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Abstract— This paper addresses the exact transformation of variables is more adequate to fault diagnosis since a single
nonlinear systems into a multiple model form with unmeasur-  model can be used, both for sensor and actuator fault diagno-
able premise variables. The multiple model structure serves  gis 171 proposes a method which reduces the conservatism of
to treat the observability and the state estimation problem .
of nonlinear systems. Using a method with no information the precedent Wprks by redt{‘?'”g the numb_er of LMIs to b_e
loss, a nonlinear system is transformed into a multiple model, Solved and relaxing the conditions under which the method is
depending on the choice of premise variables. It is a key point, applicable. In addition, the number of LMIs does not depend
since it allows to choose, between different multiple model on the number of submodels of the multiple model.
forms, the one that has suitable structure and properties, in  piterent techniques to obtain a multiple model exist in the

order to design an observer. The convergence conditions of the literat First del identification techni
state estimation error are expressed in LMI formulation using iterature. Firstly, modef iaentification techniques orqrae-

the Lyapunov method. These proposals are investigated and ter estimation using experimental data [1] can be consitiere

applied to the three-tank system. Secondly, the techniques based on existent mathematical
nonlinear models, where a linearization around one (or
I. INTRODUCTION several) operating point(s) as well as a dynamic lineariza-

The fault detection and diagnosis (FDD) methods fotion near an arbitrary trajectory are proposed[8]. The main
linear systems had already reached a certain development aiiawbacks of this technique are: the loss of information,
maturity. Nevertheless, nonlinear models are often neemledthe choice of the premise variables expressing different
represent real system behaviors. As a consequence, ther@aslinearities of the system is not systematically realjze
a need to extend FDD methods to nonlinear systems, evtfre choice of different operating points still remains very
if it is a difficult point. It is the reason why the conceptdelicate. The method used here avoids this particular loss
of multiple models has received attention in the last twa@nd gives an equivalent multiple model form of the initial
decades. The multiple model structure gives the possiltdit nonlinear system [9]. In addition to that, the method offers
reduce the complexity of nonlinear systems, by constrgctinseveral multiple models with different structures, depegd
linear submodels aggregated using weighting function} [160n the choice of premise variables. So, it is possible to seoo
[14]. The interests to use this structure is already wellkmo from different multiple model structures the one that easur
the main advantage is the possibility to extend many toolkie convergence of the multi-observer, with respect torgive
and results of the linear theory to nonlinear systems, sach eonditions. The method is here improved and adapted in
the observer synthesis. order to facilitate the choice of the suitable MM structure,
In the linear framework, the fault detection can be realizeblly introducing a pondered sum of the state variables when
using observer based methods. There already exists seve@hstructing the MM form. The convergence conditions of
works on observer design for multiple model systems. Ahe state estimation error are expressed in LMI formulation
multi-observer based on Luenberger observers was propos¢sing the Lyapunov method. The method used here for the
and applied for diagnosis in [12]. In [2], sliding modeobserver design [7] requires the observability of the rpléti
observers for linear systems, were transposed to the deultipnodel. It is the reason why an observable multiple model
model case, and in [2], [3] unknown input multi-observersstructure is sought.
were implemented. Moreover, one of the main interests tbhese proposals are investigated and applied in this paper t
use this type of observers is its robustness with regard tbe three-tank system. This system was largely studiedein th
modeling uncertainties. literature [11], [13], [17] and is considered as a benchmark
However, these papers assume that the weighting functiomsdifferent frameworks. The controller switching apprbac
depend on measurable premise variables, which is not alwaysed for fault tolerant control in [13], implies a period
the case. In the literature, few works are devoted to thef time between two switchings (dwell time). In [11] a
case of unmeasurable decision variables [5], [7], [10]. Asliding mode observer for the three-tank system is proposed
discussed in [7], multiple model with unmeasurable deaisiowhere a particular region of operation is considered. The

method proposed in this paper, avoids the need to separate
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remains a very delicate subject. The method proposed iDefine

this paper consists in rewriting the nonlinear models. As a X1 Q:
consequence no operating points have to be chosen. X=X |, U= [ Q, ] ©)
In order to ensure the possibility to design an observer, a X3

preliminary study of observability for nonlinear systenesh | et us consideH the maximal liquid level in the tanks and

to be realized. The uniform observability notion is closelysyppose that the tanks are never simultaneously empty. This
related to observer design. There are different approathesassumption can be made because the lexgls; and xs
verify this condition. In [6] a systematic observabilityan are controllable using the flow®; and Q.. In this case, the
ysis for the three-tank system is realized. As a consequenggree-tank levels;, X, andxs are boundedx € R3.

the observer design for the three-tank system is possible.

The paper is organized as follows. Section Il starts with thB. The multiple mode! representation

presentation of the three-tank system in II-A. In sectieB II Let us consider the multiple model representation of a
the main steps of the method used to obtain an equivalefgnlinear system:

multiple model form of a nonlinear system (here, the three-

tank system) are given. This method proposes a choice X(t) = z Hi (€ (1)) [AX(t) +Bju(t)]
criterion of multiple models with suitable structure and C (4)
properties, in order to design a multi-observer (sectien Il y(t)= X( )

C). The design of the proposed observer based on multiple, B; and C are real known matrices with appropriate
model form is described in section II-D. In section Ill somedimensions. The weighting functiongi(-) are generally

conclusions and work perspectives are given. nonlinear iné (t) and satisfy the convexity property:
I[I. THE THREE-TANK SYSTEM
=1 W
A. Process description Z M) (5)

The three-tank system is a MIMO system with two inputs O < Hi(EM) <Lie{l...r}, Wt
and two outputs, presented in Fig. 1. The system consists The premise variablé (t) can depend on measurable vari-
three cylindrical tanks of the same sect@nThey are linked ables, as the inputi(t) or the outputy(t) of the system,
to each other through connecting cylindrical pipes havingnd/or on unmeasurable variables like the skéte
the sectionS,. The nominal outlet is located at tank 3. Theln order to obtain a multiple model structure from a given
incoming flowsQ; andQ; are considered as the inputs of thenonlinear system different methods exists. The majority of
system. The control objective is to regulate the water Evethem are linearization based techniques, which come with an
in tanks 1 and 2 by adjustin®; and Q.. ai(i =1,...,3) information loss of the initial nonlinear system. The metho
are the outflow coefficientg = 9.82m/s?] the graV|tat|onaI used here avoids this particular loss and gives an equivalen
acceleration. The objectives here are to analyze obséityabi multiple model form of the initial nonlinear system. Only a
of the system based on single or double measurements asitbf description of the important points of this methodlwil
to design observers for estimating all the tank levels. Thge given as follows, the technical details can be found in [9]

o o Considering a nonlinear system with bounded nonlineatitie

— I it can be written in a quasi linear-parameter-varying form:
o { X(t) = Ak () x(t) + B(k (1)) u(t) ©6)
S B y(t) = Cx(t)
| | o Qs where k(t) can represent a subset of the state variables.

To each quasi-LPV form corresponds a particular set of
premise variables and a particular multiple model strctur
As a consequence, it is possible to choose between different
dynamic mathematical model is based on Bernoulli's lavinultiple models the one with convenient properties. This

Fig. 1. The three-tank system

for liquids and on mass conservation law: represents a degree of freedom that will be used to make
easier the construction of an observer.
)-(l(t) Zit) als“sgn[xl( b =%(O)lv2ghalt) = xs(b)] The observer stability conditions are given in terms ofdine
Xo(t) = 5~ + ags“ sgn[xs(t) — Xz (t)]- matrix inequalities (LMI). Different techniques are praea
Zg|x3() X2(t)| — Q3—S(f) to reduce the number of LMI conditions, which leads to
X3(t ) =& sgn[xl( ) —Xa(t)] /29 |x1(t) — X3(t)] less computational requirement [15] and ensures the ealuti
sgn[ (t) —%2(t)] /29 X3 (t) — X2(1)] existence [5]. Due to the convexity of the interpolation mad

(1) between the submodels, the number of LMI to be satisfied

where Qz(t) = a25,1/2gx2(t) and sgn(-) denotes the sign is linear or polynomial in the number of submodels [14].
function. For the sake of the simplicity, let us note: Therefore, it is tried to find a multiple model composed by
S . a minimal number of submodels. This number is related
Wik = aigsonxi(t) —x(t)], i # k (2)  to the number of premise variables, so that a quasi-LPV



form which has a minimal set of premise variables will be for non null )i. and y;, and sincex(t) is non null, then
preferred. Besides, the complexity of the LMI conditions 3
increases with the number of state variables involved in th&
premise variables. In order to ensure the solution exu-zi;end—et us defrne ‘the premise variables:

g Aixi (t) and Z yixi(t) are not null.

the dimension of the state vector involved in the premise W13( )
variables should be made as small as possible [4]. z21(X) = 5>V 290x1 — X
Taking into account the previous remarks, the choice of the Z AiX;
quasi-LPV form leading to the simplest observable multiple
model will be realized, using the following rules: 2(X) = aZSﬂ / (8)
1) Eliminate all quasi-LPV forms for which the matrices v\/&z( )
A and/or B have null rows and/or columns. LX) =5V ZgiX3—xzi
2) Identify the decompositions containing common _Zllei
premise variables for different state equations, reducing _ =
in this way the number of premise variables. wherex =xi(t), i=1,...,3. . .
3) Chose the quasi-LPV form for which the premise variThe system (7) takes the following quasi-LPV form:
ables depend on a minimal number of state variables. X(t) = A(z1, 22, 23) X(t) + Bu(t) )

The premise variables associated to the quasi-LPV forfynere
will be partitioned into two parts, using the convex poly-

topic transformation. The two partitions of each bounded ~hzn —hey —Asy
nonlinearity will contribute to the construction of the sub AZ1,22,%8)=| 1% Vo3 =22 ys23 (10)
models and to the corresponding weighting functions. The Mzi—WZs AZi—VoZz AsZy—VsZ3
multiple model will thus be a convex combination of linear 1

submodels, the nonlinearity being transferred into weénght /S 0

functions related to each submodel. B=| 0 1/3 (11)
In the following, the previous essential points of these 0 0

method will be considered in order to transform the threeUSlng the convex polytopic transformation [14], the three
tank system into a multiple model form. Nevertheless, a NePremise variableg; are divided into two parts:

technique will be implemented concerning the quasi-LPV

forms. These forms will be highlighted through a weighted zj(x) = zj(x) —zj2 Zii 4 Zj1—2j(X) Zi 5
sum of the state variables. . Zii—Za2 " Zja—z2 (12)
The three-tank system is rewritten in an equivalent wayaisi = Fj1(zj(¥)zj1 + Fj2(z;(X) zj 2

a weighted sum of the state variables, via the real scalar
Aiandy (i=1,...,n). The choice of real scalara; and

¥ gives the possibility to obtain different multiple model Zj1= max{zj X }
structures. In fact, the use of these scalars allows to iiigthl %
the existence of different quasi-LPV forms of the system.

Taking into account the notations (2) the three-tank systef,qo multiple model is composed of -8 22 submodels.

(1) is then rewritten: The corresponding weighting functions are calculated as th
products of the partition functiors, ;(-) from (12) (where

snere the scalarsj 1 andz; > are:

Zj,2=min{zj(x)} Vi=1,..3 (13)

UJ

. 1 W13 \/2— ) o‘ can take values 1 or 2) in order to obtain all 8 possible
X(t) = 5Qu(t) - glxa(t) Z iXi(t combinations between the functions:

AiXi
ot 10,(t aésn ;) Hi(X) = 101(21(X))Fzﬁc,iz(Zz(X))F3Aq3(Z3(X)) (14)
) =50 Fel) with (g, 02,02 = g corresponding to the submodels
M'Z() 29 |x3(t) — Xa(t |Ziyx| given in the table | and indicates which of the partition
g Y () functions FJ _,-(-) will be used in the computation of the
i=1 weights L (x ) Similarly, the matricesAi(i = 1,...,8) are
Xa(t) = W173(t) V291xa(t) —xa(®)] S A (t obtained using the scalazjs i(j=1,..,3 expressed in (13)
§ Aixi () Z\ in order to obtain the 8 possrble combrnatrons
i%() A=Az o202  1=1..8 (1)
R 29|xs(t) —%a(t |ZVX' where the matrixA(z,2,23) is gi i ideri
1,22,73 given in (10). Considering

3 uxi(t) (11), all the matrice®; are identical and thus the matrices
(7) Bi=B(i=1..8).



TABLE |
MULTIPLE MODEL CONSTRUCTION USING THE PARTITIONS OF THE
THREE PREMISE VARIABLES

minimum of the premise variables are always non null. As
a consequence, the eight conditions (17) are verified if the
same condition is verified for the matrix

Partitions Firstly, for the sake of simplicity, only one measure will

Model n Z Z ai be considered, for exampbe, which defines the matrix

i [Fu[F2 | Fu [ FRe | R Fe C=[1 0 Q@

1 1 0 1 0 1 0 | @L) It has to be remarked that the observer design based on a

2 1 0 1 0 0 1 | @12 single measure may be interesting for fault diagnosis studi

3 1 0 0 1 1 0 | @129 The observability matrixo* for the matrixA has the follow-

4 1 oo 1ol 1 @22 ing form:

5 0 1 1 0 1 0 | (210 C 1 0 0

6 0 1 1 0 0 1 (212 ﬁl = CA = —Mzg —Azy —A3zg

7 o 1o | 1| 1|0 |(@2) CA? ] [ ()1 (x)2 (%3 ]

8 0 ! 0 ! 0 1 | @23 wherex represent non null terms:

(#)1=A2Z — Az (Mz1 — Yizs) — Azaizs
Then, the three-tank model (1) is transformed into the (*)2 = A1ZA2— Az (Vozs — 22) — Asza(A2zs — Voz3)

multiple model: (¥)3 = MAsZ — Aszi(Asz1 — Ys23) — 2211323
. 8 The determinant of the observability mate® is in this case
X(t) = P (x(t iX(t) + Bu(t
( ) izlul( ( )) [Ai ( ) ( )] (16) da(ﬁl) :AZWZ%ZS()\Z_/\S) —A3)\22§(Y223+22)+A§V22%23.

y(t) =Cx(t) It can be deduced that the rank of the observability matrix

l . _ . .
It has to be remarked that in conformity with (8) and (10)ﬁ is equal ton =3 if and only if A5 7 0 andA; 7 0. For

the weighting functionsii(x) and the matrices depend A3,A2 # 0 each submodel is observable, which is necessary

on the real scalard; andy (i = 1,2,3). So, for different fSor obsd(Trve_tr de5|gt|)1. idered th f o d
choices of these scalars, different structures of the plelti econdly, 1t can be considere € case of wo measure

model will be obtained. All these multiple model structureUPULS: If the classical case of the three-tank system is

(excluding the degenerated casks— A, — Az — O and/or considered, wher@; and x, are the measured outputs, the
vi = Vo = y3 = 0) are analytically equivalent with the initial matrix C has the form:

nonlinear form of the three-tank model (1). C= { 100 ] (18)
In the next section will be discussed the conditions to be 010
respected when choosing the real scaldrsand v (i = The observability matrixy1? (i = 1,...,8) has the following
1,2,3) (and so the multiple model form) in order to desigrform:
an observer for the three-tank system using the observer r 1 0 0
proposed in [7]. 0 1 0
C. Observability criterion choice of the multiple model 12 -z —A2Z>  —A3zg

In order to design an observer for a multiple model, the o= ViZs VYZs—2 VaZ3
observability of the system is required to solve the LMI, MZ (A —A3) + yiAsz1z3 ()1 (%)2
given in [7], and obtain the gains of the observer. (+) (+) (%)
It is well known that the observability of each submodel is L 3 4 > ]

a requirement for the observability of the global multiplewherex represent the following non null terms:
model. The next geometric conditions are used for the (#)1 = z1 [Aoza(A1 — Ag) — yozs(A2 — A3) + Aozo]
multiple model (16):

()2 = A3Z (A1 — A3) — Ys2123(A2 — A3)
c (¥)3 = Azaza(Y5— V1) — Vazs[z2 — Z3(Y5 — Vo)
CA _ ,
rank(&;) = rank ) =n, Vvi=1..8 (17) (x)a=(vz3—2)° — Y2157
C/%:”’l (%)5 = yaz3[(vo — ¥8) Zs — 22 + Asza] — Asyrz123

In this case the multiple model structures with = y53 =

In conformity with (15) the matriceg\ (i = 1,...,8) have 0 should be avoided in order to ensure the observability
the same structure as that of the matfixgiven in (10), condition (17) of the submodels.

with the difference thatz;, z2 and z; are replaced with Similar studies can be realized for the other possible ¢ases
constants representing the maximum or the minimum afith one or two measures.

the three premise variableszlj(,il, 252 OF zgpia). Taking In the next section the observer design for the three-tank
into account that the degenerate cases={ x3, X2 = X3  system is realized, taking into account the criterion ch®ic
and x; = x» = x3 = 0) are excluded, the maximum and theof the multiple model presented in this section.



D. Observer design f(x) = pi(x)x, the second one is checked similarly.
The method used here to design observers for nonlineli} this case, the termi(x,X) may be bounded by:
systems is based on the multiple model form (16). The case AX,R) < WIx(t) —K(O)| (26)

where the weighting functiong; depend on unmeasurable
premise variables (state variables) is considered. Let wghere

consider the matricedy and A; defined by: W= Zl A)w + G (B)Ti¢) 27)
| 1
r
Po=7 3 A _ . .
i=1 (19) where g(M) denotes the maximum singular value of the

A=A-Ay matrix M. In conformity with the convergence theorem
presented in [7] llemma 1), the state estimation error be-
By substitutingA, and A in the multiple model state equa- yween the multiple model (4) and the multiple observer (20)
tion (16), the proposed observer for the three-tank systegynyerges asymptotically towards zero, if there exist ivedr
has the following form: P=P' >0, Q=Q" >0 andK such that the following

R R s R condition holds:
R(0) = Ac(t) + 3 () [A() + Bu(t) + L(y(t) - 9(1))] AP+ PR CTKT _KC442Q P

9(t) = Cx(t) P Q)0 @9

(20) : - .
whereL is a matrix to be determined. The gain of the observer (20) is then computed by:
The state estimation error is given by: L=P 1K
e(t) = x(t) —X(t) (21) 1t has to be remarked that the number of LMIs does not

depend on the number of submodels of the multiple model.
It depend only onAy, the mean of these submodel;)(
&(t) = X(t) —X(t) = (Ag— LC)e(t) + A(x,X) (22) NeverthelessAg and A; have the same structure, so the
choice of the multiple model is important in order to fibd

Its dynamic is obtained using (21) and (20):

where: The simulation results are given in figure 2 foy = —0.7,
L rx G\ @ A2=52A3=17, =0, b = -3, 5= -1 andy = 0.506.
A(x, X X(t) — i (X(t)) R(t 2= 973 =0, 12 ¥ Yy
00%) = 21%( HO)X(E) — HRE)XD) (23) These parameters have to be chosen in order to respect

B (1 (X(1)) = i (R()))u(t)] the observability conditions, as discussed previouslyn-Co
) o sidering different initial conditions for the multiple meld
can be considered as a small perturbatior iérids toward (y, — [1.8; 1.7; 5,5]) and for the observexg* [4.8; 5; 21]),

x. In conformity with [7] it is assumed that the following 3 fast convergence of the state estimation error towards zer
conditions hold: is obtained.

I (X(©) B (RO)] < T (1) - ()| -
[ (X(8)) X(t) — i (R(1)) X(E)] < @ [x(t) = X(t)] (24) T T [ x, esimaes
ut)l < ¢

Since the weighting functiong;(x) take values in the in-

terval [0,1], are continuous and derivable, and the state s W s w
is bounded, the conditions (24) are easy to check. The firs * ‘ ‘ ‘ ‘

"
4R
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— X

Water level
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T

condition in (24) is verified, since the weighting functions @
i (x) are globally Lipschitz. Given a functioh of classC?,
we have:

Water level
N w

[N

L L L L L L L L L
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f():/f'(t)dt, (25) T T

Applying this property for all eight weighting functions
we obtain:

i (X) — i (R)] <.

Water level
= N w S u o

o
ok

O)|dt < tlx—%, i=1,..8 Y

>0 5

T; can be easily founded, knowing the extrema of functions Fig. 2. State estimation for the three-tank system

K (i=1,...,8). Sincep;(x) are globally Lipschitz anc is

bounded and assumed to be continuous, the second conditioThe estimation results are correct (see figure 2), although
in (24) is verified too. Applying the same principles fora noise measurement has been added to the two outputs, as



can be seen in figure 3. The LMI condition (28) holds andegard to the Lipschitz constants. In addition, the number

the observer gain is:

1.42 0
L= 0 0.97
—0.08-:102 0.12-10°2

7‘ Y, witr; noise
4.5 — vy, estimated ||
2l i
©
335
g 3
=
2 [1]
2
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° ‘ ‘ ‘ ‘ ‘ ‘ ‘ —Y, with noise [2]
— Y, estimated
4
£ [3]
§ 3
<
=
2
[4]
s 10 15 20 25 30 3 40 45 50
time [5]
Fig. 3. Measured and reconstructed outputs [6]
IIl. CONCLUSIONS AND FUTURE WORKS (7]

This paper proposes an equivalent rewriting of nonlinear
systems into a multiple model form with unmeasurable
premise variables in order to design a multi-observer an
reconstruct the state of this system. The transformation
method is applied to the three-tank system and gives ver§9
good results concerning the state reconstruction.

The interest to use the multiple model structures is aIread¥
well known, the main advantage is the ability to extend™¥
the tools of the linear theory to nonlinear systems. Other
advantages and good properties of the multiple model aréll
firstly, the possibility to reduce the complexity of nonlare
systems, by constructing linear models that will be aggre-
gated using weighting functions and, secondly, the faat thél2]
these aggregating functions possess the convexity pyopert
The multiple model form developed here uses unmeasuralie)
premise variables, the states of the system. In this way it
covers a larger class of nonlinear systems than those usi
measurable premise variables and allows to develop only one
model of the system behavior to detect and isolate actuatidpl
and sensor faults.

In order to obtain the multiple model structure, a methoghg;
with no information loss is used. The initial nonlinear gyst

is rewritten into an equivalent multiple model form. This ]
method gives the possibility to determine between the di%—
ferent possible multiple models the one that is observaide a
for which the observer design is possible. These conditions
are less restrictive than those proposed in the literatutte w

8]

of LMIs to solve is restrained and does not depend on the
number of submodels of the multiple model.
Using the method presented in this paper, it is envisaged to
extend the study to fault detection and diagnosis.
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