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Abstract: This paper deals with the problem of state estimation for nonlinear systems modelled
via multiple models and subject to delayed measurements. In contrast to the most popular
results found in the multiple model literature, we consider heterogeneous multiple models, also
known as decoupled multiple model, which allow to use submodels whose state space dimension
can be different. On the basis of this multiple model a proportional-integral observer (PIO) is
designed in order to cope with the robust state estimation with respect to disturbances. Sufficient
delay-independent conditions for ensuring robust performances (attenuation level) and dynamic
performances (exponential convergence) of the estimation error are provided in terms of LMIs
using the Lyapunov-Krasovskii method. The validity of the proposed methodology is illustrated
by an academic example.
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1. INTRODUCTION

Context. Time-delay or dead time is frequently encoun-
tered in several real-world processes, such as chemical
and thermal processes, electrical and communications net-
works, etc. Indeed, any system has an amount of time,
more or less important, between its expected response
and its actual response. In many industrial applications
time-delays must unavoidably be considered as an inher-
ent part of the system, and consequently, they must be
accounted for in the mathematical model of the system
under investigation [Smith and Corripio, 1985]. Therefore,
considerable attention has been paid in the past decades
to systems with delays and appropriate theoretical tools,
in the frequency and in the time domain, for the analysis,
control and state estimation are well established [Bliman,
2001, Sename, 2001, Richard, 2003]. Among them, the well
known Lyapunov-Krasovskii functional method is largely
adopted for stability analysis of linear or nonlinear delayed
systems. This method provides generally sufficient condi-
tions in a LMI form which can be solved in polynomial-
time using appropriated standard convex optimization al-
gorithms, such as [Boyd et al., 1994, Sturm, 1999].

On the other hand, complex industrial systems generally
present a nonlinear dynamic behaviour in particular if the
whole operating range (global behaviour) is considered
instead of a reduced operating range in the neighbourhood
of an operating point (local behaviour). Hence, nonlinear
models must be used to deal effectively with the global
modelling of these systems. This situation is commonly
encountered in the state estimation problems because all

admissible trajectories of the system must be taken into
consideration.

Tools and proposed method. Nonlinear behaviour of a
system can accurately be represented using the multi-
ple model approach [Murray-Smith and Johansen, 1997,
Boukhris et al., 1999]. Multiple models have been rec-
ognized as a popular and a powerful modelling tool of
complex nonlinear systems. In this approach the operating
space of the nonlinear system under investigation is de-
composed into a number of operating zones, each of them
being characterised by a submodel of reduced dimension.
The interpolation of submodels with the help of weighting
functions, associated to each operating zone, allows the
global representation of the nonlinear system.

At this point, it is important to point out that the interpo-
lation of submodels can be operated using many schemas
[Filev, 1991, Gregorcic and Lightbody, 2008], among these
realisations two schemas can be distinguished: via an
interpolation of parameters (e.g. Takagi-Sugeno multiple
model) or via an interpolation of outputs (e.g. decoupled
multiple model). Many contributions concern the analysis,
the control and the state estimation of Takagi-Sugeno
models (with or without delays) [Murray-Smith and Jo-
hansen, 1997, Babuska, 1998, Tanaka and Wang, 2001,
Lin et al., 2007], much less are devoted to observer design
using decoupled multiple models. In this work, the latter
realisation will be employed for dealing with the problem of
state estimation for nonlinear systems with delayed mea-
surements as an extension of the ideas proposed previously
[Orjuela et al., 2007, 2008].



Let us notice finally that the basis of the multiple model
approach can be easily related to the hybrid system philos-
ophy in which the interaction of a set of submodels changes
according to a dynamic law. However, in the multiple
models smooth transitions between the submodels can
be considered, instead of crisp transitions (switching), for
more flexibility in modelling stage.

Related work. Uppal et al. [2006] have shown a successful
implementation of this structure in order to cope with the
state estimation for fault detection and isolation. How-
ever, only a note of the convergence estimation error is
proposed in this work and neither any analytic proof of
the convergence of the estimation error is given, nor the
time delay is taken into account. On the other hand, the
state estimation in presence of delayed measurements is
investigated in Orjuela et al. [2007]. Sufficient conditions,
under a LMI form, are given for ensuring the state estima-
tion convergence towards zero. However, the robust state
estimation with respect to disturbances (e.g. noise) acting
on the outputs has not been addressed in this work.

We introduce a so-called proportional-integral observer
(PIO) which provides very interesting robustness proper-
ties with respect to perturbations [Beale and Shafai, 1989,
Weinmann, 1991, Busawon and Kabore, 2001]. This ob-
server is characterised by the use of two corrective injection
terms, proportional and integral, instead of the conven-
tional proportional correction frequently employed in the
Luenberger observer and/or in its classical extensions. The
PIO has also been successfully employed in the synchro-
nization of a chaotic system by Hua and Guan [2005].
The extension of the PIO design, based on dissipativity
framework, to a particular nonlinear system whose non
linearity is assumed to satisfy a sector bounded constraint,
has been recently proposed in Jung et al. [2007]. However,
the PIO design for standard delayed linear system and for
delayed multiple models (Takagi-Sugeno and/or decoupled
multiple models) seems poorly investigated in the litera-
ture.

Contribution and paper organisation. In this communica-
tion, the PIO design for decoupled multiple models with
delayed measurements is investigated. The outline of this
paper is as follows. A brief description of the decoupled
multiple model is presented in section 2. The state estima-
tion problem is presented in section 3 and sufficient con-
ditions, on the basis of the Lyapunov-Krasovskii method,
are established in order to ensure the stability of the PIO.
Finally, in section 4, an academic example illustrates the
state estimation of a decoupled multiple model.

Notations: The following standard notations will be used
throughout the paper: P > 0 (P < 0) denotes a positive
(negative) definite matrix P ; XT denotes the transpose of
matrix X; I is the identity matrix of appropriate dimension
and diag{} is a block diagonal matrix of appropriate
dimension. The L2−norm of a signal, quantifying its

energy is denoted and defined by ‖e(t)‖2
2 =

∞
∫

0

eT (t)e(t)dt.

We shall simply write µi(ξ(t)) = µi(t) and x(t − τ(t)) =
x(∇) where τ(t) > 0 is a variable time-delay.

2. DECOUPLED MULTIPLE MODEL

The structure of the decoupled multiple model can be
viewed as a parallel interconnection of several submodels
via a weighted sum of their outputs [Gatzke and Doyle III,
1999]. By considering a state space representation, this
structure takes the following form [Orjuela et al., 2008]:

ẋi(t) = Aixi(t) + Biu(t) + Diw(t) , (1a)

yi(t) = Cixi(t) , (1b)

z(t) =

L
∑

i=1

µi(ξ(t))yi(t) , (1c)

y(t) = z(t − τ(t)) + Ww(t) . (1d)

where xi ∈ R
ni and yi ∈ R

p are respectively the state
vector and the output of the ith submodel; u ∈ R

m is the
multiple model input, z ∈ R

p is the multiple model output
and y ∈ R

p the measured output subject to a variable
time-delay τ(t) and a perturbation w ∈ R

r. The matrices
Ai ∈ R

ni×ni , Bi ∈ R
ni×m, Di ∈ R

ni×r, Ci ∈ R
p×ni and

W ∈ R
p×r are known and constant.

Assumption 1. The perturbation is bounded energy sig-
nal, i.e. ‖w(t)‖2

2 < ∞.

The variable time-delay τ(t) acting on the output is
perfectly modelled by a continuous function that satisfies
the following conditions [Wu et al., 2004]:

{

0 ≤ τ(t) ≤ τmax

τ̇(t) ≤ β < 1
(2)

where τmax and β are constant. This time-delay can be
due for example to the inherent nature of the system, the
sensor reactivity or the transmission data time-delay.

The relative contribution of each submodel to the global
model according to the current operating point of the
system is quantified by the weighting functions µi(ξ(t)).
They are associated to each operating zone and satisfy
the following convex sum properties:

L
∑

i=1

µi(ξ(t)) = 1 and 0 ≤ µi(ξ(t))≤ 1 ,∀i = 1...L, ∀t . (3)

Besides, the current operating point is taken into account
by means of the so-called decision variable ξ(t) which is
a characteristic variable of the system (e.g. inputs and/or
measured variables).

In this multiple model the contribution of each submodel
is taken into account via a weighted sum of the submodel
outputs. Consequently, heterogeneous submodels (i.e. sub-
models of different dimensions) can be considered in the
modelling stage as a supplementary degree of flexibility
and generality. Therefore, this structure is well adapted
for modelling strongly nonlinear systems whose structure
varies with the operating regime, for example when the
complexity of the dynamic behaviour is not uniform in
the operating range [Gregorcic and Lightbody, 2008].

3. STATE ESTIMATION PROBLEM

In a previous work [Orjuela et al., 2007], the state esti-
mation of a decoupled multiple model subject to delayed



measurements has been investigated on the basis of a
proportional observer given by :

˙̂xi(t) = Aix̂i(t) + Biu(t) + Ki(y(t) − ŷ(t)) , (4a)

ẑ(t) =

L
∑

i=1

µi(ξ(t))Cix̂i(t) , (4b)

ŷ(t) = ẑ(t − τ(t)) , (4c)

where Ki ∈ R
ni×p is the gain associated to ith observer.

Sufficient conditions for ensuring the exponential con-
vergence towards zero of the estimation errors ei(t) =
xi(t) − x̂i(t) have been established. Note however that
disturbances acting on the systems are not taken into
consideration. Consequently, the sensitivity problem of the
state estimation with respect to disturbances has not been
previously addressed in this work. On the other hand, the
proportional observer offers only one degree of freedom
Ki for reducing the influence of the noise and providing at
the same time good dynamic performances (two antagonist
design goals).

In this paper, the proportional observer (4) is replaced by
a more general observer, known as proportional-integral
observer (PIO), which provides very interesting robustness
properties with respect to perturbations. In particular,
good trade-off between dynamic and robust performances
of the observer can be obtained with the PIO because two
degrees of freedom are available for the observer design.

3.1 Preliminaries

For the simplicity of manipulations, the decoupled multi-
ple model (1) is rewritten in the following compact form
[Orjuela et al., 2007, 2008]:

ẋ(t) = Ãx(t) + B̃u(t) + D̃w(t) , (5a)

z(t) = C̃(t)x(t) , (5b)

y(t) = z(∇) + Ww(t) , (5c)

where:

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L(t)

]T ∈ R
n, n =

L
∑

i=1

ni , (6a)

Ã = diag {A1 · · · Ai · · · AL} ∈ R
(n×n) , (6b)

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T ∈ R

(n×m) , (6c)

D̃ =
[

D1
T · · · Di

T · · · DL
T
]T ∈ R

(n×r) , (6d)

C̃(t) = [µ1(t)C1 · · · µi(t)Ci · · · µL(t)CL] ∈ R
(p×n) . (6e)

The matrix C̃(t) is time-varying because the weighting
functions are taken into consideration in this matrix.

3.2 PIO structure

In a PIO, the classic used proportional action given by the
gains Ki in (4) is replaced by the use of two correction
actions: proportional and integral. For this purpose, a

supplementary integral variable yI(t) =
t
∫

0

y(η)dη must

be taken into consideration in the PIO architecture. Note
however that this integration can be replaced by a more

general action, for example, by considering the filtered
output signal as follows:

ẏI(t) = NyI(t) + y(t) (7)

where the matrix N is a fading effect coefficient matrix
that regulates the transient response of yI(t) [Jung et al.,
2007].

Let us notice that the equations (5) and (7) can be
gathered as follows:

ẋa(t) =
(

C1Ã C
T

1 + C2N C
T

2

)

xa(t) + C2C̃(∇)C
T

1 xa(∇)

+ C1B̃u(t) +
(

C2W + C1D̃
)

w(t) , (8a)

y(t) = C̃(∇)C
T

1 xa(∇) + Ww(t) , (8b)

yI(t) = C
T

2 xa(t) (8c)

where the augmented vector xa ∈ R
(n+p) and the constant

bloc matrices C1 and C2 of appropriate dimensions are
respectively given by:

xa(t) =

[

x(t)
yI(t)

]

, C1 =

[

I(n×n)

0(p×n)

]

, C2 =

[

0(n×p)

I(p×p)

]

. (9)

The structure of the proposed PIO can be obtained on the
basis of the augmented form (8):

˙̂xa(t) =
(

C1Ã C
T

1 + C2N C
T

2

)

x̂a(t) + C2C̃(∇)C
T

1 x̂a(∇)

+K̃P (y(t) − ŷ(t)) + K̃I(yI(t) − ŷI(t)) + C1B̃u(t) , (10a)

ŷ(t) = C̃(∇)C
T

1 x̂a(∇) , (10b)

ŷI(t) = C
T

2 x̂a(t) . (10c)

where the gains K̃P and K̃I must be designed and the
matrices Ã, B̃ and C̃(t) have been previously defined
in (6). Let us notice that an additional injection term,
given by the filtered (or integral) output estimation error
yI(t) − ŷI(t), is included in the dynamic equation of the
observer. Hence some degrees of freedom are in this way
introduced for observer design. The use of the two gains
K̃P (proportional action) and K̃I (integral action) is at
the origin of the name Proportional-Integral Observer.

3.3 Problem formulation

The dynamics of the estimation error

ea(t) = xa(t) − x̂a(t) (11)

can be easily established by considering the gathered forms
of the decoupled multiple model (8) and the PIO (10):

ėa(t) = Λ1ea(t) + Λ2(∇)ea(∇) + Λ3w(t) , (12)

where

Λ1 = C1Ã C
T

1 + C2N C
T

2 − KIC
T

2 , (13a)

Λ2(∇) =
(

C2 − KP

)

C̃(∇)C
T

1 , (13b)

Λ3 =
(

C2 − KP

)

W + C1D̃ . (13c)

Let us remark, from equations (13a) and (13c), that
the proportional gain KP can be used to modulate the



influence of the disturbances on the estimation error ea(t)
and the observer dynamics can be improved with the help
of the integral gain KI .

Remark 1. Note, from equation (13c), that the distur-
bance w(t) can be totally decoupled (i.e. its influence is

null) if and only if KP W = C2W + C1D̃. Notice that

[

D̃
W

]

= KP W =

[

KP1

I

]

W (14)

and consequently, KP1 = D̃WT (WWT )−1. So, this condi-
tion cannot be easily satisfied in practice because W is not
necessary of complete rank. Besides, the total disturbance
decoupling case reduce inevitably the freedom degrees to
adjust the dynamic performances.

The robust PIO design problem can thus be formulated as
finding the matrices K̃P and K̃I such that the influence
of w(t) on the estimation error (11) is attenuated and the
state estimation error remains globally bounded for any
blend between the submodels. To this end, the following
objective signal ν(t) which only depends on the estimation
error ea(t) is introduced:

ν(t) = Hea(t) , (15)

where H is a matrix of appropriate dimension chosen
by the designer. The weighting matrix H in (15) can be
selected for totally or partially taking into consideration
the transfer from w(t) to ea(t).

Finally, the expected performances of the PIO can be
formulated by the following robust performances:

lim
t→∞

ea(t) = 0 for w(t) = 0 , (16a)

‖ν(t)‖2
2 ≤ γ2‖w(t)‖2

2 for w(t) 6= 0 and ν(0) = 0 , (16b)

where γ is the L2 gain from w(t) to ν(t) to be minimized.
Notice that condition (16a) ensures convergence towards
zero of the estimation error in the perturbation free case.
On the other hand, condition (16b) guarantees attenuation
level on the estimation error with respect to perturbations.
In the following, we will investigate the exponential con-
vergence of the estimation error. Indeed, the exponential
convergence is a strong form of convergence that guar-
antees dynamic performances of the estimation error, in
particular a convergence velocity via a decay rate.

3.4 Computation of the gains K̃P and K̃I

This section focuses on the computation of the PIO gains
K̃P and K̃I . For this purpose, the Lyapunov-Krasovskii
functional method is employed in order to provide delay-
independent sufficient conditions, in LMIs terms [Boyd
et al., 1994], for ensuring the robust performances (16).

Theorem 1. Consider the decoupled multiple model (1)
with time-delay (2) and assumption 1. There exists a
PIO (10) ensuring the objectives (16) if there exists
two symmetric, positive definite matrices P and Q, two
matrices GP and GI and a positive scalar γ solution of
the constrained optimisation problem:

min γ subject to




HT H + ΛT
1 P + PΛ1 + Q Λ̃2,i Λ3

Λ̃T
2,i −(1 − β)e−2ατmaxQ 0

ΛT
3 0 −γI



 < 0

for i = 1 · · ·L where

Λ1 = C1Ã C
T

1 + C2N C
T

2 + αI − GIC
T

2 ,

Λ̃2,i =
(

PC2 − GP

)

C̃i C
T

1 ,

Λ3 =
(

PC2 − GP

)

W + PC1D̃ ,

C̃i = [0 · · · Ci · · · 0] .

for a given decay rate α and for prescribed matrices H
and N . The observer gains are given by KP = P−1GP

and KI = P−1GI ; the L2 gain from w(t) to ν(t) is given
by γ =

√
γ.

Proof. The exponential convergence of the estimation
error (11) is investigated via a Lyapunov-Krasovskii func-
tional proposed by Mondié and Kharitonov [2005]:

V (t) = eT
a (t)Pea(t) +

0
∫

−τ(t)

eT
a (t + θ)e2αθQea(t + θ)dθ

(17)

where P and Q are symmetric, positive definite matrices.
Mondié and Kharitonov [2005] propose this functional
in order to provide sufficient delay-independent condi-
tions for the exponential stability of linear systems with
constant time-delay. We use the same functional but by
considering a time-varying delay. On the other hand, the
Lyapunov-Krasovskii functional (17) can be rewritten as
follows:

V (t) =

[

ea(t)
ea(∇)

]T [

P 0
0 0

] [

ea(t)
ea(∇)

]

(18)

+

0
∫

−τ(t)

eT
a (t + θ)e2αθQea(t + θ)dθ .

On the other hand, the robust state estimation objectives
(16) are guaranteed if there exists a Lyapunov-Krasovskii
functional (17) such that [Boyd et al., 1994]:

V̇ (t) + 2αV (t) < γ2wT (t)w(t) − νT (t)ν(t) (19)

where α is the so-called decay rate for convergence velocity
and γ is the attenuation level from w(t) to ν(t) for robust
estimation. So, inequality (19) must be ensured in order to
provide a solution of the robust state estimation problem.

Let us consider initially the time-derivative of the func-
tional (17) evaluated via Leibniz-Newton formula:

V̇ (t) = ėT
a (t)Pea(t) + eT

a (t)P ėa(t) + eT
a (t)Qea(t)

− (1 − τ̇(t))e−2ατ(t)eT
a (∇)Qea(∇) (20)

− 2α

0
∫

−τ(t)

eT
a (t + θ)e2αθQea(t + θ)dθ

that can be upper bounded, using the a priori knowledge
(2) of the time-delay as follows:



V̇ (t)≤ ėT
a (t)Pea(t) + eT

a (t)P ėa(t) + eT
a (t)Qea(t)

− (1 − β)e−2ατmaxeT
a (∇)Qea(∇) (21)

− 2α

0
∫

−τ(t)

eT
a (t + θ)e2αθQea(t + θ)dθ ,

which becomes finally by considering the dynamics of the
estimation error (12):

V̇ (t) ≤ −2α

0
∫

−τ(t)

eT (t + θ)e2αθQe(t + θ)dθ

+wT (t)ΛT
3 Pea(t) + eT

a (t)PΛ3w(t) (22)

+
[

ea(t)
ea(∇)

]T [

ΛT
1

P+PΛ1+Q PΛ2(∇)

ΛT
2

(∇)P −(1−β)e−2ατmaxQ

] [

ea(t)
ea(∇)

]

.

Hence, the left-hand side of the inequality (19) is ensured
by the following inequality:

V̇ + 2αV ≤
[

ea(t)
ea(∇)
w(t)

]T
{[

2αP 0 PΛ3

0 0 0
ΛT

3
P 0 0

]

(23)

+

[

ΛT
1

P+PΛ1+Q PΛ2(∇) 0

ΛT
2

(∇)P −(1−β)e−2ατmaxQ 0
0 0 0

]}

[

ea(t)
ea(∇)
w(t)

]

.

Now, by considering (23) then the inequality (19) can be
guaranteed if the following inequality holds:

[

ea(t)
ea(∇)
w(t)

]T
{[

ΛT
1

P+PΛ1+Q PΛ2(∇) 0

ΛT
2

(∇)P −(1−β)e−2ατmaxQ 0
0 0 0

]

+

[

2αP+HT H 0 PΛ3

0 0 0
ΛT

3
P 0 −γ2I

]}

[

ea(t)
ea(∇)
w(t)

]

< 0 . (24)

Let us notice that the above inequality is a quadratic form

in [ ea(t) ea(∇) w(t) ]
T
. Consequently, the inequality (19) for

ensuring robust objectives (16) is finally guaranteed if the
following inequality holds:

[

2αP+HT H+ΛT
1

P+PΛ1+Q PΛ2(∇) PΛ3

ΛT
2

(∇)P −(1−β)e−2ατmaxQ 0

ΛT
3

P 0 −γ2I

]

< 0 .

(25)

Note that a time-varying matrix Λ2(∇), given by (13b),
appears in this inequality and its resolution cannot be
computed using standard LMI algorithms.

However, the time-delayed varying matrix C̃(∇) in Λ2(∇)
can be rewritten as a weighted sum of constant matrices
as follows:

C̃(∇) =
L

∑

i=1

µi(∇)C̃i , (26)

where C̃i is a constant block matrix given by:

C̃i = [0 · · · Ci · · · 0] (27)

such that the term Ci is found on the ith block column of
C̃i. By considering (26) then the inequality (25) becomes

L
∑

i=1

µi(∇)

[

2αP+HT H+Λ̃T
1

P+P Λ̃1+Q P Λ̃2,i PΛ3

Λ̃T
2,iP −(1−β)e−2ατmaxQ 0

ΛT
3

P 0 −γ2I

]

< 0.

(28)

where the constant matrices Λ̃2,i are given by:

Λ̃2,i =
(

C2 − KP

)

C̃i C
T

1 . (29)

According to the properties (3) of the weighting functions,
the above matrix inequality (28) can be satisfied by con-
sidering the simultaneous solution of the set of inequalities
expressed for each upper bound of µi(∇). On the other
hand, the linearisation of the matrix inequality (28) can be

achieved by the standard change of variables GP = PK̃P ,
GI = PK̃I and γ2 = γ. Hence, sufficient conditions for
ensuring the robust performances (16) are obtained under
a LMI form which can be solved via classical LMI tools.
The proof of theorem 1 is completed. 2

4. SIMULATION EXAMPLE

Let us consider the state estimation of a decoupled multi-
ple model with L = 2 submodels. The parameters of the
submodels are:

A1 =

[

−2 0.5 0.6

−0.3 −0.9 0

−1.3 0.6 −0.8

]

, A2 =

[

−0.2 −0.6

0.3 −1

]

,

B1 =

[

1 0.2 0.5
]

T

, B2 =

[

−0.5 0.8
]

T

,

D1 =

[

0.1 0.2 −0.3
]

T

, D2 =

[

−0.1 0.1
]

T

,

C1 =

[

1 0.8 0.5

0.2 0.3 −0.5

]

, C2 =

[

0.7 0.3

0.2 −0.5

]

,

W =

[

0.2 −0.3
]

T

.

The time-delay function appearing in the output of the
systems is given by τ(t) = 0.5+0.45 sin(0.5t) with τmax =
0.95. The upper bound of its derivative is β = 0.225. Here,
the decision variable ξ(t) is the input signal u(t) ∈ [0, 1].
The weighting functions are obtained from normalised
Gaussian functions:

µi(ξ(t)) = ωi(ξ(t))/
L

∑

j=1

ωj(ξ(t)) , (30)

ωi(ξ(t)) = exp
(

−(ξ(t) − ci)
2
/σ2

)

, (31)

with σ = 0.4, c1 = 0.3 and c2 = 0.7.

A solution that satisfies the theorem 1, is given by:

K̃P =
[

0.075 0.144 −0.220 −0.074 0.075 0.999 0.002
−0.237 −0.444 0.678 0.225 −0.238 0.002 0.992

]T
,

K̃I =
[

−0.431 0.139 −0.068 −0.054 0.046 2.269 −0.045
−0.141 −0.434 −0.114 −0.022 0.011 0.042 2.252

]T
,

with a decay rate α = 0.2 and an attenuation level γ2 = 0.5
and for H = I and N = −0.3.

In the simulation the disturbance acting on the output is a
normally distributed random signal. The state estimation
error is plotted in figure 1 where ei is the ith component
of the estimation error vector (11). The measured and the
estimated outputs are shown in figure 2. In both cases,
the error around the origin time is due to the differences
between initial conditions of the multiple model and the
observer.
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Figure 1. State estimation error
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5. CONCLUSION

A proportional-integral observer (PIO), on the basis of a
decoupled multiple model, is proposed in this contribution
in order to cope with the state estimation problem of a
nonlinear system in presence of delayed and perturbed
measurements. The decoupled multiple model is an in-
teresting structure for modelling nonlinear systems with
variable structure because the dimensions of the employed
submodels can be different. On the other hand, the PIO
offers more degree of freedom for robust state estimation
with respect to the classic proportional observer previously
proposed. The robust stability problem of the estimation
error is investigated using the Lyapunov-Krasovskii func-
tional method and delay-independent sufficient conditions,
under a LMI form, are established.

Further research will be to investigate the state estimation
by considering distributed delays in the submodel dynamic
equations.
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