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Abstract— In this paper, a new method to design an observer
for nonlinear systems described by Takagi-Sugeno (TS) model,
with unmeasurable premise variables, is proposed. Most of
existing work on TS models consider models with measurable
decision variables. As a consequence, these works cannot
be applied when the decision variables are not available to
measurement. The idea of the proposed approach is to re-
write the TS model with unmeasurable premise variable into an
uncertain TS model by introducing the estimated state in the
model. The convergence of the state estimation error is studied
using the Lyapunov theory and the stability conditions are
given in terms of Linear Matrix Inequalities (LMIs). Finally, an
academic example is given to illustrate the proposed approach,
with an application to sensor fault detection and isolation using
an observer bank.

Index Terms— Nonlinear systems, Takagi-Sugeno models,
state estimation, unmeasurable premise variable, uncertain
systems, L2 optimization, sensor fault diagnosis.

I. INTRODUCTION

The Takagi-Sugeno (TS) fuzzy model is a popular and
important modeling framework due, on the one hand, to
its ability to represent with a good precision a large class
of nonlinear systems and, on the other hand, to its ease of
manipulation from the mathematical point of view compared
to the original nonlinear models. In the literature, increasing
attention has been devoted to TS fuzzy models specially
in the fields of control, state estimation and diagnosis of
nonlinear systems.

The problem of state estimation of nonlinear systems
can be viewed as the heart of control systems and model-
based diagnosis. In [7] and [16], quadratic and non-quadratic
stability conditions for TS fuzzy models are established
using the Lyapunov theory and the Linear Matrix Inequality
formalism (LMI). In [12] and [15], the authors proposed
less conservative conditions for ensuring the stability and
a method for designing a feedback control law to stabilize
TS systems. The problem of model-based diagnosis has been
studied in [1], [10] and [13].

In the literature, only a few works dealt with the problem
of state estimation of nonlinear systems described by TS
models with unmeasurable premise variables. In [3] and [4],
the Thau-Luenberger observer was extended to this class of
systems. The authors of [5] proposed a sliding mode observer
for TS systems with unmeasurable premise variables. The
problem which can be pointed out is the fact that the
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convergence conditions used Lipschitz conditions which are
very restrictive.

In this paper, another method is proposed by using a TS
model approach to design observers for nonlinear systems.
We consider the case where the weighting functions depend
on unmeasurable decision variables (the state of the system).
Section II introduces the problem and some background. In
section III, the main results to design the observer are given
under LMI formulation. The idea is to transform the TS
system with unmeasurable premise variable into an uncertain
TS system with estimated premise variable. And by using
the Lyapunov theory and the L2 optimization techniques,
the convergence conditions are proposed. Finally, in section
IV, a simulation example is given for state estimation and
sensor fault detection and isolation.

II. NOTATIONS AND PROBLEM STATEMENT

A. Takagi-Sugeno structure

Consider a nonlinear system described by{
ẋ(t) = f(x, u)
y(t) = h(x, u)

(1)

The TS fuzzy modeling allows to represent the behavior
of a nonlinear system (1) by the interpolation of a set
of linear sub-models. Each sub-model contributes to the
global behavior of the nonlinear system through a weighting
function μi(ξ(t)). The TS structure is given by⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) =

r∑
i=1

μi(ξ(t))(Aix(t) + Biu(t))

y(t) =
r∑

i=1

μi(ξ(t))(Cix(t) + Diu(t))
(2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input
vector, y(t) ∈ R

p represents the output vector. Ai ∈ R
n×n,

Bi ∈ R
n×m, Ci ∈ R

p×n and Di ∈ R
p×m are known

matrices. Finally, the functions μi(ξ(t)) are the weighting
functions depending on the variables ξ(t) which can be
measurable (as the input or the output of the system) or
non measurable variables (as the state of the system). These
functions verify the following properties⎧⎨

⎩
r∑

i=1

μi(ξ(t)) = 1

0 ≤ μi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(3)

In order to obtain a TS model (2) from (1) different meth-
ods exist such as linearizing the equation (1) around some
operating points and using adequate weighting functions. The
most interesting and important way to obtain a TS model
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is the well-known transformation by nonlinear sector [17].
Indeed, this transformation allows to obtain an exact TS
representation of (1). It is proved in [18] that if an output
affected by disturbance (which cannot be avoided in practical
situations) is considered as a decision variable, the obtained
TS system does not represent precisely the model given by
(1) of a nonlinear system. It is also pointed out that if the
output is nonlinear with respect to the state of the system
it is difficult or even impossible to obtain a TS model by
nonlinear sector transformation with the output as a premise
variable. These facts motivate the will to take the state of
the system as premise variable in order to describe a wider
class of nonlinear systems.

The use of TS fuzzy models allows to generalize some
tools developed in the linear domain to the nonlinear systems.
This representation is very interesting in the sense that it
simplifies the stability studies of nonlinear systems and the
design of control laws and observers. In [7], [11], [12], the
stability and stabilization tools are inspired from the study
of linear systems. In [2], [13], the authors worked on the
problem of state estimation and application for diagnosis
of TS fuzzy systems. The proposed approaches in these
last papers are the generalization of the classical observers
(Luenberger Observer and Unknown Input Observer (UIO))
to the nonlinear domain.

B. Problem statement

In the context of fault diagnosis of nonlinear systems by
TS approach, the problem of fault isolation is not possible
with only one model. Indeed, if the actuator fault isolation
problem is considered, constructing a bank of observers in
order to isolate faults is not possible because if the ith

input is used as a premise variable, then all the observers
considering that the ith input, then the state estimation is not
decoupled from this input. The same problem is encountered
when trying to isolate the sensor faults with a TS model
which output is the premise variable. The solution for this
problem which is largely used in the literature is to develop
two different TS models for the same nonlinear system.
The first TS model uses the input of the system as premise
variable in order to isolate sensor faults. In the second one,
dedicated to actuator fault isolation, the output of the system
is the premise variable. To overcome this difficulty, the
proposed solution is to develop only one TS model which
uses the state of the system as premise variable for the
nonlinear system; then the problems of actuator and sensor
fault isolation can be simultaneously solved. In fact, one of
the key points in the diagnosis procedure is the observer
design.

The TS model structure also appears in the framework
of cryptanalysis and chaotic systems. In [8], based on these
models and considering that the output of the system is the
premise variable, a new observer design method is proposed
in order to achieve synchronization. It is pointed out that
using the unknown state as a premise variable will improve
the synchronization process security.

C. Notations and preliminaries

The considered systems are those described by the equa-
tion (2) with weighting functions depending on the state of
the system. In most of the practical situation, the sensor
location does not depend on the operating point. As a
consequence, considering C1 = C2 = ... = C is realistic.
In order to ease the calculus, no direct transfer from u(t)
to y(t) is considered but the case D �= 0 can be dealt with
similarly. The system (2) becomes⎧⎨

⎩ ẋ(t) =
r∑

i=1

μi(x(t))(Aix(t) + Biu(t))

y(t) = Cx(t)
(4)

which can be re-written in the form

ẋ(t) =

r∑
i=1

(
μi(x̂(t)) (Aix(t) + Biu(t))

+ δi(t)(Aix(t) + Biu(t))
)

(5)

where
δi(t) = μi(x(t)) − μi(x̂(t))

Let us define

ΔA(t) =
r∑

i=1

δi(t)Ai

= AΣA(t)EA (6)

ΔB(t) =
r∑

i=1

δi(t)Bi

= BΣB(t)EB (7)

where

A =
[

A1 · · · Ar

]
, EA =

[
In . . . In

]T

ΣA(t) =

⎡
⎢⎣ δ1(t)In · · · 0

...
. . .

...
0 · · · δr(t)In

⎤
⎥⎦

B =
[

B1 · · · Br

]
, EB =

[
Im . . . Im

]T

ΣB(t) =

⎡
⎢⎣ δ1(t)Im · · · 0

...
. . .

...
0 · · · δr(t)Im

⎤
⎥⎦

The convex sum property of the weighting functions
allows to write

−1 ≤ δi(t) ≤ 1

then
ΣT

A(t)ΣA(t) ≤ I

ΣT
B(t)ΣB(t) ≤ I

(8)

The system (5) becomes⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) =
r∑

i=1

μi(x̂(t))
(
(Ai + ΔA(t))x(t)

+ (Bi + ΔB(t))u(t)
)

y(t) = Cx(t)

(9)

Finally, the system (4) with unmeasurable premise variable
is transformed into an equivalent uncertain TS model with
known premise variable (9).
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III. OBSERVER DESIGN

For the uncertain model (9), the following observer is
proposed

˙̂x(t) =
r∑

i=1

μi(x̂(t)) (Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) = Cx̂(t)
(10)

The gains Li must be determined to ensure the asymptotic
convergence of the estimated state x̂ to the actual state of
the system x. In the sequel, for the sake of simplicity, the
time variable t will be omitted.

Let us define the state estimation error

e = x − x̂ (11)

ruled by the following equation

ė =

r∑
i=1

μi(x̂) ((Ai − LiC)e) + ΔAx + ΔBu (12)

Note that the dynamic equation describing the state esti-
mation error depends on the input u(t) and on the state x(t).
Then the problem of designing the observer (10) reduces to
finding the gains Li in order that the system (12) generating
e(t) is stable and that the influence of u(t) on e(t) is
minimized.

Let us define the augmented vector ea = [eT xT ]T , from
which the following augmented system is obtained

ėa =

r∑
i=1

r∑
j=1

μi(x̂)μj(x)
(
Āijea + B̄iju

)
(13)

where

Āij =

[
Φi ΔA

0 Aj

]
, B̄ij =

[
ΔB

Bj

]
,Φi = Ai − LiC

(14)
Theorem 1: The system (12) is stable and the L2 gain of

the transfer from u(t) to the state estimation error is bounded
by γ, if there exists two positive and symmetric matrices P1

and P2, matrices Ki, and positive scalars λ1, λ2 and γ̄ such
that the following LMIs hold ∀ i, j ∈ {1, .., r}
⎡
⎢⎢⎢⎢⎣

Ψi 0 0 P1A P1B
0 Ξj P2Bj 0 0
0 BT

j P2 −γ̄I + λ2E
T
BEB 0 0

AT P1 0 0 −λ1I 0
BT P1 0 0 0 −λ2I

⎤
⎥⎥⎥⎥⎦ < 0

(15)
where

Ψi = AT
i P1 + P1Ai − KiC − CT KT

i + I (16)

Ξj = AT
j P2 + P2Aj + λ1E

T
AEA (17)

The gains of the observer are computed from

Li = P−1
1 Ki (18)

L2-gain from u(t) to e(t) is obtained by

γ =
√

γ̄ (19)

Proof: The proof of the theorem 1 is established by
using the following quadratic Lyapunov function candidate

V = eT
a Pea, P = PT > 0 (20)

Its derivative with regard to time is given by

V̇ = ėT
a Pea + eT

a P ėa (21)

By using the dynamic of the state estimation error (13),
the following is obtained

V̇ =

r∑
i=1

r∑
j=1

μi(x̂)μj(x)(eT
a ĀT

ijPea + eT
a PĀijea

+ uT B̄T
ijPea + eT

a PB̄iju) (22)

The state estimation error is the output of (13) defined by

e(t) = Hea (23)

where
H = [I 0] (24)

The system (12) is stable and the gain L2 of the transfer
from u(t) to e(t) is bounded by γ if the following condition
holds [6]

V̇ + zT z − γ2uT u < 0 (25)

By substituting (22) and (23) in (25), the following in-
equality is obtained

r∑
i=1

r∑
j=1

μi(x̂)μj(x)(eT
a ĀT

ijPea + eT
a PĀijea

+ uT B̄T
ijPea + eT

a PB̄iju + eT
a HT Hea − γ2uT u) < 0

(26)

or equivalently
r∑

i=1

r∑
j=1

μi(x̂)μj(x)

[
ea

u

]T [
Xij PB̄ij

B̄T
ijP −γ2I

] [
ea

u

]
< 0

(27)
where

Xij = ĀT
ijP + PĀij + HT H (28)

According to the convex sum property of the weighting
functions μi, the inequality (27) holds if (29) is satisfied[

ĀT
ijP + PĀij + HT H PB̄ij

B̄T
ijP −γ2I

]
< 0, ∀i, j ∈ {1, .., r}

(29)
Let us consider the following particular form of the matrix

P

P =

[
P1 0
0 P2

]
(30)

By substituting (14), (24) and (30), equation (29) can be
written as⎡
⎣ ΦT

i P1 + P1Φi + I P1ΔA P1ΔB

ΔAT P1 AT
j P2 + P2Aj P2Bj

ΔBT P1 BT
j P2 −γ2I

⎤
⎦ < 0 (31)

Notice that the inequality (31) is time-dependent due to the
terms ΔA(t) and ΔB(t). However, these latter are bounded.
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Firstly let us re-write (31) separating the time-dependent
terms. ⎡

⎣ ΦT
i P1 + P1Φi + I 0 0

0 AT
j P2 + P2Aj P2Bj

0 BT
j P2 −γ2I

⎤
⎦

+

⎡
⎣ 0 P1ΔA P1ΔB

ΔAT P1 0 0
ΔBT P1 0 0

⎤
⎦

︸ ︷︷ ︸
W

< 0 (32)

The time-dependent matrix W is decomposed as follows

W = Q + QT (33)

where

Q =

⎡
⎣ 0 P1ΔA P1ΔB

0 0 0
0 0 0

⎤
⎦

According to the definition of ΔA(t) and ΔB(t) given in
(6) and (7), the matrix Q is written as follows

Q =

⎡
⎣ P1A P1B

0 0
0 0

⎤
⎦ [

0 ΣA(t)EA 0
0 0 ΣB(t)EB

]
(34)

To be able to bound W , let us introduce the following
lemma

Lemma 1: Consider X and Y with appropriate dimen-
sions and Ω a positive definite matrix. the following property
is verified

XT Y + Y T X ≤ XT ΩX + Y T Ω−1Y Ω > 0 (35)
Applying this Lemma to W (33) with Ω defined as follows

Ω =

[
λ1I 0
0 λ2I

]
(36)

we obtain

W ≤ ΘΩ−1ΘT + ΨT ΩΨ (37)

where

Θ =

⎡
⎣ P1A P1B

0 0
0 0

⎤
⎦ (38)

Ψ =

[
0 ΣA(t)EA 0
0 0 ΣB(t)EB

]
(39)

After some computations using the properties of ΣA(t)
(8) and ΣB(t) (8), we obtain

W ≤
⎡
⎣ Y 0 0

0 λ1E
T
AEA 0

0 0 λ2E
T
BEB

⎤
⎦ (40)

where
Y = λ−1

1 P1AAT P1 + λ−1
2 P1BBT P (41)

Substituting W (40) in (32), the following is obtained⎡
⎣ Ξ 0 0

0 Ξj P2Bj

0 BT
j P2 −γ2I + λ2E

T
BEB

⎤
⎦ < 0 (42)

with

Ξ = Φ
T

i P1 + P1Φi + λ
−1

1 P1AAT
P1 + λ

−1

2 P1BB
T
P1 + I (43)

The matrix inequality (42) is not linear with regard to the
variables P1, P2, Li, λ1, λ3 and γ. In order to solve these
matrix inequalities, it is necessary to linearize them to obtain
LMIs. To do this, we will use the Schur complement and
some variable changes: Ki = P1Li and γ̄ = γ2 which allows
to obtain (15).

Then, the convergence conditions of the state estima-
tion error are given in Linear Matrix Inequalities (LMIs)
in the theorem 1.

Remark 1: Form the theorm 1, the L2 gain of the transfer
from u(t) to e(t) is chosen before the computation of LMIs
(15). In order to increase the quality of the state recon-
struction and obtaining an optimal observer, it is possible
to minimize the L2 gain γ of the transfer from u(t) to e(t).
Then, the problem to solve becomes

min
P1,P2,Ki,λ1,λ2

γ̄ s.t. (15)

IV. APPLICATION TO SENSOR FAULT ISOLATION

The proposed observer can be used in order to construct
a scheme for sensor fault detection and isolation (FDI) of
a nonlinear system represented by a TS fuzzy model. The
measured output is defined by ỹ(t):

ỹ(t) = y(t) + f(t) + w(t) (44)

where f(t) represents the sensor fault vector and w(t) a zero-
mean noise vector. Several fault detection methods based on
the state estimation allow the sensor fault detection and iso-
lation (see, for example, [9] and [14] for further details about
these methods). Classic observer schemes (for example,
Dedicated Observer Scheme (DOS) or Generalized Observer
Scheme (GOS)) can be employed in order to generate faults
accentuated signals also called residual signals.

In this paper, the scheme represented in the figure 1.
is used, for a system with two outputs. Each of the two
observers used one of the two outputs; that allows to generate
four residuals.

Observer 2

Observer 1

System

r22(t)

w2(t)w1(t)f2(t)f1(t)

ỹ2(t)

ỹ1(t)

ŷ22(t)

ŷ21(t)

ŷ12(t)

ŷ11(t)

u(t)

r11(t)

r12(t)

r21(t)

Fig. 1. Scheme for sensor fault detection and isolation

A theoretic decision logic is developed to see how the
faults affect the residual signals which are defined as follows

rij(t) = ỹj(t) − ŷij(t) (45)
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where ỹj(t) are the components of ỹ(t) and ŷij are the com-
ponents of the reconstructed outputs with the ith observer.

1 ≤ i ≤ 2, 1 ≤ j ≤ 2

i represents the observer number and j the output number.
The output ỹ1(t) is affected by the fault f1(t) and the outputs

r11(t) r12(t) r21(t) r22(t)
f1(t) ? ? 1 0
f2(t) 0 1 ? ?

TABLE I

DECISION LOGIC

ỹ2(t) is fault free. Consequently, the observer 1 is corrupted
by the fault f1(t) and the residual signals r1j(t) can be
different from zero. However, the fact that the system is
nonlinear, a compensation phenomenons can appear and the
influence of the fault can be masked on the residuals, then,
in the incidence table, “?” is used to say that no decision can
be taken. But, the state reconstruction given by the observer
2 is correct because this observer uses the fault free output
y2(t). Therefore, the residual signals r2j are sensitive to the
fault f1(t) which represented by “1” in the incidence table.
A similar reasoning can be used to detect the fault f2(t).

V. EXAMPLE

A. State estimation

Let us consider the system (4) defined by the following
matrices

A1 =

⎡
⎣ −2 1 1

1 −3 0
2 1 −8

⎤
⎦ , A2 =

⎡
⎣ −3 2 −2

5 −3 0
1 2 −4

⎤
⎦

B1 =

⎡
⎣ 1

0.5
0.5

⎤
⎦ , B2 =

⎡
⎣ 0.5

1
0.25

⎤
⎦ , C =

[
1 1 1
1 0 1

]

The weighting functions are defined by:{
μ1(x) = 1−tanh(x1)

2

μ2(x) = 1 − μ1(x) = 1+tanh(x1)
2

Minimizing the gain γ̄ of the transfer from u(t) to the state
estimation error e(t) subject to the LMIs given in the theorem
1, gives the following results

L1 =

⎡
⎣ −35.66 121.56

57.61 63.59
15.22 −9.55

⎤
⎦ , L2 =

⎡
⎣ −37.01 121.47

56.10 68.80
−0.25 −6.09

⎤
⎦ ,

P1 =

⎡
⎣ 0.05 −0.03 0.07

−0.03 0.4 −0.06
0.07 −0.06 0.3

⎤
⎦ ,

P2 =

⎡
⎣ 3.01 1.11 0.35

1.11 2.34 0.07
0.35 0.07 1.09

⎤
⎦ ,

λ1 = 3.47, λ2 = 0.0028 × 10−5, γ = 0.0894

The state estimation error converges (see figure 1) and the
gain of the transfer from u(t) to e(t) is bounded by γ =
0.0894 since the input u(t) (see fig. 2) is bounded by 1, the
state estimation error is bounded by γ = 0.0894 that may be
considered as acceptable when considering the magnitude of
the state (see fig. 4).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Input u(t) of the system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
e

1
(t)

e
(
t)

e
3
(t)

Fig. 3. State estimation error

B. Sensor fault diagnosis

Let us consider the same system as in the previous
subsection. The sensors are now assumed to be affected by
faults and noise measurements as described by (46). The
faults are given by

f1(t) =

{
1 2 ≤ t ≤ 4
0 elsewhere

f2(t) =

{
1 6 ≤ t ≤ 8
0 elsewhere

The residual signals obtained from the first observer can
only detect the sensor fault f2(t) which affects the second
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Actual and estimated outputs

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

r 11

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

r 12

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

r 21

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

r 22

Fig. 5. Residual signals

output y2(t). And the second observer can only detect the
fault f1(t) affecting the first output y1(t). The simulation
results depicted in the figure 5 show that the first observer
is only sensitive to the fault affecting the second sensor and
the second one is only sensitive to the fault affecting the
first sensor. Then, the diagnosis scheme allows to detect and
isolate the sensor faults according to the table 1.

VI. CONCLUSION

In this paper, a new approach is proposed to design an
observer in order to estimate the state of a nonlinear system
described by TS fuzzy model with unmeasurable premise
variable. The main idea is to introduce the estimated state
in the model and using the convex sum property of the
weighting functions, the system is written in the form of
uncertain TS model with estimated premise variable. The
convergence of the state estimation error is studied using the
Lyapunov theory and the L2 approach and the conditions of
convergence are given in Linear Matrix Inequality (LMIs).
The method is applied successfully to an academic example
in order to estimate the states of the system and to construct

observer bank to detect and isolate sensor faults. The interest
of our approach is the fact that the Lipschitz conditions is
not required to construct the observer; thus the weighting
functions can be more general, which allows to say that this
approach is less restrictive than the approach based on the
Lipschitz condition proposed in [5]. The future works will
concern the study of the conservativeness of the proposed
conditions related to the use of a quadratic Lyapunov func-
tion by using other kinds of Lyapunov functions in the one
hand, and in the diagnosis problem, the amelioration of fault
detection in the presence of disturbances by minimizing the
effects of these last and maximizing the effects of the faults
on the residual signals, in the other hand.
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