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Abstract— This paper addresses both state and unknown Ul reconstruction problem. Consequently, Ul estimatiom-se
input estimation problem of nonlinear systems modelled wit  sjbility with respect to measurements noise is often urthvoi
the help of a particular class of multiple models, known as able. The Proportional-Integral Observer (P1O) constiut
decoupled multiple model. The simultaneous estimation of the . . . .
state and the unknown inputs is achieved using a proportiona an at.tracuve ,WaY to solve the Ul problem without Invqlvmg
integral observer that is well known by its robustness propeies.  the time derivative of the measurements. The PIO is well
The proposed observer allows the use of submodels with known by its robustness properties [7], [8] and it has been
different dimensions and this fact offers potential appli@tions  syccessfully employed in order to cope with the state and
in the multiple model framework. The LMI framework IS yhe ) estimations [9]-[12]. It has been established that, i

used in order to provide sufficient conditions for ensuring th text of t . the PIO b d
exponential convergence of the estimation error and robust#, € context of system supervision, the can be used as

performances with respect to perturbations. robust residual generator [11], [13].
However, most of these works assume that the system has
. INTRODUCTION a linear behaviour whereas in practice many processes have

. . . generally a nonlinear dynamic behaviour. Hence the use of a
The simultaneous estimation of the state and the unknow}, e jinear model for modelling the dynamic behaviour of a
inputs (Ul) of a system is a key problem in many engineeringy syem in the whole operating space can be unsuited because
applications due to the practical and/or economical proble the linearity assumption of the system is only valid in the
arising when measuring signals of a process. A robust stgigjonnourhood of an operating point. On the other hand,
estimation with respect to Ul plays therefore a fundamentgly"pserver design problem for generic nonlinear models is

role in numerous system control and/or supervision strat@icate and actually this problem is not solved in a general
gies. With regard to this last purpose, an Ul can generally Qﬁa

employed in ordgr to mode_lling an actuator failure and/or an Multiple models are an effective tool to accurately repre-
abnormal behaviour of an internal component of the Systegy onjinear dynamic behaviours using a model structure
Clea.rly, the state and the Ul estimations can be employed f btentially usable for extending, in aglegantway, some
providing fault symptoms of the systems in order to mak@egts obtained in the linear control theory to nonlinear

the system more reliable and safe. . systems. In this modelling strategy the complexity of the
Classically, a state estimation of a system subject t0 Wstem is reduced by a decomposition of the operating range

can be obtained by means of the so calletknown input ¢ the system in a finite number of operating zones [14].

observer(UlO). The goal of the UIO is to provide state re-g,qp operating zone is then characterised bsubmodel

construction of the system with some robustness with re¢SPEGien a linear model, and the global model is obtained by

to possible Ul. Design of UIO has been extensively i”"esihterpolating the submodels viaveeighting function

tigated in the literature and design procedures for reduced multiple model can therefore be viewed as an asso-

order UIO [1] and full-order UIO [2] has been proposeduiation of a set of submodels blended by an interpolation
(see [3] for a comprehensive study of Ul observer problemynechanism. As pointed in [15], different multiple models

Recently, in [4] a projection operator approach is used @3 pe obtained using different aggregation structures of
design full and reducer-order UIO. Comparison and relatiofe sybmodels. Basically, two main structures can be dis-
between the proposed observer and other UIO architectur{ﬁguished_ In the first one, the submodels share the same
is als_o shov_vn. Note however that the Ul estimation is nafi e vector Takagi-Sugeno multiple modgin the second
considered in these works. o _ one, the submodels are decoupled and their state vectors are
The asymptotic system state and Ul estimation with anyjtferent decoupled multiple modelOf course, the resulting
desired accuracy is proposed in [5]. In [6] is shown thaf,tiple models obtained by the association of the same set
the Ul reconstruction is very close to the system inversiony sybmodels do not give an equivalent dynamic behaviour.
Hence, derivatives of the measurements must be used in therpe Takagi-Sugeno model has been largely considered
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model, the submodel association is performed in the dynaméee quantified by the weighting functiopg € (t)) that satisfy
equation of the model via a common state vector. Cons#ie following convex sum constraints:
quently, the dimension of the submodels must be identical.
Hence, the use of this multiple model in some black box lei(f(t)) =land O< i(&(t)) <1,Vi=1.L ¥t. (2)
modelling problems can lead to a redundant multiple modei=
because the submodel dimensions must be identical in eacHt should be mentioned that the weighting functions may
operating zone even if a low dimension submodel can take intermediary values over the range 0 to 1. This is
used in a particular zone. due to possible overlapping of operating zones. Therefore
The second multiple model structure can be expected to liee multiple model has a true nonlinear dynamic behaviour
more flexible in the modelling stage because the aggregatiorstead of a piecewise linear behaviour.
of submodels is performed in such a way that the dimension As pointed in the introduction, in this multiple model no
of the submodels may be different. Therefore the dimensidslend between the parameters of the submodels is performed.
of each submodel can be well adapted to each operati@@nsequently, the dimension (i.e. the number of states) of
zone (details are given in section 2). Note that in contrashe submodels can be different and therefore this multiple
to the Takagi-Sugeno form, less attention has been paid imodel form is suitable for a black box modelling of complex
the literature to the decoupled multiple model. Howeversystems with variable structure and/or variable compjdrit
few works in modelling [20], [21], control [22]-[24] and each operating zone. The model parameters can be obtained
state estimation [25], [26] of nonlinear systems have madeom a set of measured input and output data using appro-
a successful implementation of this structure and shown igiate identification methods proposed for instance in ,[20]
relevance. [21], [27].
The main contribution of this paper is the extension of Besides, in this multiple model, the outputgt) of the
the proportional-integral observer design procedure tised submodels are “virtual outputs”, i.e. no physical interpre
the linear theory to the nonlinear systems modelled biation is available. These outputs must be considered as
a decoupled multiple model. Exponential convergence wrtificial modelling signals only used in the goal to provide
obtained in the disturbance free case and in the preserméepresentation of the real system behaviour. Conseguent!
of Ul, J%, performance is assured. the outputsy;(t) cannot be viewed as accessible signals and
The paper is organized as follows. The decoupled multipléaerefore they cannot be employed for driving an observer.
model is presented in section 2. Preliminaries and problem Finally, let us remark that in some particular situations,
statement are presented in section 3. In section 4, tldediscontinuity in the multiple model output appears when
robust.#, observer design is investigated and the gains & submodel that is away of the current operating zone is
the observer are obtained by LMI optimization. Finally, insuddenly taken into consideration for building the muéipl
section 5, a simulation example illustrates the state and wnodel output. Of course, this phenomenon does not appear

estimations of a decoupled multiple model. in a systematic way and it depends on the dynamics of the
submodels and/or on the choice of the decision variable.
Il. ON THE DECOUPLED MULTIPLE MODEL When the input of the system is employed as decision

The multiple model exploits the idea that complex dynamivariable, this undesirable phenomenon can effectively be
behaviours can be accurately represented with the help of avercame by using a filtered value of the decision variable
interpolation of simple submodels. In this modelling frameinstead of its direct value. Usually, a low-pass filter witkitu

work the aggregation of these submodels can be performg@in is employed. The parameters of this filter are obtained
using several ways. The decoupled multiple model is amori§ing a priori knowledge of the system [23] or by considering
them [15]. In this paper, it is slightly modified using a statdhem as unknown parameters in the identification stage [27].

space representation as follows: ) ) ) ) )
Notations: the following notations will be used all along this

Xi(t) = AX()+But)+Din(t)+Viwlt) , (la) paper.P>0 (P < 0) denotes a positive (negative) definite
yi(t) = Cx(t) , (1b) Mmatrix P; XT denotes the transpose of mati | is the

L identity matrix of appropriate dimension adéhg{Ay, ...,An}
yt) = Zui(f(t))yi (t)+En(t)+Wwt) , (1c) stands for a block-diagonal matrix with the matricgson

=

the main diagonal. Thé,—norm of a signal, quantifying

wherex; € R andy; € RP are respectively the state vectorits energy is denoted and defined |||13(t)|\§ = [el(t)e(t)dt.
and the output of the' submodel;u € R™ is the known 0
input, n € RY the unknown inputy € RP the measured output
andw € R" the perturbation. The matrice < RN*N, [1l. PRELIMINARIES AND PROBLEM FORMULATION
Bi € R¥™™, Dj € R"™, Vf € R¥, G € RP®, E € RP*Y ) ot 5 consider the decoupled multiple model (3) in the
andW € RP*" are known and appropriately dimensioned. following compact form:

The so called decision variable sigrét) is assumed to ]
be known and real-time available (e.g. the inputs, the datpu Xt) =
and exogenous signals). The contribution of the submodels yit) =

Finally, we shall simply writeu; (& (t)) = pi(t).

x(t) +Bu(t) +Dn(t) +Vwt) ,  (3a)

A
CHX(t) +En(t) +Ww(t) , (3b)



where: the equations (14) and (17) can be gathered as follows:

A = diag{As---A ALY € 2(t) = AdOZ()+(Va—KaW)w(t) . (19)
B = [B---BT---B]", ()  where
6 = [o Dm0 © MO = S o 20
vV = [VlT"'ViT"'VLT}T , (7) Aa() - I;IJ'() s (20)
Cit) = [mt)Cr--- ()G - u()C] (8) P = Aa—KaEi (21)
L
and
0 = MO F OO €RVn=3n. @ o , - g
= A D K ¢cr Y
~ Aa: 0 0 ,Ka: K ;Cgi: EIT ,Va: 0 . (22)
The reader may have noticed that the ma€ix) can be 1
rewritten as follows: The robust observer design problem can thus be formu-
. L . lated as finding the matrix gai, € R("P*P such that the
Clt) = .Zl“i G , (10) influence ofw(t) on =(t) is attenuated. Now let us consider
. = the following objective signal:
whereC; is a constant block matrix given by: 2(t) = HE (1) (23)

5 —[0--- GC---0] . 11 _ _ _ _
G [ G ] (11) whereH is a prescribed constant matrix and the following
Our objective is to provide a simultaneous estimation of#%, performance constraints:
the state and the Ul of the system (3). To this end, the

following P10 is employed: im2(t)=0 for w(t)=0, (24a)
) = AR)+But)+BAM +Ry(H) —91) ,(12a) 1ZOIZ<VIwd]3  for  wt) #0 andz(0) =0, (24b)
ﬁ(t) = Ky(yt)—yt)) , (12b) wherey is thel, gain fromw(t) to z(t) to be minimised. The
y(t) = é(t))‘((t)+Ef7(t) ) (12¢) matrix H in (23) is used in order to take into consideration

totally or partially the components of the estimation error
The use of an integral action given in the second equation §ft) given by (18). Notice that the condition (24a) will
(12) is at the origin of the designatidtroportional-Integral  pe investigated by imposing the exponential convergence
Observer The use of this integral action allows a reconstrucof the estimation error. The exponential convergence of the

tion of the Ul under the following two assumptions: estimation error is a way to ensure a convergence velocity of
Assumption 1The unknown input signaf (t) is supposed the estimation error via decay rateand to improve dynamic
to be a constant signal. performances of the observer.

Assumption 2:The perturbation is bounded energy signal,
ie. ||w(t)|\§ < o, IV. UNKNOWN INPUT OBSERVER DESIGN

_ o This section deals with theZ, estimation problem, based
Now, let us define the state estimation error by: on the decoupled multiple model (3), using the PIO (12).

It should be noted that, in the multiple model framework,

&) =x(1) =X(1) , (13) an unstable multiple model can be obtained via the interpo-
and its time-derivative by: lation of a set of stable submodels and a stable multiple
L model can be obtained via an interpolation of a set of
et) = ZLM (t)(A—KG)e(t) + (D — KE)g(t) unstable submodels. Hence, independent observer designs f
=1 each submodel cannot guarantee the global convergence of
+  (V—KW)w(t) . (14) the estimation error (19). Indeed, the blending between the

submodel outputs must be taken into consideration in the
observer design.

et)y=n()—-n() , (15) In this section, conditions for ensuring the estimatiomerr
convergence, under constraints (24), are established ih LM
framework [28] using a quadratic Lyapunov function. Our
g(t) =n(t) —KiC(t)e(t) — KiEe(t) —KeWw(t) . (16) main result is summarized in the following theorem:

whereg(t) is the Ul estimation error given by:
and its time-derivative is given by:

Note that the first term of the right-hand side of the above Theorem 1:The PI observer (12) for the decoupled mul-
equation vanishes by considering the assumption 1: tiple model (3), under constraints (24), is obtained if ¢her
g(t) = —KiC(t)e(t) — KiEe(t) — Keww(t) (17) exist; a _symmetric, positive definite_ matfxand a matrix
M minimizing y > 0 under the following LMIs

Finally, by introducing the following augmented vector:
y: by g gaug A+AT+HTH T

Z(t):[eT(t) ST(tﬂTEqu, (18) T 7 < 0, i=1.L (25



where Now, substituting (26) and (33) into (28) yields:

T

i Eﬁ/’*ﬁM‘jN” ~M% T {Q(t>+ [H " oear 32& } W) <0, (36)
- a— 9

which is a quadratic form ig(t). Therefore the negativity of

the above expression is guaranteed by ensuring the negativi

of the expression inside the brackets.

Hence, by using (34) and the definition (20) ,@;( ), the

hegativity of (36) is satisfied by:

for a prescribedr > 0.
The observer gain is given g, = P~M and thel, gain
from w(t) to z(t) is given byy= /7.
Proof: Let us consider the quadratic Lyapunov function:

Vit)=2T(t)PZ(t), P>0 P=P' | (26)

L T . T _
classically, the exponential convergence of the estimatio § g;(t) {(Di szvp m';'\jv)'}'; 2aP  P(Va y2K|aW)
a— Na -

error X(t) when w(t) = 0 is investigated by taking into i=
consideration the following condition: which is also guaranteed according to the convex sum
. roperties of the weighting functions (2) by:
V(t) < —2aV(t) (27) Properies weighting functions (2) by
_ OTP+PD +HTH +20P  P(Va— K W)
where o is the so calleddecay rate Here, the above (Va— KaW)TP V2 <0, (38
condition is replaced by the foIIowing condition:

}<O , (37

fori=1...L.

V(t) < —2aV(t) — 2" (t)z(t) + y"w' (t) : (28) Finally, let us notice that this inequality is not a LMI in

Ka, a andy. However, it becomes a LMI by choosing a
prescrlbecbr and settingVl = PK, andy = y2. Now, standard

convex optimization algorithms can be used to find matrices

e y: T P andM minimising y, for a prescribedx.
/ )+ 2aV(t /z
0

in order to guaranteed robust performances (24). Indeed,
can be noted that the integration of condition (28) yields:

On the other hand, the negativity of condition (38) implies
the negativity of the bloc (1,1), consequently:

+ yz/wT(t)w(t)dt, (29) P(Aa+al — Ko@)+ (Aat+al —Ka%)TP <0, (39)

for i =1...L, which means that exponential convergence of
and by taking into consideration the positivity of the Lya-the estimation error is guaranteed in the free perturbation
punov functionV () > 0 andV(0) = 0, the left-hand side case because the matrb(t) in (19) is Hurwitz for any

of this inequality is positive and implies that: blend between the submodel outputs [26]. Hence, the condi-
2 2 tion (24a) is satisfied undev(t) = 0 and this completes the
2t)[5 < Vw3 (30) " proof. O
hence the attenuation level between the perturbati¢) V. SIMULATION EXAMPLE
and the objective signai(t), given by (24b), is ensured if  cqhgiger the following two submodels of a decoupled
the Condition (28) iS fulﬂ”ed mu|t|p|e mode':
Consequently, conditions verifying (28) must be estab- _
lished in order to satisfy robust performances (24) and A — —00.22 _0(')19 008 Ay — [—0.25 0
exponential convergence of the estimation error. Yl _os —oz| 204 -03] -
The time-derivative of (26) along the trajectories of (18) 5 T T
is given by B1 = [05 04 03] s By = [70.5 07]_ ,
. . . 0.8 05 0.7 09 06
V(t) = ZTOPI()+IT()P() (31) €1=lo4 -07 —042}’ C2=los —04|
i - 01 03 r g
that becor.nes by using (153). ) .- |02 ozl Dy — 706%1 8:2 7
V() = ZT(1) (AL(P+PA() Z(t) 0 —02 : |
+ W (t)(Va— KaW)TPE(1) (32) v, [00 —01 olo}T v,_ [00 —01]"
T 17102 -03 o1| 27102 o0|
+ Z'(H)P(Va— KaW)w(t) . L . :
_ _ _ 01 02 01 0
The above equation can be rewritten in the following com- E=los5 70,3} ) W=17% 0,1}

act form as: . . .
P Here, the objective signa(t) to be attenuated is the state

V) =gt QM)y(t) , (33) estimation error of the submodels, thds= [I(5.5) O(s2)]
in (23). The disturbance and the Ul of the system are

whgz) _ Ag(t)erpA%(t) P(Va— KaW) (34) respectively given by:
(Va — KaW) FT> 0 ’ wit) = [0.4sir‘(401)} M) = {m(t)}
pe) = [T wi)T . (35) ~ losssieon] T [na)]



where n1(t) is a piecewise constant signal for which the
assumption 1 is well checked, ang(t) is voluntarily taken
as a ramp between= 600 andt = 1000, so the assumption -
1 is not fulfilled in this range (see figures 2 and 3). 1
The weighting functions are obtained from normalised
Gaussian functions: -

L L L L
0 50 100 150 200 250

L L L L
[ 50 100 150 200 250

L 1
Hi(E(t) = m(E(t))/lej(E(t)), (40) 83(00/

i= . | | ‘ |
w(ét) = exp(—(f(t),ci)2/02)7 (41) ime (5)

. . Fig. 2. State estimation errors of submodel 1
with the standard deviationoc = 0.5 and the centres g

¢; = 0.25 andcy = 0.75. Here, the decision variabB(t) o
is the filtered input signali(t) of the system: %03)_2;x
E(t) = —0.1&(t)+0.1u(t) , (42) o | | |
and the input signali(t) is a piecewise constant signal with 05
variable amplitudes in the range of variatifin1]. Note that e "
the weighting functions are not null or equal to one (see So.sm
figure 1 (bottom)). Consequently the multiple model output . ‘ ‘ ‘ ‘
is obtained by taking into consideration the contributidn o ° * 2 me s 200 0
both submodels all the time.
On the other hand, the eigenvalues of the submodels are Fig. 3. State estimation errors of submodel 2
given by :
A = [fo,lg —0.80+ 0.78i] , (43) state estimation errors obtained by the proposed observer
A2 = [-03 —025 (44) are plotted in figures 2 and 3 and the provided Ul estimation

in figures 4 and 5. Let us notice that in the simulation the
thus the dynamics of the submodels are different and theitial conditions of the multiple model are not null and the
dynamic behaviour of the multiple model can be expecteqhitial conditions of the observer are null. It can be seemfr
to be nonlinear (figure 1 (top)). A solution to conditions ofthese figures that the state estimation error remains dyobal
bounded and close to zero. It is punctually affected when
the value of the Ul changes abruptly, for example at33,
obviously the assumption 1 is not respected. On the other
hand, the proposed observer yields an excellent Ul estmati
even if the assumption 1 is not truly respected (see figures 4
and 5). Note however that in both case the estimation error
has a good transient response.

actual
- - = estimation

D0 5‘0 1(;0 1\;;0 2(‘)0 250 o ‘l
time (s) 0.1F
'
of i
Fig. 1. Multiple model outputs (top) and weighting functo(bottom) o e 100 ime (§) e 0 250
theorem 1 can be found by using, for example, YALMIP Fig. 4. n.(t) and its estimate

interface [29] coupled to SeDuMi solver [30]. Choosing a
decay ratea = 0.1, conditions of theorem 1 are fulfilled As one can see in this example, the assumption 1 is needed
with: for theoretical proofs but our approach remains effective
T in practical cases where the assumption 1 is not satisfied.
= Sgg :823 :ig; (2)2? igg géj ig‘; Notice that the Ul must be a low frequency signal. The
: : : : Ul reconstruction can be improved by replacing the use of
with a minimal attenuation level given by = 1.29. The only one observer by a bank of dedicate observers. Hence

Ka



actual
- estimation

P PR T I

time (s)

Fig. 5. n2(t) and its estimate

each observer is designed using the same procedure puj

by changing the prescribed matrkt in (23) in order to
obtain different attenuation levels. As clearly seen froese

pictures, the proposed observer provides good dynamic al

robust performances.

VI. CONCLUSION AND FUTURE WORKS

(20]
[11]

[12]

[16]
In the present paper an extension of proportional-integral

observer is presented for estimating the state variablds af-

the unknown inputs of nonlinear systems modelled by a

decoupled multiple model. Thanks to the structure of th
proposed model the number of the states, i.e. the dimensi

of each submodel may be different and consequently some
flexibility in a black box modelling stage can be is provided[19]
Systematic procedure, based on the LMI framework, hasy,
been established in order to design an Ul observer which en-
sures the exponential convergence and robust performa
of the estimation error. The effectiveness of the propos

approach is illustrated via a simulation example.

The suggested observer can be used, as an extension of
classic generalized observer scheme, in the detectionhand

isolation of sensor and actuator failures of complex system

Improvements to the proposed observer, in order to také’
into consideration a more general class of unknown inputs,
provides promising prospects in the future. In particulaf24]
the use of several integral actions by using a Multi-Integra
Observer architecture can be an effective way in order to
apply the proposed procedure to non constant unknowzp]

inputs.
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