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Abstract— This paper addresses the exact transformation of
nonlinear systems into a multiple model form with unmeasur-
able premise variables. The multiple model structure serves
to treat the observability and the state estimation problem
of nonlinear systems. Using a method with no information
loss, a nonlinear system is transformed into a multiple model,
depending on the choice of premise variables. It is a key point,
since it allows to choose, between different multiple model
forms, the one that has suitable structure and properties, in
order to design an observer. The convergence conditions of the
state estimation error are expressed in LMI formulation using
the Lyapunov method. These proposals are investigated and
applied to the three-tank system.

I. INTRODUCTION

The fault detection and diagnosis (FDD) methods for
linear systems had already reached a certain development and
maturity. Nevertheless, nonlinear models are often neededto
represent real system behaviors. As a consequence, there is
a need to extend FDD methods to nonlinear systems, even
if it is a difficult point. It is the reason why the concept
of multiple models has received attention in the last two
decades. The multiple model structure gives the possibility to
reduce the complexity of nonlinear systems, by constructing
linear submodels aggregated using weighting functions [16],
[14]. The interests to use this structure is already well known,
the main advantage is the possibility to extend many tools
and results of the linear theory to nonlinear systems, such as
the observer synthesis.
In the linear framework, the fault detection can be realized
using observer based methods. There already exists several
works on observer design for multiple model systems. A
multi-observer based on Luenberger observers was proposed
and applied for diagnosis in [12]. In [2], sliding mode
observers for linear systems, were transposed to the multiple
model case, and in [2], [3] unknown input multi-observers
were implemented. Moreover, one of the main interests to
use this type of observers is its robustness with regard to
modeling uncertainties.
However, these papers assume that the weighting functions
depend on measurable premise variables, which is not always
the case. In the literature, few works are devoted to the
case of unmeasurable decision variables [5], [7], [10]. As
discussed in [7], multiple model with unmeasurable decision
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variables is more adequate to fault diagnosis since a single
model can be used, both for sensor and actuator fault diagno-
sis. [7] proposes a method which reduces the conservatism of
the precedent works by reducing the number of LMIs to be
solved and relaxing the conditions under which the method is
applicable. In addition, the number of LMIs does not depend
on the number of submodels of the multiple model.
Different techniques to obtain a multiple model exist in the
literature. Firstly, model identification techniques or parame-
ter estimation using experimental data [1] can be considered.
Secondly, the techniques based on existent mathematical
nonlinear models, where a linearization around one (or
several) operating point(s) as well as a dynamic lineariza-
tion near an arbitrary trajectory are proposed[8]. The main
drawbacks of this technique are: the loss of information,
the choice of the premise variables expressing different
nonlinearities of the system is not systematically realized,
the choice of different operating points still remains very
delicate. The method used here avoids this particular loss
and gives an equivalent multiple model form of the initial
nonlinear system [9]. In addition to that, the method offers
several multiple models with different structures, depending
on the choice of premise variables. So, it is possible to choose
from different multiple model structures the one that ensures
the convergence of the multi-observer, with respect to given
conditions. The method is here improved and adapted in
order to facilitate the choice of the suitable MM structure,
by introducing a pondered sum of the state variables when
constructing the MM form. The convergence conditions of
the state estimation error are expressed in LMI formulation
using the Lyapunov method. The method used here for the
observer design [7] requires the observability of the multiple
model. It is the reason why an observable multiple model
structure is sought.
These proposals are investigated and applied in this paper to
the three-tank system. This system was largely studied in the
literature [11], [13], [17] and is considered as a benchmark,
in different frameworks. The controller switching approach
used for fault tolerant control in [13], implies a period
of time between two switchings (dwell time). In [11] a
sliding mode observer for the three-tank system is proposed,
where a particular region of operation is considered. The
method proposed in this paper, avoids the need to separate
different operating modes and give a multiple model which
encompasses all possible modes, without any transition
management. In [17] a fault diagnosis and accommodation
method is applied to the three-tank system, that is linearized
around an operating point using Taylor expansion. It is well
known that the choice of the different operating points still



remains a very delicate subject. The method proposed in
this paper consists in rewriting the nonlinear models. As a
consequence no operating points have to be chosen.
In order to ensure the possibility to design an observer, a
preliminary study of observability for nonlinear systems has
to be realized. The uniform observability notion is closely
related to observer design. There are different approachesto
verify this condition. In [6] a systematic observability anal-
ysis for the three-tank system is realized. As a consequence,
the observer design for the three-tank system is possible.
The paper is organized as follows. Section II starts with the
presentation of the three-tank system in II-A. In section II-B
the main steps of the method used to obtain an equivalent
multiple model form of a nonlinear system (here, the three-
tank system) are given. This method proposes a choice
criterion of multiple models with suitable structure and
properties, in order to design a multi-observer (section II-
C). The design of the proposed observer based on multiple
model form is described in section II-D. In section III some
conclusions and work perspectives are given.

II. THE THREE-TANK SYSTEM

A. Process description

The three-tank system is a MIMO system with two inputs
and two outputs, presented in Fig. 1. The system consists in
three cylindrical tanks of the same sectionS. They are linked
to each other through connecting cylindrical pipes having
the sectionSn. The nominal outlet is located at tank 3. The
incoming flowsQ1 andQ2 are considered as the inputs of the
system. The control objective is to regulate the water levels
in tanks 1 and 2 by adjustingQ1 and Q2. αi(i = 1, ...,3)
are the outflow coefficients,g = 9.82[m/s2] the gravitational
acceleration. The objectives here are to analyze observability
of the system based on single or double measurements and
to design observers for estimating all the tank levels. The

Fig. 1. The three-tank system

dynamic mathematical model is based on Bernoulli’s law
for liquids and on mass conservation law:

ẋ1(t) = Q1(t)
S − α1Sn

S sgn[x1(t)− x3(t)]
√

2g |x1(t)− x3(t)|

ẋ2(t) = Q2(t)
S + α3Sn

S sgn[x3(t)− x2(t)]·
√

2g |x3(t)− x2(t)|−
Q3(t)

S
ẋ3(t) = α1Sn

S sgn[x1(t)− x3(t)]
√

2g |x1(t)− x3(t)|
−α3Sn

S sgn[x3(t)− x2(t)]
√

2g |x3(t)− x2(t)|
(1)

where Q3(t) = α2Sn
√

2gx2(t) and sgn(·) denotes the sign
function. For the sake of the simplicity, let us note:

Wi,k = αi
Sn

S
sgn[xi(t)− xk(t)], i 6= k (2)

Define

x =





x1

x2

x3



 , u =

[

Q1

Q2

]

(3)

Let us considerH the maximal liquid level in the tanks and
suppose that the tanks are never simultaneously empty. This
assumption can be made because the levelsx1, x2 and x3

are controllable using the flowsQ1 andQ2. In this case, the
three-tank levelsx1, x2 andx3 are bounded:x ∈ R

3
+.

B. The multiple model representation

Let us consider the multiple model representation of a
nonlinear system:







ẋ(t) =
r
∑

i=1
µi(ξ (t)) [Aix(t)+Biu(t)]

y(t) = C x(t)
(4)

Ai, Bi and C are real known matrices with appropriate
dimensions. The weighting functionsµi(·) are generally
nonlinear inξ (t) and satisfy the convexity property:

r
∑

i=1
µi(ξ (t)) = 1, ∀t

0≤ µi(ξ (t)) ≤ 1, i ∈ {1, ...,r}, ∀t
(5)

The premise variableξ (t) can depend on measurable vari-
ables, as the inputu(t) or the outputy(t) of the system,
and/or on unmeasurable variables like the statex(t).
In order to obtain a multiple model structure from a given
nonlinear system different methods exists. The majority of
them are linearization based techniques, which come with an
information loss of the initial nonlinear system. The method
used here avoids this particular loss and gives an equivalent
multiple model form of the initial nonlinear system. Only a
brief description of the important points of this method will
be given as follows, the technical details can be found in [9].
Considering a nonlinear system with bounded nonlinearities,
it can be written in a quasi linear-parameter-varying form:

{

ẋ(t) = A(κ(t))x(t)+B(κ(t))u(t)
y(t) = C x(t)

(6)

where κ(t) can represent a subset of the state variables.
To each quasi-LPV form corresponds a particular set of
premise variables and a particular multiple model structure.
As a consequence, it is possible to choose between different
multiple models the one with convenient properties. This
represents a degree of freedom that will be used to make
easier the construction of an observer.
The observer stability conditions are given in terms of linear
matrix inequalities (LMI). Different techniques are proposed
to reduce the number of LMI conditions, which leads to
less computational requirement [15] and ensures the solution
existence [5]. Due to the convexity of the interpolation made
between the submodels, the number of LMI to be satisfied
is linear or polynomial in the number of submodels [14].
Therefore, it is tried to find a multiple model composed by
a minimal number of submodels. This number is related
to the number of premise variables, so that a quasi-LPV



form which has a minimal set of premise variables will be
preferred. Besides, the complexity of the LMI conditions
increases with the number of state variables involved in the
premise variables. In order to ensure the solution existence,
the dimension of the state vector involved in the premise
variables should be made as small as possible [4].
Taking into account the previous remarks, the choice of the
quasi-LPV form leading to the simplest observable multiple
model will be realized, using the following rules:

1) Eliminate all quasi-LPV forms for which the matrices
A and/or B have null rows and/or columns.

2) Identify the decompositions containing common
premise variables for different state equations, reducing
in this way the number of premise variables.

3) Chose the quasi-LPV form for which the premise vari-
ables depend on a minimal number of state variables.

The premise variables associated to the quasi-LPV form
will be partitioned into two parts, using the convex poly-
topic transformation. The two partitions of each bounded
nonlinearity will contribute to the construction of the sub-
models and to the corresponding weighting functions. The
multiple model will thus be a convex combination of linear
submodels, the nonlinearity being transferred into weighting
functions related to each submodel.
In the following, the previous essential points of these
method will be considered in order to transform the three-
tank system into a multiple model form. Nevertheless, a new
technique will be implemented concerning the quasi-LPV
forms. These forms will be highlighted through a weighted
sum of the state variables.
The three-tank system is rewritten in an equivalent way, using
a weighted sum of the state variables, via the real scalars
λi and γi (i = 1, ...,n). The choice of real scalarsλi and
γi gives the possibility to obtain different multiple model
structures. In fact, the use of these scalars allows to highlight
the existence of different quasi-LPV forms of the system.
Taking into account the notations (2) the three-tank system
(1) is then rewritten:

ẋ1(t) = 1
S Q1(t)−

W1,3(t)
3
∑

i=1
λixi(t)

√

2g |x1(t)− x3(t)|
3

∑
i=1

λixi(t)

ẋ2(t) = 1
S Q2(t)−

α2Sn
S

√

2gx2(t)

+
W3,2(t)
3
∑

i=1
γixi(t)

√

2g |x3(t)− x2(t)|
3

∑
i=1

γixi(t)

ẋ3(t) =
W1,3(t)
3
∑

i=1
λixi(t)

√

2g |x1(t)− x3(t)|
3

∑
i=1

λixi(t)

−
W3,2(t)
3
∑

i=1
γixi(t)

√

2g |x3(t)− x2(t)|
3

∑
i=1

γixi(t)

(7)

for non null λi and γi, and sincex(t) is non null, then
3
∑

i=1
λixi(t) and

3
∑

i=1
γixi(t) are not null.

Let us define the premise variables:

z1(x) =
W1,3(t)

3
∑

i=1
λixi

√

2g |x1− x3|

z2(x) =
α2Sn

S

√

2g
x2

z3(x) =
W3,2(t)

3
∑

i=1
γixi

√

2g |x3− x2|

(8)

wherexi = xi(t), i = 1, ...,3.
The system (7) takes the following quasi-LPV form:

ẋ(t) = A(z1,z2,z3)x(t)+Bu(t) (9)

where

A(z1,z2,z3)=





−λ1z1 −λ2z1 −λ3z1

γ1z3 γ2z3−z2 γ3z3

λ1z1− γ1z3 λ2z1− γ2z3 λ3z1− γ3z3



 (10)

B =





1/
S 0

0 1/
S

0 0



 (11)

Using the convex polytopic transformation [14], the three
premise variablesz j are divided into two parts:

zj(x) =
zj(x)− z j,2

z j,1− z j,2
z j,1 +

z j,1−zj(x)

z j,1− z j,2
z j,2

= Fj,1(zj(x))z j,1 + Fj,2(zj(x))z j,2

(12)

where the scalarsz j,1 and z j,2 are:

z j,1 = max
x

{

zj(x)
}

z j,2 = min
x

{

zj(x)
} ∀ j = 1, ...,3 (13)

The multiple model is composed of 8= 23 submodels.
The corresponding weighting functions are calculated as the
products of the partition functionsF

j,σ j
i
(·) from (12) (where

σ j
i can take values 1 or 2) in order to obtain all 8 possible

combinations between the functions:

µi(x) = F1,σ1
i
(z1(x))F2,σ2

i
(z2(x))F3,σ3

i
(z3(x)) (14)

with (σ1
i ,σ2

i ,σ3
i ) = σi corresponding to the submodeli is

given in the table I and indicates which of the partition
functions F

j,σ j
i
(·) will be used in the computation of the

weights µi(x). Similarly, the matricesAi(i = 1, ...,8) are
obtained using the scalarsz

j,σ j
i
( j = 1, ...,3) expressed in (13)

in order to obtain the 8 possible combinations:

Ai = A(z1,σ1
i
,z2,σ2

i
,z3,σ3

i
) i = 1, ...,8 (15)

where the matrixA(z1,z2,z3) is given in (10). Considering
(11), all the matricesBi are identical and thus the matrices
Bi = B (i = 1, ...,8).



TABLE I

MULTIPLE MODEL CONSTRUCTION USING THE PARTITIONS OF THE

THREE PREMISE VARIABLES

Partitions

Model z1 z2 z3 σi

i F1,1 F1,2 F2,1 F2,2 F3,1 F3,2

1 1 0 1 0 1 0 (1,1,1)

2 1 0 1 0 0 1 (1,1,2)

3 1 0 0 1 1 0 (1,2,1)

4 1 0 0 1 0 1 (1,2,2)

5 0 1 1 0 1 0 (2,1,1)

6 0 1 1 0 0 1 (2,1,2)

7 0 1 0 1 1 0 (2,2,1)

8 0 1 0 1 0 1 (2,2,2)

Then, the three-tank model (1) is transformed into the
multiple model:

ẋ(t) =
8
∑

i=1
µi(x(t)) [Aix(t)+Bu(t)]

y(t) = Cx(t)
(16)

It has to be remarked that in conformity with (8) and (10)
the weighting functionsµi(x) and the matricesAi depend
on the real scalarsλi and γi (i = 1,2,3). So, for different
choices of these scalars, different structures of the multiple
model will be obtained. All these multiple model structures
(excluding the degenerated casesλ1 = λ2 = λ3 = 0 and/or
γ1 = γ2 = γ3 = 0) are analytically equivalent with the initial
nonlinear form of the three-tank model (1).
In the next section will be discussed the conditions to be
respected when choosing the real scalarsλi and γi (i =
1,2,3) (and so the multiple model form) in order to design
an observer for the three-tank system using the observer
proposed in [7].

C. Observability criterion choice of the multiple model

In order to design an observer for a multiple model, the
observability of the system is required to solve the LMI,
given in [7], and obtain the gains of the observer.
It is well known that the observability of each submodel is
a requirement for the observability of the global multiple
model. The next geometric conditions are used for the
multiple model (16):

rank(Oi) = rank











C
CAi

...
CAn−1

i











= n, ∀i = 1, ...,8 (17)

In conformity with (15) the matricesAi (i = 1, ...,8) have
the same structure as that of the matrixA given in (10),
with the difference thatz1, z2 and z3 are replaced with
constants representing the maximum or the minimum of
the three premise variables (z1,σ1

i
, z2,σ2

i
or z3,σ3

i
). Taking

into account that the degenerate cases (x1 = x3, x2 = x3

and x1 = x2 = x3 = 0) are excluded, the maximum and the

minimum of the premise variables are always non null. As
a consequence, the eight conditions (17) are verified if the
same condition is verified for the matrixA.
Firstly, for the sake of simplicity, only one measure will
be considered, for examplex1, which defines the matrix
C = [1 0 0].
It has to be remarked that the observer design based on a
single measure may be interesting for fault diagnosis studies.
The observability matrixO1 for the matrixA has the follow-
ing form:

O
1 =





C
CA
CA2



 =





1 0 0
−λ1z1 −λ2z1 −λ3z1

(∗)1 (∗)2 (∗)3





where∗ represent non null terms:

(∗)1 = λ 2
1 z2

1−λ3z1(λ1z1− γ1z3)−λ2z1γ1z3

(∗)2 = λ1z2
1λ2−λ2z1(γ2z3− z2)−λ3z1(λ2z1− γ2z3)

(∗)3 = λ1λ3z2
1−λ3z1(λ3z1− γ3z3)−λ2z1γ3z3

The determinant of the observability matrixO
1 is in this case

det(O1) = λ2γ3z2
1z3(λ2−λ3)−λ3λ2z2

1(γ2z3 + z2)+λ 2
3 γ2z2

1z3.
It can be deduced that the rank of the observability matrix
O

1 is equal ton = 3 if and only if λ3 6= 0 andλ2 6= 0. For
λ3,λ2 6= 0 each submodel is observable, which is necessary
for observer design.
Secondly, it can be considered the case of two measured
outputs. If the classical case of the three-tank system is
considered, wherex1 and x2 are the measured outputs, the
matrix C has the form:

C =

[

1 0 0
0 1 0

]

(18)

The observability matrixO1,2 (i = 1, ...,8) has the following
form:

O
1,2=























1 0 0

0 1 0

−λ1z1 −λ2z2 −λ3z1

γ1z3 γ2z3− z2 γ3z3

λ1z2
1(λ1−λ3)+ γ1λ3z1z3 (∗)1 (∗)2

(∗)3 (∗)4 (∗)5























where∗ represent the following non null terms:

(∗)1 = z1 [λ2z1(λ1−λ3)− γ2z3(λ2−λ3)+λ2z2]

(∗)2 = λ3z2
1(λ1−λ3)− γ3z1z3(λ2−λ3)

(∗)3 = λ1z1z3(γ3− γ1)− γ1z3[z2− z3(γ3− γ2)]

(∗)4 = (γ2z3− z2)
2− γ2γ3z2

3

(∗)5 = γ3z3 [(γ2− γ3)z3− z2 +λ3z1]−λ3γ1z1z3

In this case the multiple model structures withλ3 = γ3 =
0 should be avoided in order to ensure the observability
condition (17) of the submodels.
Similar studies can be realized for the other possible cases,
with one or two measures.
In the next section the observer design for the three-tank
system is realized, taking into account the criterion choices
of the multiple model presented in this section.



D. Observer design

The method used here to design observers for nonlinear
systems is based on the multiple model form (16). The case
where the weighting functionsµi depend on unmeasurable
premise variables (state variables) is considered. Let us
consider the matricesA0 andAi defined by:

A0 = 1
r

r
∑

i=1
Ai

Ai = Ai −A0

(19)

By substitutingA0 andAi in the multiple model state equa-
tion (16), the proposed observer for the three-tank system
has the following form:

˙̂x(t) = A0x̂(t)+
8
∑

i=1
µi(x̂)

[

Aix̂(t)+Bu(t)+L(y(t)− ŷ(t))
]

ŷ(t) = C x̂(t)
(20)

whereL is a matrix to be determined.
The state estimation error is given by:

e(t) = x(t)− x̂(t) (21)

Its dynamic is obtained using (21) and (20):

ė(t) = ẋ(t)− ˙̂x(t) = (A0−LC)e(t)+∆(x, x̂) (22)

where:

∆(x, x̂) =
r
∑

i=1

[

Ai(µi(x(t))x(t)−µi(x̂(t)) x̂(t))

+Bi(µi(x(t))−µi(x̂(t)))u(t)]
(23)

can be considered as a small perturbation if ˆx tends toward
x. In conformity with [7] it is assumed that the following
conditions hold:

|µi(x(t))−µi(x̂(t))| < τi |x(t)− x̂(t)|

|µi(x(t))x(t)−µi(x̂(t)) x̂(t)| < ωi |x(t)− x̂(t)|

|u(t)| < ϕ
(24)

Since the weighting functionsµi(x) take values in the in-
terval [0,1], are continuous and derivable, and the statex
is bounded, the conditions (24) are easy to check. The first
condition in (24) is verified, since the weighting functions
µi(x) are globally Lipschitz. Given a functionf of classC1,
we have:

f (x)− f (x̂) =

x
∫

x̂

ḟ (t)dt, (25)

Applying this property for all eight weighting functionsµi

we obtain:

|µi(x)−µi(x̂)| ≤
x
∫

x̂
|µ̇i(t)|dt ≤ τi |x− x̂| , i = 1, ...,8

τi can be easily founded, knowing the extrema of functions
µi (i = 1, ...,8). Sinceµi(x) are globally Lipschitz andx is
bounded and assumed to be continuous, the second condition
in (24) is verified too. Applying the same principles for

f (x) = µi(x)x, the second one is checked similarly.
In this case, the term∆(x, x̂) may be bounded by:

∆(x, x̂) < ψ |x(t)− x̂(t)| (26)

where

ψ =
r

∑
i=1

(σ̄(Ai)ωi + σ̄(Bi)τiϕ) (27)

where σ̄(M) denotes the maximum singular value of the
matrix M. In conformity with the convergence theorem
presented in [7] (Lemma 1), the state estimation error be-
tween the multiple model (4) and the multiple observer (20)
converges asymptotically towards zero, if there exist matrices
P = PT > 0, Q = QT > 0 and K such that the following
condition holds:

[

AT
0 P+PA0−CT KT −KC +ψ2Q P

P −Q

]

< 0 (28)

The gain of the observer (20) is then computed by:

L = P−1K

It has to be remarked that the number of LMIs does not
depend on the number of submodels of the multiple model.
It depend only onA0, the mean of these submodels (Ai).
Nevertheless,A0 and Ai have the same structure, so the
choice of the multiple model is important in order to findL.
The simulation results are given in figure 2 forλ1 = −0.7,
λ2 = 5, λ3 = 17, γ1 = 0, γ2 = −3, γ3 = −1 andψ = 0.506.
These parameters have to be chosen in order to respect
the observability conditions, as discussed previously. Con-
sidering different initial conditions for the multiple model
(x0 = [1.8; 1.7; 5.5]) and for the observer ( ˆx0 = [4.8; 5; 2.1]),
a fast convergence of the state estimation error towards zero
is obtained.

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5
Tank 1

W
at

er
 le

ve
l

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5
Tank 2

W
at

er
 le

ve
l

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6
Tank 3

time

W
at

er
 le

ve
l

x
1
 estimated

x
1

x
2
 estimated

x
2

x
3
 estimated

x
3

Fig. 2. State estimation for the three-tank system

The estimation results are correct (see figure 2), although
a noise measurement has been added to the two outputs, as



can be seen in figure 3. The LMI condition (28) holds and
the observer gain is:
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Fig. 3. Measured and reconstructed outputs

III. CONCLUSIONS AND FUTURE WORKS

This paper proposes an equivalent rewriting of nonlinear
systems into a multiple model form with unmeasurable
premise variables in order to design a multi-observer and
reconstruct the state of this system. The transformation
method is applied to the three-tank system and gives very
good results concerning the state reconstruction.
The interest to use the multiple model structures is already
well known, the main advantage is the ability to extend
the tools of the linear theory to nonlinear systems. Other
advantages and good properties of the multiple model are,
firstly, the possibility to reduce the complexity of nonlinear
systems, by constructing linear models that will be aggre-
gated using weighting functions and, secondly, the fact that
these aggregating functions possess the convexity property.
The multiple model form developed here uses unmeasurable
premise variables, the states of the system. In this way it
covers a larger class of nonlinear systems than those using
measurable premise variables and allows to develop only one
model of the system behavior to detect and isolate actuator
and sensor faults.
In order to obtain the multiple model structure, a method
with no information loss is used. The initial nonlinear system
is rewritten into an equivalent multiple model form. This
method gives the possibility to determine between the dif-
ferent possible multiple models the one that is observable and
for which the observer design is possible. These conditions
are less restrictive than those proposed in the literature with

regard to the Lipschitz constants. In addition, the number
of LMIs to solve is restrained and does not depend on the
number of submodels of the multiple model.
Using the method presented in this paper, it is envisaged to
extend the study to fault detection and diagnosis.

IV. ACKNOWLEDGMENTS

We acknowledge the financial support received from the
“Fonds National de la Recherche Luxembourg”. This re-
search is also partially supported by the TASSILI no.07
program under MDU grant 714.

REFERENCES

[1] J. Abonyi, R. Babuska, F. Szeifert. Modified Gath-Geva fuzzy
clustering for identification of Takagi-Sugeno fuzzy models. In IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
Vol. 32, No.5, 612-621, 2002.

[2] A. Akhenak, M. Chadli, J. Ragot, D. Maquin. Estimation of state
and unknown inputs of a nonlinear system represented by a multiple
model. In 11th IFAC Symposium on Automation in Mining, Mineral
and Metal Processing, MMM, Nancy, France, September 8-10, 2004.

[3] A. Akhenak, M. Chadli, J. Ragot, D. Maquin. Unknown inputmultiple
observer based approach. Application to secure communications. In
1th IFAC Conference on Analysis and Control of Chaotic Systems,
Reims, France, June 28-30, 2006.

[4] P. Bergsten, R. Palm. Thau-Luenberger Observers for TS Fuzzy
systems. InThe Ninth IEEE International Conference on Fuzzy
Systems, 2000.

[5] P. Bergsten, R. Palm, D. Driankov. Observers for Takagi-Sugeno
Fuzzy Systems. InIEEE Transactions on Systems, Man and Cyber-
netics - Part B: Cybernetics, Vol 32, No 1, February 2002.

[6] M. Hou, Y. S. Xiong, R. J. Patton. Observing a Three-Tank System.
In IEEE Transactions on Control Systems Technology, Vol. 13, No. 3,
May 2005

[7] D. Ichalal, B. Marx, J. Ragot, D. Maquin. Design of Observers for
Takagi-Sugeno Systems with Immeasurable Premise Variables: anL2
Approach. In 17th World Congress The International Federation of
Automatic Control, Seoul, Korea, July 6-11, 2008

[8] T. Johansen, R. Shorten, R. Murray-Smith. On the interpretation
and identification of dynamic Takagi-Sugeno fuzzy models. In IEEE
Transactions on Fuzzy Systems, Vol. 8, 297-313, 2000.

[9] A.M. Nagy, G. Mourot, J. Ragot, G. Schutz, S. Gillé. Model structure
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