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Abstract

This paper addresses the analysis and design of unknown inputebisesrder to provide both state and unknown
input estimation of complex systems modelled with the help of a particular efassltiple model. The proposed
observer uses the multi-integral strategy successfully employed in g&clmear control theory and known for
its robustness properties. The observer design is based on thesrgptiem of the system via a multiple model,
known asdecoupled multiple modelThis structure of multiple model allows to use submodels with different
number of states and this fact constitutes the main advantage of the @dopuserver with respect to the classic
multiple model structure where the submodels have the same dimensgshdivn how the gains of the suggested
observer can be obtained by solving a LMI optimal problem. An acader@mple is also proposed in order to

illustrate the proposed methodology.
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1 Introduction

In many real-world applications the direct measuremenhefdtate variables of a system can be very difficult to
obtain, or even impossible, due for example to physical traimts and/or economical restrictions. The use of an
estimation of the state, using an observer, instead of isomed value, provided by sensors, is a solution largely
adopted in order to avoid these problems. However, it is Wabwn that in many situations some inputs of the
system are inaccessible or considered for simplicity ab.sdtiese unmeasurable signals, denoted as unknown
inputs (UI), have a serious impact on the state reconstruetnd can be at the origin of biased estimations if they
are not correctly taken into consideration.

Hence, both state and Ul estimations have been intensimegsiigated for years because these estimations

are of great use in several engineering applications sucbrasol, supervision and fault-tolerant control. Indeed,



an actuator/sensor failure or an abnormal behaviour of gamrial component of the system can be regarded as
unmeasured signals modelled by Uls. Hence, the Ul estimatian be considered as fault symptoms of the
system for fault detection and isolation in order to imprtwe safety of the system.

The so-called unknown input observer (UIO) is usually empptbas a mean to provide both state and Ul
estimations of a system. There are several approachesKaown input observer design for system represented
by linear time-invariant models. In a general way, the UlGige consists in finding a projection operator or a
matrix transformation fulfilling a set of algebraic equatioin order to decouple the Ul and the estimation error
(see[1, 2, 3, 4, 5] and references therein). Note howevérdabaointed out in [6], output derivatives are required
in order to perform an Ul estimation. Undoubtedly the semsigses are unavoidable and derivative of such signals
may be unsuitable.

Another attractive way to obtain a simultaneous estimatittine states and the Ul is to use the Proportional-
Integral observer (P10O). This observer known for its robast properties [7, 8] has been successfully employed
in order to cope with the state and the Ul estimations whenluhe characterised by low frequency signals
(constant or slowly varying signals) [9, 10, 11, 12, 13]. &gy, in [14] the concept of PIO has been generalised to
Multiple-Integral Observer (MIO), by replacing the intagaction by a chain of integral actions. Thanks to these
extra integral actions, the MIO is able to provide robugkeststimations when the considered Ul takes a polynomial
form which is more general than the considered constantamknnput. Recently, other implementation schemes
based on the MIO principle and their extension to Lipschitalimear systems with single output are investigated in
[15]. For generalised linear time-invariant state spastesys (or descriptor system), the MIO design is addressed
in [16, 17].

Moreover, nowadays the complexity of many physical systesmsdoubtedly increased involving nonlinear
dynamic behaviours which are governed by complex physaasl Hence, the use of a single linear model for
modelling the dynamic behaviour of such systems in the whpgrating space is unsuited because a linear model
provides only a local approximation in a small neighbourxhoban operating poinigcal modelling. On the other
hand, rigorous modelling of complex systems in a wide op@mnat range ¢lobal modelling can be in practice very
difficult and even if this modelling is possible the availablodel takes typically a nonlinear form which cannot be
generally used in a systematic way for designing an observer

However, a global representation of such systems can wHécbe expressed by blending judiciously a set of
linear local modelsvhich describes the dynamics of the system in some smadimeagithe operating space. In this
modelling framework, the obtained model is knowrasal model networlor multiple mode(see [18, 19, 20] and
references therein). From a practical point of view, a mtdtimodel is built by reducing the system complexity
via a decomposition of its operating space in a finite numtbeperating zones within which the dynamics are
characterised by a local model, also calkdmodel with relatively simple structure, often linear. The glbba
dynamic behaviour of the system is finally captured by casréig) the relative contribution of each submodel by

means of aveighting functionassociated to each operating zone. In brief, multiple maggroach provides a



suitable framework for modelling nonlinear systems by esoesition of a set of submodels blended throughout an
interpolation scheme.

It should be noted that the interpolation scheme used fordihg the submodels plays an important role in
this context. Indeed, the same set of submodels can be agban various ways which provide several kinds
of blended multiple models. However as pointed out in [2&}p tmain structures of multiple models can be
distinguished. In the first one, the multiple model is madeoipomogeneous submodétsthe sense that the
submodels have the same structure and share the same sizeasposs the operating space. In the second one,
heterogeneous submodeisn be used because their state spaces are decoupled. Itt Bhaoted that these two
multiple model realisations don't have an identical dynabehaviour.

The so-calledTakagi-Sugeno multiple modisl the main example of homogeneous multiple models. It has
been initially proposed, in a fuzzy modelling framework, Tgkagi and Sugeno [22] and in a operating regime-
based modelling framework by Johansen and Foss [23]. Thispleumodel has been extensively considered
in the literature for modelling, control and state estimatdf nonlinear systems [18, 24, 25]. In this multiple
model representation, the parameters of the submodelsoarbimed by means of the weighting functions and
then a common state vector appears in the dynamic equatitireajverall model. It should be noted that this
same multiple model structure is encountered in a numbeuité giverse similar modelling frameworks such as
piecewise linear model, polytopic models, hybrid systesmgtched systems, markovian switching systems, etc.
Despite different names, these approaches share the satedlingpphilosophy. In these different frameworks, the
problem of estimating the state and the Ul is tackled in sdweays. For systems represented by Takagi-Sugeno
multiple models, Luenberger observers including a slidemgn to compensate the effect of the unknown inputs
are used in [26]. For polytopic models, a polytopic unknowput observer design for providing actuator fault
estimation in active fault tolerant control strategy isgwsed in [27]. For markovian switching systems a finite
memory observer is considered in order to cope with thisregion problem [28]. For hybrid systems an extension
of the moving horizon estimation using a transformatiorhefariginal PieceWise Affine (PWA) system into Mixed
Logical and Dynamical (MLD) systems is proposed in [29]. Biglieless, these contributions are proposed on the
basis of homogeneous local models across the operating.spac

The second multiple model realisation , knowndagoupled multiple modetan be used in order to take into
consideration heterogeneous submodels. This model inteodome degree of flexibility in the modelling stage,
since the dimension (e.g. the number of state variabledaf submodel can be adapted to the complexity of the
system inside each operating zone and this constitutesigfieality of the proposed approach (details are given
in section 2). Nonlinear systems identification using d@ded multiple model is addressed in [30, 31, 32] and
the control laws design in [33, 34, 35, 36]. It should be ndteat the state estimation problem of a nonlinear
system using this multiple model has been poorly considierdte literature [37, 38]. In [37] the state estimation
problem is addressed in order to setting up a fault diagretgsegy. However just a note on the estimation error

convergence is proposed by the authors and no analytic pfdb& convergence of the estimation error is given.



These works show the relevance and the successful implatienof this structure for state estimation.

The main contribution of this paper is an extension of MIOigie$or linear systems to nonlinear discrete-time
systems represented by decoupled multiple models. The Blid&signed in order to provide both state and Ul
estimations by minimising the influence of external disturtes on the estimation error. An analytic proof of the
convergence of the estimation errors is clearly estaldisglyeusing the well known Lyapunov theory. The robust
L, existence conditions of the MIO are expressed in the form séteof linear matrix inequalities (LMIs) [39].
So far, the proportional and integral observer (PIO) defigtinear discrete time systems seems only reported in
some recent papers [40, 41]. Hence, the proposed resultdsabe used for designing a MIO in the single model
linear case because single model and PIO are a particuotasultiple models and MIO.

The outline of this paper is as follows. The decoupled midtipodel representation is presented in section 2.
Preliminaries and the suggested MIO are presented in sektim section 4, robugt, observer design is proposed
and the gains of the observer are obtained by LMI optimizatibhe last section gives a simulation example to

illustrate the effectiveness of the proposed approach.

Notations. The following standard notations will be used>F0 (P < 0) denotes a positive (negative) definite ma-
trix P; XT denotes the transpose of matrix X, | is the identity matrixpgiropriate dimension and digéy, ..., An}
stands for a block-diagonal matrix with the matricgsof the main diagonal. Thé,—norm of a signal, quantify-

ing its energy, is denoted and defined|feyk)||3 = geT(k)e(k). Finally, we shall simply writes; (& (k)) = pi(k).
0

2 On the decoupled multiple model representation

Multiple model framework is an attractive way in the field @inaplex systems modelling because a large class of
nonlinear dynamic behaviours can be captured using thigseptation. Note also that multiple model makes it
possible the partial extension of some results obtainetiéribhear control theory to nonlinear systems avoiding
specific analysis of the non-linearity of the system. Infhrigultiple model offers good accuracy representation by
means of an usable model.

The structure of the decoupled multiple model, firstly pregmbin [21], is here slightly modified using a state

space representation as follows:

xi(k+1) = Ax(K)+Biu(k)+Din (k) +Viw(k) , (1a)
yi(k) = Cx(k)+En(k) , (1b)

L
y(k) = _Z\Hi(f(k))Yi(k)JrWV\(k)a (1c)

wherex; € R" andy; € RP are respectively the state vector and the output offfrsibmodelu € R™is the known
input vector,) € R the Ul vectory € RP the measured output amde R" a disturbance (noise, etc.). The matrices

A € RN B e RPM D; e R Vi e R*T G e RP*M | E; € RP*! andW € RP*" are known and appropriately



dimensioned.

Remark 1. In this paper, the Uh (k) is interpreted as an interesting variable to be estimated. (Rults, etc.) and

w(k) is a disturbance signal (e.g. noise, modelling errors,)etc.

Remark 2. The same Ul appears in both local states and local outputsvéder, different Uls in the local states
and in the local outputs can be taken into consideration byosing adequate structure of, P& and n (k), for
example, P=[D; 0], E =[0 E] andn(k) = [na(k) ns(k)]". Note that a common matrix; Bs used for

modelling an Ul acting on the multiple model output (e.g. asse fault).

The so-calleddecision variableé (k) is used in order to take into account the current operatingt é the
system. It is assumed known and real-time accessible,ntlytée inputs and/or measured variables of the system
are employed as decision variable. The relative contaibutif each submodel according to the operating point of

the system is quantified by the weighting functiené& (k)) which satisfy the following convex sum constraints:
L
> MER) =1 and O0SuER)SL, Wi=l.l, ¥k 2)
i=

The role of the weighting functions is to allow a transitimften smooth, between the contribution of the
submodels. Hence the contribution of several submodeldeadaken into account at the same time because the
weighting functions take intermediary values over the esigp 1. So the dynamic behaviour of the multiple model
can therefore be considered as truly nonlinear instead @ceywise linear behaviour.

As it can clearly be seen from equation (1), the submodelswaraising a parallel scheme and the multiple
model output is obtained via a weighted sum of the submodglutsl Therefore, the submodels do not share the
same state space and consequently their dimension (i.euthleer of state variables) and structure can be different
across the operating space of the system. Hence, it can keterhat the decoupled multiple model accurately
describes nonlinear systems with a relatively small nunalb@arameters. Indeed, the use of heterogeneous sub-
models provides flexibility in the modelling stage becausehesubmodel can be well adapted to the complexity of
the system inside each operating zone. In a black box maodethis feature can be used in order to cope with the
so-calledcurse of dimensionalitproblem where the number of parameters needed for an aeaef@esentation
increases extremely rapidly as the order of the nonlinenadhc system increases. This multiple model structure
is then suited for a black box modelling of complex systenth wariable structure in the operating range. Note
that the local outputy (k) of the submodels are “artificial modelling signals” only d$e provide a representation

of the real system behaviour but can neither be related pdilfssio the true system nor measured.

3 Preliminaries

Firstly, the aim of this section is to introduce a compactritmg of the decoupled multiple model in order to

reduce the further mathematical manipulation. Secondigetl on this new compact form, the proposed MIO is



presented and the estimation errors are establishedly-makief discussion about sufficient conditions for the Ul

decoupled state estimation is proposed.

3.1 Compact representation of the multiple model

Notice that by using the following augmented state vector:

T L
Xk = [xI(k) - XT(k) - XE(k)] eR”,nz_;ni, ©))

the decoupled multiple model (1) can be rewritten in theofslhg compact form:

x(k+1) = Ax(K) +Bu(k)+Dn (k) +Vw(k) , (4a)
yk) = CRx(K) +ERnN (K +Wwk) , (4b)
where
A = diag{A;--- A --- AL} , (5)
- T
5 - Bgmar“&q , (6)
~ : T
5 - ngmr“mq , @)
~ : T
v - VJ.“VJ.“mf} , (®)
Ck) = /Jl(k)cl"'lli(k)ci"'“L(k)CL} ) ©
L
E(k) = L (KE; . (10)

The reader may have noticed that the time-varying méitk) can be rewritten as follows:
~ L ~
€l = 3 ulkG . (11)
i=
whereC; is a constant block matrix given by:
qzbmqmq (12)

such as the teri§; is found on theh block column ofG;.



3.2 Multi-Integral Observer presentation

Assuming that the Ul acting on the system is modelled by ammtyial form of degred in the variablek as follows

nk) = Qo+Qik+Qk%+---+Qsk! . (13)

From a practical point of view, a wide class of Uls can be miedeelia a polynomial function (constant signal,
ramps, etc.). Let us notice that the polynomial degired the unknown input is the only information supposed
available, the coefficien®®; of the polynomial are assumed unknown.

The following state observer on the basis of the model (4thad)l (13) is proposed with the aim of providing

a simultaneous estimation of the state and the Ul:

K(k+1) = AR(K)+ Bu(k) +DAo(k) +Kp(y(k) — (k) . (14a)
(k) = CKR(K)+E(K)Ao(k) (14b)
coupled to the following UIO:
Mik+1) = 0i(k)+Ki(y(k) = 9(k)) + Aiza(k), i=0,....q-1, (15a)
Aak+1) = Ag(k)+Kq(y(k) —¥(k)) , (15b)

wherex{k) andfjo(k) are the estimates afk) andn (k) respectively.

As can be shown in the figure 1, the Ul estimation is obtain@atute multi-integral strategy (in this figure the
operatorz 1 is the one step delay operator). Indeed, the estimatioredfithis performed using a recurrent schema
given by a chain of integral actions. Hence, the inputs of thd" block are the output estimation error given by

y(k) —y(k) and the output of thé" block.

3.3 Definitions of the estimation errors

In this section, the state and Ul estimation errors are stliti prove thak(k) andfo(k) converge towara(k) and

n (k) respectively. In order to establish the estimation erroeslifference operatomust be introduced.

Definition 1 (Difference operator) The first difference of a functiopi(k) is a function defined by:

Ap(k) = d(k+1)— (k) . (16)
The ¢"-difference operator is given by:

£V = ALV (K)) . (17)



For example, the second difference of a functidk) is given by:

A?¢ = Apk+1)—¢(K) ,
229 = ¢(k+2)—2¢(k—1)+¢(K) .

Now, the state and Ul estimation errors are defined by:

ek) = x(k)—%(K) , (18)

Si(k) - A(I)n(k)fﬁl(k)v i=0,..,9, (19)

whereA©) n (k) = n(k).

Remark 3. The architecture of the proposed observer allows us to aldaiestimation of the state, the unknown

input and its successivd'glifferences (i.e. the coefficients of the polynomial) atstime time.

Dynamic equations of these errors must be now establishedce] dynamics of the state estimation error is

given by:

e(k+1) = (A—KpC(K))e(k) + (D — KpE (K)o (k) + (V — KpW)w(K) . (20)

The above equation is easily obtained with the help of eqnat{4), (14), (18) and (19) by considering: 0. Let
us notice that the state estimation error is directly affédty the Ul estimation err@p(k) and the disturbanog(k)
acting on the system.

The dynamics of the Ul estimation errar(k) for 0 <i < q, is obtained using (19) and (15):
ak+1) = &K +&:2(k —KC(Kek) — KEK)e(K) — KWwk), i=0,....q-1, (21)
and finally the dynamics afy(k) is given by:

gq(k+1) = gg(k) — KqC(K)e(k) — KqE (K)&o(K) — KqWw(k) + AT DR (k) . (22)

We can rewrite in a compact form the dynamics of the statenesiton error, the Ul estimation error and their

successive differences using an augmented error vecten oy
5k = |e'k) gk ... &K ... gkl - (23)
as follows:

Sk+1) = (A—KI(K)Z(K) + (V= KW)W(K) + PATH D (k) | (24)



where

- - - - i I - -T
ADOOO..0 Kp 0 v Ck)T
o1 1 0 O 0 Ko 0 0 E(k)T
O 01 1 0..0 : 0 0 0

A = K= o= |,v=| [ TK=]| . (25)
000 0 0 I |
000 0 0 0 1 Kq 0 0

Notice that by using the definition (11) 6f(k) and the definition (10) oE(k), the time-varying matrix (k)

can be rewritten as:

L
rk = Sk . (26)
i; { I
where
o - |6 &o0 . . 0. @)
Finally, taking into consideration the previous matrixiséormation, the equation (24) becomes:

>(k+1)

WK)Z(K) + (V — KW)W(K) + DA (k) | (28)

L
Y = 3 kA-Ka) (29)

Conceptually, the aim of the design is to determine an auggdagain matrix< € R (@+1I1xP that guarantees the
asymptotic convergence of the estimation error towards @etailed problem formulations are presented in the

section 4).

3.4 Discussion about unknown input decoupling

It can be seen, from equation (28), that the estimation esrtwtally decoupledirom the unknown input (i.e.
the influence of the unknown input on the estimation eEf) is vanished) if and only i@ n (k) = 0. This

conditions can be accomplished when the two following ctioils are simultaneously satisfied:
1. the unknown inpug (k) takes a polynomial form of degréfein the variablek,
2. the number of integral actiomgtaken into account is at least equalfte- 1.

Hence the number of integral actioggn the observer depends on the polynomial degréaken into account
for modelling the Ul. Note that the minimal number of intdgaations needed for ensuring the unknown input

decoupling is fixed by the second condition. For examplehéf Wl is modelled by polynomial of degree zero



n(k) = Qo then only one integral action is necessary for ensufingk) = 0. If a polynomial of degree one is

considered) (k) = Qo + Q1k then two integral actions are necessary for ensulifig(k) = 0, and so on.

4 Problem formulations and main results

Three main problems can be examined in the purpose to sineaitsly estimate the state and the unknown input

using the proposed MIO:

1. Problem 1. Obtain conditions for ensuring both state and Ul estimagioor convergence, i.e. the observer

stability, whenA(@+3) p (k) = 0 andw(k) = 0.

2. Problem 2. Obtain conditions for both state and Ul estimation erronvesgence by considering a perturbed
multiple model i.e.w(k) # 0. This problem can be viewed as the robust observer designrespect to

disturbances.

3. Problem 3. Obtain conditions for both state and Ul estimation errornvengence when the Ul is not truly a

polynomial form i.e A4V (k) # 0 and by consideringi(k) # 0.

Let us notice that in the multiple model framework, an unigtabultiple model can be obtained by blending
a set of stable submodels. Hence the stability assumptittreasubmodels does not guarantee the stability of the
multiple model. Consequently, the individual stabilityroftrices\ — KQ; is not sufficient in order to guarantee
the stability of the time-varyingy(k) given by (29). Hence, a classic observer design for each sdéhtannot
be performed independently: the blending between the sdblemust be taken into consideration in the observer
design in order to ensure the convergence of the estimation @3). Therefore, the analysis of these problems
will be carried out in the time-domain with the help of the pymov method and the proposed solutions for the

observer design are derived in terms of LMIs [39].

4.1 Problem 1: convergence conditions of the estimation eor

Convergence conditions of the estimation error, in theudistnce free case and with an Ul perfectly decoupled,

will be established under the following assumption:
Assumption 1. w(k) = 0 andA@*Yn (k) = 0.
The following theorem presents the convergence conditions
Theorem 1. Consider the moddl) and assumption 1. There exists an obselitd) and (15) such that the state

and the Ul estimation erro(23) asymptotically converges towards zero if there exist PT > 0 and M such that:

P PA — MO .
>0, i=1.L. (30)

(PA)T —(MQ))T P

10



The observer gains are given by=KP~M where K is defined b25).

Conceptually, the conditions of this theorem ensure thiiligtaof the system defined in (28) for any blend

between the submodel outputs and for any initial conditions

Proof. Define the time dependent quadratic Lyapunov function by:
V (k) = =" (k)PZ(K), (31)
whereP = PT > 0. The variation of the above function is given by:
VK = V(k+1)-V(K), (32)

which must be negative in order to ensure the asymptoticargence towards zero of the estimation error.

By considering the assumption 1 and (28) then (32) becomes:
AV = ZT(K{WT(KPWK) —P}Z(K) , (33)
that is a quadratic form i (k). The negativity of (33) is then ensured if:
WT(KPWEK —P <0, (34)
which can be rewritten, using the Schur complement and é29pllows:

L P P(A—KQ))
Zui(k) >0. (35)
= P(A - KQ)) =

Now, according to the convex sum properties (2), the abosquality is also verified if the following inequalities

hold:

P P(A—KQ)) _
>0 , i=1.L. (36)
(A—KQ)TP =

Let us notice that the above inequalities do not take a LMhfarthe variable® andK, therefore the classical LMI

tools cannot be directly used. However, they become a LMIdbyreyM = PK and the proof is completed. [

4.2 Problem 2: convergence conditions in the presence of tisbances

Now, model (4) is assumed to be affected by energy-boundgdrtances but the Ul remains perfectly decoupled.

In other words the following assumptions are made:

11



Assumption 2. The disturbance (k) is such that|w(k)||3 < co.
Assumption 3. The Ul is such thaa(@ Y n (k) = 0.

The robust observer design problem can thus be formulatéddisg a matrix gairK such that the objective

signalz(k) to be attenuated and defined by:

z(k) = HZ(K) , (37)
satisfies the following design objectives:

Ilim X(ky=0 for w(k)=0, (38a)

Iz(k)1I3 < VZ[Iw(k)[I3  for w(k) # 0 andz(0) =0 , (38b)

wherey is the £, gain fromw(k) to z(k). Notice that the convergence of the estimation error in theithance free
case is ensured by (38a) and robust state estimation innuesé a disturbance is ensured by (38b). Finally, note
that thanks to matrik in (37), the attenuation level is guaranteed by considgrartjally or totally the components
of the augmented errar(k).

The following theorem presents robust convergence camditi

Theorem 2 (Robust convergence conditions}onsiderer the mod€#) and assumptions 2 and 3. There exists an

observer(14) and (15) ensuring the objectivéss)if there exist P= PT > 0, M and a scalary > 0 such that:

-P PA—MQ; PV-MW
(PA—=MQ))T —P+HTH 0 < 0 i=1l.L, (39)
(PV—MW)T 0 —y2

for a prescribed matrix H. The matrix gain is given by-KP—1M.

Remark 4. The attenuation level can be minimized by considering= y? as an LMI variable to be minimized

under the constraintg > 0, P=P' > 0 and (39).

Proof. In order to ensure robust performances defined by (38), lebunsider the quadratic Lyapunov function

(31), its variatiomV (k) =V (k+ 1) —V (k) andy > 0 such that [39]:
AV (K) < —ZT (K)z(K) + yw' (Kw(k) , Yk . (40)
It is easily established that, by consider¥¢0) = 0, (40) implies||z(k)||5 < y?|lw(k)||3 . Hence, robust perfor-

mances (38) are achieved by satisfying (40). To that purpmsesider (28) and assumptions 2 and 3, the variation

12



of the Lyapunov function is then given by:

AVEK) = KW (KPWEK)Z(K)
+ ZTRWT (kP — KW)w(K)
+ wH(K)(V —KW)TPW(K)Z(K)

+ W (K)(V—KW)TP(V — KW)w(k) — =T (K)PZ(K) , (41)
which can be rewritten as:
AVEK = T (KQKDK) , (42)

where:

W (K)PW(K) — P WT(K)P(V —KW)
Qk) = : (43)
(V—KW)TPY(K) (V—-KW)TP(V —KW)

’
o~ |5l wik]| - @)

®T (k)< Q(K) + ®(k) <0 , (45)

which is a quadratic form (k). This inequality holds provided the expression inside tteekets is negative

definite:

YT (KPY(K)—P+HTH WT(K)P(V — KW)
<0, (46)
(V —KW)TPW(K) (V —KW)TP(V —KW) — 2l
which becomes using the Schur complement:
P PW(k) PV —KW)
WIKP  —P+HTH 0 <0. (47)
(V—-—KW)TP 0 —y2

The proof is completed as in the previous case by using (B8)convex sum properties af(k) given by (2) and

the change of variabldd = PK. O

13



4.3 Problem 3: state and Ul estimation when théq+ 1)™"-difference of the Ul is not null

In this section, a perturbed decoupled multiple model withetotal Ul decoupling is considered (assumption 3 is
not verified). Indeed, théq+ 1)M-difference of the unknown input is not assumed to be nulldminded by an
unknown functiomA(@ (k) < 5(k). Note that the solution of this problem can be useful in otdeeduce the

number of integral actions.
Assumption 4. The Ul satisfied@1) 1 (k) = 5(k) with || 5(k)||3 < o.

The estimation error equation (28) can be re-written as:
>k+1) = WYKkzk+nok) , (48)

uhere n= [V—KW qn] and 8(k) = [WT(k) 6T(k)T : (49)

Thus the unknown functiod(k) is considered as a disturbance. Now, this problem can bedegan a similar
way that the previous one. Hence the theorem 2 can be dinesly by considerin§ (k) as disturbance instead of
w(k).

The robust observer design problem can thus be formulatéddisg a matrix gairK such that the objective

signalz(k) to be attenuated and defined by:

z(k) =HZ(k) , (50)

satisfies the following design objectives:
Ilim (k=0 for wk) =0, (51a)
12013 < VI8(K)|3q for 6(k)#0andz(0) =0, (51b)

whereyis theL gain from6 (k) to z(k). Note that here a weightéd —norm defined by 8 (k)15 o = E 87 (k)QO (k)
’ 0
whereQ > 0 is employed in order to weight the relative importance giteew and? .

The following theorem presents robust convergence camditi

Theorem 3(Robust convergence conditions}onsiderer the mod€#) and assumptions 2 and 4. There exists an

observer(14) and (15) ensuring the objectivés1), if there exist P= PT > 0, M and scalary > 0 such that:

—-P PA—MQ; T
(PA-MQ)T —-P+H™H 0 | < O i=1l.L,

ar 0 —y2Q
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where

n = |Pv—-MwW Pp|

for prescribed matrices H and § 0. The matrix gain is given by Kk P~1M.

Proof. The proof of this theorem is immediate from theorem 2. O

5 Simulation example

In this section two examples are proposed in order to ikdstsimultaneous state and Ul estimation in presence of
disturbances (problem 2) and in the case Wher(qhel)‘h-difference of the Ul is not assumed to be null (problem
3).

Consider the model (4), made up of two different dimensidmnsoadels and involving two measured outputs
and two unknown inputs. Here, the decision variafk) is the input signali(k) € [0, 1] with sample time equal

to Ts = 0.01. The weighting functions are obtained from normaliseasgan functions:

L

W(EK)/ T w(EK) (52)

=1

@EW) = exp(-(Ek-c)*/o?), , (53)

=
—
™
—~
-~
N
~—
Il

with o0 = 0.4 and the centres; = 0.25 andc, = 0.75.

The numerical values of the matrices of the submodels arellas/t:

r -0.7 02 05 r 0.2
-05 -07 1
04 01 -0.8
- -02 -03 06 - 04
r r T r 01 00
07 04 03 00 05 02 00
C = , D1 = ) 0.2 00| »
-05 03 -06 -02 -04 01 00
- - - - 03 00
r r 02 03 r
00 04 02 03 -02 o1
B=E ) = V=101 -02].
00 05 01 -02 01 -02
- - -01 02 -
The disturbancev(k) and the Uln (k) take respectively the following forms:
0.04 sin(40k k
w(k) = "0 andn (k) = na) (54)
0.035sin(60k) ns(k)
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In this example the Ul are faults acting on the system. Nageptirticular form oD;, E; andn (k) which allows
us to take into consideration Uls affecting independehitydynamics (e.g. an internal component failure) and the
overall output of the multiple model (e.g. a sensor fault).

On the other hand, note that the eigenvalues of the submancetgiven by :

Alz[_o,2i0,43i] and Azz[—o.83 ~0.16 050| ,

thus, the dynamics of the submodels are different and thardimbehaviour of the multiple model can be expected
nonlinear. The input, outputs and the weighting functiohthe multiple model in the Ul-free case are plotted in
figure 2. One should note that, at every time, both submodeltalien into consideration to compute the global

model.

5.1 State and Ul estimation in presence of disturbances: ptdem 2

In this section, fault$)(k) andns(k) are defined by:

0 if 0<KkTs<5, 0 if 0<KT<S5,
Na(k) = 4 0.133%—0.6665 if 5<kT,<65  and nskk)=41-035 if 5<kT,<8, (55)
0.2 otherwise —0.15 otherwise

A total decoupling can be accomplished by using a MIO comgra$éwo integral actions becausg is piecewise
polynomial of maximum degree equal to one apds a piecewise constant signal.

The observer design is based on LMI conditions of theorem@bgidering the attenuation leyehs unknown
variable to be minimised (see remark 4). In this exampleptijective signak(k) is the state estimation error of the
submodels thehl = [I(5.5, O(s.4)]. Hence, only theC,—gain between the disturbances and the state estimation
error will be attenuated in the observer design procedure.

The optimal solution satisfying conditions of theorem 2darid by using the YALMIP interface [42] coupled

to SeDuMi solver [43]. Thus, conditions of theorem 2 are Helfi with:

T
—0.2863 04206 00760 03735 09123 21436 10075 00838 03212

K = , (56)
—0.4554 -0.3321 -0.6978 —-0.4836 —1.4136 —-29376 12108 -—-0.0309 02028
with a minimal attenuation level given by= 3.1623.
State variables of the multiple model and state estimatiar&provided by the proposed observer are plotted in
figures 3 and 4. In the simulation, the initial conditionstué multiple model are not null and the initial conditions
of the observers are null. The estimation error providecieyMIO is not globally affected by the Uls and remains

globally bounded despite the disturbances and Uls actinp®isystem. Let us notice that the amplitudes of the

obtained estimation errors are admissible with respedi@éamplitudes of the state variables. Besides, the state

16



estimation is punctually affected when the value of the Wianges abruptly, for example laf; = 5 andkTs = 8,
obviously in this abrupt transition the Ul is not a polynomi&lowever, the estimation errors provided by the
proposed MIO have a good transient response and good rafidigtrpances.

The relationship between th&—norms ofz(k) and y?w(k) is shown in figure 6. As clearly seen from this
picture, the design objectives given by (38) are globaltjsfiad (||z(k)||3 < y?||w(k)||3 ). Note that the proposed
objectives are not well satisfied around the time origin aduthé difference between the initial conditions of the
multiple model and the MIO (clearlg(0) # 0).

On the other hand, it can be noted from figure 5 that the Uls alkegtimated even if the influence of dis-
turbances on the Ul estimation errors is not taken into clamation in the observer design procedure. However,
Ul estimations can be improved by using a dedicated obséoverstimating independently states and Ul of the
system or by adding a filtering stage. It can also be pointedhat the Ul estimations are well performed despite
that they appear simultaneously. From a diagnosis pointes¥, \this feature can be very interesting. Indeed, the
Ul estimations given by the proposed observer can be useaudissiymptoms of the system for fault detection,

isolation and identification.

5.2 State and Ul estimation when theq+ 1)™-difference of the Ul is not null: problem 3

In this section, faultg),(k) andns(k) are defined by:

0 if 0<kTs<2
Na(k) = (57)
—0.125+0.25+ 0.2cog4k) otherwise

0 if 0<kTgs<25
Ns(k) = 40.2+01sin3k) if 25<kTs<75- (58)
0 otherwise

The MIO comprises two integral actions. However, the Ul dggdimg cannot be accomplished as in the previous
example because the Uls are not a strict polynomial of degmee Here, only the&,;—gain between the distur-
bances and the state estimation error will be attenuatdeinhiserver design procedure ther= (5.5, O5.4)]

and the weight matrix) =1 (4..4).

Conditions of theorem 3 are fulfilled with:

-
0.3078 05664 06752 06485 16586 46857 11085 Q7571 04754

—0.2647 —0.4227 -0.5558 —-0.5017 —-1.3219 -3.5949 14328 -0.5357 03927

with a minimal attenuation level given by= 5.4772.
On figure 7 the state estimation errors provided by the pmgpodserver are plotted. Let us notice that these

estimation errors remain globally bounded and close to.z&he comparison of the Uls and their estimates are
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displayed on the figure 8. As clearly seen, the proposed wefisprovides good dynamic and robust performances

even if a total decoupling of the Ul cannot be accomplished.

6 Conclusion

In this paper, based on a decoupled multiple model reprasentof a nonlinear system, the design of a multi-
integral unknown input observer has been proposed. Theestem multiple model is a promising alternative to
the classic structures currently employed in the multiptelet approach. Indeed, the dimension of each submodel
can be different and some flexibility can be expected in blaak modelling of complex system. The proposed
observer is an extension of the well-known multi-integriaserver that is able to provide both state and unknown
input robust estimation. The effectiveness of the prop@ggatoach is illustrated via a simulation example. The
suggested observer can be used, as an extension of the cassiralized observer scheme, for the detection,
isolation and identification of faults acting on the systeimgprovements to the proposed observer, in order to take

into consideration a more general class of Ul, provides s prospects in the future.
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Ul estimation

Figure 1: Architecture of the unknown input MPI observer
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Figure 2: Input, outputs and weighting functions in the fdrde case
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Figure 3: State variables and state estimation errors ohedbl 1 (problem 2)

0.7

0.6

0.5

0.41

0.3

0.2

0.1

Gt
T S
Pl .
'-y"'.-".“l
K P

0.4

10

time

Figure 4: State variables and state estimation errors ahedbl 2 (problem 2)
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Figure 5: Unknown inputg, andns and their estimates (problem 2)
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