T

, (8)

C̃(k) =

[

µ1(k)C1 · · · µi(k)Ci · · · µL(k)CL

]

, (9)

Ẽ(k) =
L

∑
i=1

µi(k)Ei . (10)

The reader may have noticed that the time-varying matrixC̃(k) can be rewritten as follows:

C̃(k) =
L

∑
i=1

µi(k)C̃i , (11)

whereC̃i is a constant block matrix given by:

C̃i =

[

0 · · ·Ci · · · 0

]

(12)

such as the termCi is found on theith block column ofC̃i .
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3.2 Multi-Integral Observer presentation

Assuming that the UI acting on the system is modelled by a polynomial form of degreef in the variablek as follows

η(k) = Q0 +Q1k+Q2k2 + · · ·+Qf k
f . (13)

From a practical point of view, a wide class of UIs can be modelled via a polynomial function (constant signal,

ramps, etc.). Let us notice that the polynomial degreef of the unknown input is the only information supposed

available, the coefficientsQf of the polynomial are assumed unknown.

The following state observer on the basis of the model (4) andthe UI (13) is proposed with the aim of providing

a simultaneous estimation of the state and the UI:

x̂(k+1) = Ãx̂(k)+ B̃u(k)+ D̃η̂0(k)+Kp(y(k)− ŷ(k)) , (14a)

ŷ(k) = C̃(k)x̂(k)+ Ẽ(k)η̂0(k) (14b)

coupled to the following UIO:

η̂i(k+1) = η̂i(k)+Ki(y(k)− ŷ(k))+ η̂i+1(k), i = 0, ...,q−1 , (15a)

η̂q(k+1) = η̂q(k)+Kq(y(k)− ŷ(k)) , (15b)

wherex̂(k) andη̂0(k) are the estimates ofx(k) andη(k) respectively.

As can be shown in the figure 1, the UI estimation is obtained using the multi-integral strategy (in this figure the

operatorz−1 is the one step delay operator). Indeed, the estimation of the UI is performed using a recurrent schema

given by a chain of integral actions. Hence, the inputs of thei −1th block are the output estimation error given by

y(k)− ŷ(k) and the output of theith block.

3.3 Definitions of the estimation errors

In this section, the state and UI estimation errors are studied to prove that ˆx(k) andη̂0(k) converge towardx(k) and

η(k) respectively. In order to establish the estimation errors thedifference operatormust be introduced.

Definition 1 (Difference operator). The first difference of a functionϕ(k) is a function defined by:

∆ϕ(k) , ϕ(k+1)−ϕ(k) . (16)

The qth-difference operator is given by:

∆(q)ϕ = ∆(∆(q−1)ϕ(k)) . (17)

7



For example, the second difference of a functionϕ(k) is given by:

∆(2)ϕ = ∆(ϕ(k+1)−ϕ(k)) ,

∆(2)ϕ = ϕ(k+2)−2ϕ(k−1)+ϕ(k) .

Now, the state and UI estimation errors are defined by:

e(k) = x(k)− x̂(k) , (18)

εi(k) = ∆(i)η(k)− η̂i(k), i = 0, ...,q , (19)

where∆(0)η(k) = η(k).

Remark 3. The architecture of the proposed observer allows us to obtain an estimation of the state, the unknown

input and its successive qth differences (i.e. the coefficients of the polynomial) at thesame time.

Dynamic equations of these errors must be now established. Hence, dynamics of the state estimation error is

given by:

e(k+1) = (Ã−KpC̃(k))e(k)+(D̃−KpẼ(k))ε0(k)+(Ṽ −KpW)w(k) . (20)

The above equation is easily obtained with the help of equations (4), (14), (18) and (19) by consideringi = 0. Let

us notice that the state estimation error is directly affected by the UI estimation errorε0(k) and the disturbancew(k)

acting on the system.

The dynamics of the UI estimation error,εi(k) for 0≤ i < q , is obtained using (19) and (15):

εi(k+1) = εi(k)+ εi+1(k)−KiC̃(k)e(k)−KiẼ(k)ε0(k)−KiWw(k), i = 0, ...,q−1 , (21)

and finally the dynamics ofεq(k) is given by:

εq(k+1) = εq(k)−KqC̃(k)e(k)−KqẼ(k)ε0(k)−KqWw(k)+∆(q+1)η(k) . (22)

We can rewrite in a compact form the dynamics of the state estimation error, the UI estimation error and their

successive differences using an augmented error vector given by:

Σ(k) =

[

eT(k) εT
0 (k) . . . εT

i (k) . . . εT
q (k)

]T

, (23)

as follows:

Σ(k+1) = (Λ−KΓ(k))Σ(k)+(V −KW)w(k)+Φ∆(q+1)η(k) , (24)
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where

Λ =

































Ã D̃ 0 0 0 . . . 0

0 I I 0 0 . . . 0

0 0 I I 0 . . . 0

...

0 0 0 0 0 I I

0 0 0 0 0 0 I

































, K =

































Kp

K0

...

Ki

...

Kq

































, Φ =

































0

0

0
...
...

I

































, V =

































Ṽ

0

0
...
...

0

































, Γ(k) =

































C̃(k)T

Ẽ(k)T

0
...
...

0

































T

. (25)

Notice that by using the definition (11) of̃C(k) and the definition (10) of̃E(k), the time-varying matrixΓ(k)

can be rewritten as:

Γ(k) =
L

∑
i=1

µi(k)Ωi . (26)

where

Ωi =

[

C̃i Ẽi 0 . . . . . . 0

]

. (27)

Finally, taking into consideration the previous matrix transformation, the equation (24) becomes:

Σ(k+1) = Ψ(k)Σ(k)+(V −KW)w(k)+Φ∆(q+1)η(k) , (28)

Ψ(k) =
L

∑
i=1

µi(k)(Λ−KΩi) . (29)

Conceptually, the aim of the design is to determine an augmented gain matrixK ∈ R
n+(q+1)l×p that guarantees the

asymptotic convergence of the estimation error towards zero (detailed problem formulations are presented in the

section 4).

3.4 Discussion about unknown input decoupling

It can be seen, from equation (28), that the estimation erroris totally decoupledfrom the unknown input (i.e.

the influence of the unknown input on the estimation errorΣ(k) is vanished) if and only if∆(q+1)η(k) = 0. This

conditions can be accomplished when the two following conditions are simultaneously satisfied:

1. the unknown inputη(k) takes a polynomial form of degreef in the variablek,

2. the number of integral actionsq taken into account is at least equal tof +1.

Hence the number of integral actionsq in the observer depends on the polynomial degreef taken into account

for modelling the UI. Note that the minimal number of integral actions needed for ensuring the unknown input

decoupling is fixed by the second condition. For example, if the UI is modelled by polynomial of degree zero
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η(k) = Q0 then only one integral action is necessary for ensuring∆η(k) = 0. If a polynomial of degree one is

consideredη(k) = Q0 +Q1k then two integral actions are necessary for ensuring∆2η(k) = 0, and so on.

4 Problem formulations and main results

Three main problems can be examined in the purpose to simultaneously estimate the state and the unknown input

using the proposed MIO:

1. Problem 1. Obtain conditions for ensuring both state and UI estimationerror convergence, i.e. the observer

stability, when∆(q+1)η(k) = 0 andw(k) = 0.

2. Problem 2. Obtain conditions for both state and UI estimation error convergence by considering a perturbed

multiple model i.e.w(k) 6= 0. This problem can be viewed as the robust observer design with respect to

disturbances.

3. Problem 3. Obtain conditions for both state and UI estimation error convergence when the UI is not truly a

polynomial form i.e.∆(q+1)η(k) 6= 0 and by consideringw(k) 6= 0.

Let us notice that in the multiple model framework, an unstable multiple model can be obtained by blending

a set of stable submodels. Hence the stability assumption ofthe submodels does not guarantee the stability of the

multiple model. Consequently, the individual stability ofmatricesΛ−KΩi is not sufficient in order to guarantee

the stability of the time-varyingψ(k) given by (29). Hence, a classic observer design for each submodel cannot

be performed independently: the blending between the submodels must be taken into consideration in the observer

design in order to ensure the convergence of the estimation error (23). Therefore, the analysis of these problems

will be carried out in the time-domain with the help of the Lyapunov method and the proposed solutions for the

observer design are derived in terms of LMIs [39].

4.1 Problem 1: convergence conditions of the estimation error

Convergence conditions of the estimation error, in the disturbance free case and with an UI perfectly decoupled,

will be established under the following assumption:

Assumption 1. w(k) = 0 and∆(q+1)η(k) = 0.

The following theorem presents the convergence conditions:

Theorem 1. Consider the model(4) and assumption 1. There exists an observer(14) and (15) such that the state

and the UI estimation error(23)asymptotically converges towards zero if there exist P= PT > 0 and M such that:







P PΛ−MΩi

(PΛ)T − (MΩi)
T P






> 0, i = 1...L . (30)
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The observer gains are given by K= P−1M where K is defined by(25).

Conceptually, the conditions of this theorem ensure the stability of the system defined in (28) for any blend

between the submodel outputs and for any initial conditions.

Proof. Define the time dependent quadratic Lyapunov function by:

V(k) = ΣT(k)PΣ(k), (31)

whereP = PT > 0. The variation of the above function is given by:

∆V(k) = V(k+1)−V(k), (32)

which must be negative in order to ensure the asymptotic convergence towards zero of the estimation error.

By considering the assumption 1 and (28) then (32) becomes:

∆V(k) = ΣT(k){ΨT(k)PΨ(k)−P}Σ(k) , (33)

that is a quadratic form inΣ(k). The negativity of (33) is then ensured if:

ΨT(k)PΨ(k)−P < 0 , (34)

which can be rewritten, using the Schur complement and (29),as follows:

L

∑
i=1

µi(k)







P P(Λ−KΩi)

P(Λ−KΩi) P






> 0 . (35)

Now, according to the convex sum properties (2), the above inequality is also verified if the following inequalities

hold:







P P(Λ−KΩi)

(Λ−KΩi)
TP P






> 0 , i = 1...L . (36)

Let us notice that the above inequalities do not take a LMI form in the variablesP andK, therefore the classical LMI

tools cannot be directly used. However, they become a LMI by settingM = PK and the proof is completed.

4.2 Problem 2: convergence conditions in the presence of disturbances

Now, model (4) is assumed to be affected by energy-bounded disturbances but the UI remains perfectly decoupled.

In other words the following assumptions are made:

11



Assumption 2. The disturbance w(k) is such that‖w(k)‖2
2 < ∞.

Assumption 3. The UI is such that∆(q+1)η(k) = 0.

The robust observer design problem can thus be formulated asfinding a matrix gainK such that the objective

signalz(k) to be attenuated and defined by:

z(k) = HΣ(k) , (37)

satisfies the following design objectives:

lim
k→∞

Σ(k) = 0 for w(k) = 0 , (38a)

‖z(k)‖2
2 ≤ γ2‖w(k)‖2

2 for w(k) 6= 0 andz(0) = 0 , (38b)

whereγ is theL2 gain fromw(k) to z(k). Notice that the convergence of the estimation error in the disturbance free

case is ensured by (38a) and robust state estimation in presence of a disturbance is ensured by (38b). Finally, note

that thanks to matrixH in (37), the attenuation level is guaranteed by consideringpartially or totally the components

of the augmented errorΣ(k).

The following theorem presents robust convergence conditions:

Theorem 2(Robust convergence conditions). Considerer the model(4) and assumptions 2 and 3. There exists an

observer(14)and (15)ensuring the objective(38) if there exist P= PT > 0, M and a scalarγ > 0 such that:













−P PΛ−MΩi PV−MW

(PΛ−MΩi)
T −P+HTH 0

(PV−MW)T 0 −γ2I













< 0, i = 1...L , (39)

for a prescribed matrix H. The matrix gain is given by K= P−1M.

Remark 4. The attenuation levelγ can be minimized by considerinḡγ = γ2 as an LMI variable to be minimized

under the constraintsγ > 0, P= PT > 0 and (39).

Proof. In order to ensure robust performances defined by (38), let usconsider the quadratic Lyapunov function

(31), its variation∆V(k) = V(k+1)−V(k) andγ > 0 such that [39]:

∆V(k) < −zT(k)z(k)+ γ2wT(k)w(k) , ∀k . (40)

It is easily established that, by consideringV(0) = 0, (40) implies‖z(k)‖2
2 < γ2‖w(k)‖2

2 . Hence, robust perfor-

mances (38) are achieved by satisfying (40). To that purpose, consider (28) and assumptions 2 and 3, the variation

12



of the Lyapunov function is then given by:

∆V(k) = ΣT(k)ΨT(k)PΨ(k)Σ(k)

+ ΣT(k)ΨT(k)P(V −KW)w(k)

+ wT(k)(V −KW)TPΨ(k)Σ(k)

+ wT(k)(V −KW)TP(V −KW)w(k)−ΣT(k)PΣ(k) , (41)

which can be rewritten as:

∆V(k) = ΦT(k)Ω(k)Φ(k) , (42)

where:

Ω(k) =







ΨT(k)PΨ(k)−P ΨT(k)P(V −KW)

(V −KW)TPΨ(k) (V −KW)TP(V −KW)






, (43)

Φ(k) =

[

ΣT(k) wT(k)

]T

. (44)

Finally, (40) is ensured if

ΦT(k)











Ω(k)+







HTH 0

0 −γ2I

















Φ(k) < 0 , (45)

which is a quadratic form inΦ(k). This inequality holds provided the expression inside the brackets is negative

definite:







ΨT(k)PΨ(k)−P+HTH ΨT(k)P(V −KW)

(V −KW)TPΨ(k) (V −KW)TP(V −KW)− γ2I






< 0 , (46)

which becomes using the Schur complement:













−P PΨ(k) P(V −KW)

ΨT(k)P −P+HTH 0

(V −KW)TP 0 −γ2I













< 0 . (47)

The proof is completed as in the previous case by using (29), the convex sum properties ofµi(k) given by (2) and

the change of variablesM = PK.
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4.3 Problem 3: state and UI estimation when the(q+1)th-difference of the UI is not null

In this section, a perturbed decoupled multiple model without a total UI decoupling is considered (assumption 3 is

not verified). Indeed, the(q+ 1)th-difference of the unknown input is not assumed to be null butbounded by an

unknown function∆(q+1)η(k) ≤ δ (k). Note that the solution of this problem can be useful in orderto reduce the

number of integral actions.

Assumption 4. The UI satisfies∆(q+1)η(k) = δ (k) with ‖δ (k)‖2
2 < ∞.

The estimation error equation (28) can be re-written as:

Σ(k+1) = Ψ(k)Σ(k)+Πθ(k) , (48)

where
Π =

[

V −KW Φ
]

and θ(k) =

[

wT(k) δ T(k)

]T

. (49)

Thus the unknown functionδ (k) is considered as a disturbance. Now, this problem can be regarded in a similar

way that the previous one. Hence the theorem 2 can be directlyused by consideringθ(k) as disturbance instead of

w(k).

The robust observer design problem can thus be formulated asfinding a matrix gainK such that the objective

signalz(k) to be attenuated and defined by:

z(k) = HΣ(k) , (50)

satisfies the following design objectives:

lim
k→∞

Σ(k) = 0 for w(k) = 0 , (51a)

‖z(k)‖2
2 ≤ γ2‖θ(k)‖2

2,Q for θ(k) 6= 0 andz(0) = 0 , (51b)

whereγ is theL2 gain fromθ(k) toz(k). Note that here a weightedL2−norm defined by‖θ(k)‖2
2,Q =

∞
∑
0

θ T(k)Qθ(k)

whereQ > 0 is employed in order to weight the relative importance given tow andδ .

The following theorem presents robust convergence conditions:

Theorem 3(Robust convergence conditions). Considerer the model(4) and assumptions 2 and 4. There exists an

observer(14)and (15)ensuring the objective(51), if there exist P= PT > 0, M and scalarγ > 0 such that:













−P PΛ−MΩi Π̃

(PΛ−MΩi)
T −P+HTH 0

Π̃T 0 −γ2Q













< 0, i = 1...L ,
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where

Π̃ =

[

PV−MW PΦ
]

,

for prescribed matrices H and Q> 0. The matrix gain is given by K= P−1M.

Proof. The proof of this theorem is immediate from theorem 2.

5 Simulation example

In this section two examples are proposed in order to illustrate simultaneous state and UI estimation in presence of

disturbances (problem 2) and in the case when the(q+1)th-difference of the UI is not assumed to be null (problem

3).

Consider the model (4), made up of two different dimension submodels and involving two measured outputs

and two unknown inputs. Here, the decision variableξ (k) is the input signalu(k) ∈ [0,1] with sample time equal

to Ts = 0.01. The weighting functions are obtained from normalised gaussian functions:

µi(ξ (k)) = ωi(ξ (k))/
L

∑
j=1

ω j(ξ (k)) , (52)

ωi(ξ (k)) = exp
(

−(ξ (k)−ci)
2/σ2

)

, , (53)

with σ = 0.4 and the centresc1 = 0.25 andc2 = 0.75.

The numerical values of the matrices of the submodels are as follows:

A1 =







−0.5 −0.7

0.4 0.1






, A2 =













−0.7 0.2 0.5

0.3 −0.4 −0.1

−0.2 −0.3 0.6













, B1 =







1

−0.8






, B2 =













0.2

0.3

0.4













,

C1 =







0.7 0.4

−0.5 0.3






, C2 =







0.3 0.0 0.5

−0.6 −0.2 −0.4






, D1 =







0.2 0.0

0.1 0.0






, D2 =













0.1 0.0

0.2 0.0

0.3 0.0













,

E1 = E2 =







0.0 0.4

0.0 0.5






, V1 =







0.2 0.3

0.1 −0.2






, V2 =













0.2 0.3

0.1 −0.2

−0.1 0.2













, W =







−0.2 0.1

0.1 −0.2






.

The disturbancew(k) and the UIη(k) take respectively the following forms:

w(k) =







0.04sin(40k)

0.035sin(60k)






andη(k) =







ηa(k)

ηs(k)






. (54)
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In this example the UI are faults acting on the system. Note the particular form ofDi , Ei andη(k) which allows

us to take into consideration UIs affecting independently the dynamics (e.g. an internal component failure) and the

overall output of the multiple model (e.g. a sensor fault).

On the other hand, note that the eigenvalues of the submodelsare given by :

λ1 =

[

−0.2±0.43i

]

and λ2 =

[

−0.83 −0.16 0.50

]

,

thus, the dynamics of the submodels are different and the dynamic behaviour of the multiple model can be expected

nonlinear. The input, outputs and the weighting functions of the multiple model in the UI-free case are plotted in

figure 2. One should note that, at every time, both submodels are taken into consideration to compute the global

model.

5.1 State and UI estimation in presence of disturbances: problem 2

In this section, faultsηa(k) andηs(k) are defined by:

ηa(k) =































0 if 0 ≤ kTs ≤ 5,

0.1333k−0.6665 if 5≤ kTs ≤ 6.5,

0.2 otherwise,

and ηs(k) =































0 if 0 ≤ kTs ≤ 5,

−0.35 if 5≤ kTs ≤ 8,

−0.15 otherwise.

(55)

A total decoupling can be accomplished by using a MIO composed of two integral actions becauseηa is piecewise

polynomial of maximum degree equal to one andηs is a piecewise constant signal.

The observer design is based on LMI conditions of theorem 2 byconsidering the attenuation levelγ as unknown

variable to be minimised (see remark 4). In this example, theobjective signalz(k) is the state estimation error of the

submodels thenH = [I(5×5) 0(5×4)]. Hence, only theL2−gain between the disturbances and the state estimation

error will be attenuated in the observer design procedure.

The optimal solution satisfying conditions of theorem 2 is found by using the YALMIP interface [42] coupled

to SeDuMi solver [43]. Thus, conditions of theorem 2 are fulfilled with:

K =







−0.2863 0.4206 0.0760 0.3735 0.9123 2.1436 1.0075 0.0838 0.3212

−0.4554 −0.3321 −0.6978 −0.4836 −1.4136 −2.9376 1.2108 −0.0309 0.2028







T

, (56)

with a minimal attenuation level given byγ = 3.1623.

State variables of the multiple model and state estimation errors provided by the proposed observer are plotted in

figures 3 and 4. In the simulation, the initial conditions of the multiple model are not null and the initial conditions

of the observers are null. The estimation error provided by the MIO is not globally affected by the UIs and remains

globally bounded despite the disturbances and UIs acting onthe system. Let us notice that the amplitudes of the

obtained estimation errors are admissible with respect to the amplitudes of the state variables. Besides, the state
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estimation is punctually affected when the value of the UIs changes abruptly, for example atkTs = 5 andkTs = 8,

obviously in this abrupt transition the UI is not a polynomial. However, the estimation errors provided by the

proposed MIO have a good transient response and good robust performances.

The relationship between theL2−norms ofz(k) andγ2w(k) is shown in figure 6. As clearly seen from this

picture, the design objectives given by (38) are globally satisfied(‖z(k)‖2
2 < γ2‖w(k)‖2

2 ). Note that the proposed

objectives are not well satisfied around the time origin due to the difference between the initial conditions of the

multiple model and the MIO (clearlyz(0) 6= 0).

On the other hand, it can be noted from figure 5 that the UIs are well estimated even if the influence of dis-

turbances on the UI estimation errors is not taken into consideration in the observer design procedure. However,

UI estimations can be improved by using a dedicated observerfor estimating independently states and UI of the

system or by adding a filtering stage. It can also be pointed out that the UI estimations are well performed despite

that they appear simultaneously. From a diagnosis point of view, this feature can be very interesting. Indeed, the

UI estimations given by the proposed observer can be used as fault symptoms of the system for fault detection,

isolation and identification.

5.2 State and UI estimation when the(q+1)th-difference of the UI is not null: problem 3

In this section, faultsηa(k) andηs(k) are defined by:

ηa(k) =















0 if 0 ≤ kTs ≤ 2

−0.1250k+0.25+0.2cos(4k) otherwise

(57)

ηs(k) =































0 if 0 ≤ kTs ≤ 2.5

0.2+0.1sin(3k) if 2.5≤ kTs ≤ 7.5

0 otherwise

. (58)

The MIO comprises two integral actions. However, the UI decoupling cannot be accomplished as in the previous

example because the UIs are not a strict polynomial of degreeone. Here, only theL2−gain between the distur-

bances and the state estimation error will be attenuated in the observer design procedure thenH = [I(5×5) 0(5×4)]

and the weight matrixQ = I(4×4).

Conditions of theorem 3 are fulfilled with:

K =







0.3078 0.5664 0.6752 0.6485 1.6586 4.6857 1.1085 0.7571 0.4754

−0.2647 −0.4227 −0.5558 −0.5017 −1.3219 −3.5949 1.4328 −0.5357 0.3927







T

, (59)

with a minimal attenuation level given byγ = 5.4772.

On figure 7 the state estimation errors provided by the proposed observer are plotted. Let us notice that these

estimation errors remain globally bounded and close to zero. The comparison of the UIs and their estimates are
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displayed on the figure 8. As clearly seen, the proposed observer provides good dynamic and robust performances

even if a total decoupling of the UI cannot be accomplished.

6 Conclusion

In this paper, based on a decoupled multiple model representation of a nonlinear system, the design of a multi-

integral unknown input observer has been proposed. The suggested multiple model is a promising alternative to

the classic structures currently employed in the multiple model approach. Indeed, the dimension of each submodel

can be different and some flexibility can be expected in blackbox modelling of complex system. The proposed

observer is an extension of the well-known multi-integral observer that is able to provide both state and unknown

input robust estimation. The effectiveness of the proposedapproach is illustrated via a simulation example. The

suggested observer can be used, as an extension of the classic generalized observer scheme, for the detection,

isolation and identification of faults acting on the systems. Improvements to the proposed observer, in order to take

into consideration a more general class of UI, provides promising prospects in the future.
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[42] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In Computer Aided Control

Systems Design, CACSD, pages 284– 289, Taipei, Taiwan, 2004.

[43] J. F. Sturm. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones.Optimization

Methods and Software, 11(1):625–653, 1999.

21



η̂0(k)

η̂1(k)

η̂i(k)

η̂q−1(k)

η̂q(k)

K0

K1

Ki

Kq−1

Kq

KP

z−1

z−1

z−1

z−1

z−1

+

+

+

+

+

+

+

−

D̃ C̃(k)
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Figure 1: Architecture of the unknown input MPI observer
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Figure 2: Input, outputs and weighting functions in the fault-free case
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Figure 3: State variables and state estimation errors of submodel 1 (problem 2)
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Figure 4: State variables and state estimation errors of submodel 2 (problem 2)
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Figure 5: Unknown inputsηa andηs and their estimates (problem 2)
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Figure 7: State estimation errors of submodels 1 and 2 (problem 3)
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Figure 8: Unknown inputsηa andηs and their estimates (problem 3)
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