
Estimating the state and the unknown inputs of nonlinear systems using
a multiple model approach

Rodolfo Orjuela, Benoît Marx, José Ragot and Didier Maquin

Abstract— This paper addresses both state and unknown
input estimation problem of nonlinear systems modelled with
the help of a particular class of multiple models, known as
decoupled multiple model. The simultaneous estimation of the
state and the unknown inputs is achieved using a proportional-
integral observer that is well known by its robustness properties.
The proposed observer allows the use of submodels with
different dimensions and this fact offers potential applications
in the multiple model framework. The LMI framework is
used in order to provide sufficient conditions for ensuring
exponential convergence of the estimation error and robustH∞
performances with respect to perturbations.

I. I NTRODUCTION

The simultaneous estimation of the state and the unknown
inputs (UI) of a system is a key problem in many engineering
applications due to the practical and/or economical problems
arising when measuring signals of a process. A robust state
estimation with respect to UI plays therefore a fundamental
role in numerous system control and/or supervision strate-
gies. With regard to this last purpose, an UI can generally be
employed in order to modelling an actuator failure and/or an
abnormal behaviour of an internal component of the system.
Clearly, the state and the UI estimations can be employed for
providing fault symptoms of the systems in order to make
the system more reliable and safe.

Classically, a state estimation of a system subject to UI
can be obtained by means of the so calledunknown input
observer(UIO). The goal of the UIO is to provide state re-
construction of the system with some robustness with respect
to possible UI. Design of UIO has been extensively inves-
tigated in the literature and design procedures for reduced-
order UIO [1] and full-order UIO [2] has been proposed
(see [3] for a comprehensive study of UI observer problem).
Recently, in [4] a projection operator approach is used to
design full and reducer-order UIO. Comparison and relation
between the proposed observer and other UIO architectures
is also shown. Note however that the UI estimation is not
considered in these works.

The asymptotic system state and UI estimation with any
desired accuracy is proposed in [5]. In [6] is shown that
the UI reconstruction is very close to the system inversion.
Hence, derivatives of the measurements must be used in the
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UI reconstruction problem. Consequently, UI estimation sen-
sibility with respect to measurements noise is often unavoid-
able. The Proportional-Integral Observer (PIO) constitutes
an attractive way to solve the UI problem without involving
the time derivative of the measurements. The PIO is well
known by its robustness properties [7], [8] and it has been
successfully employed in order to cope with the state and
the UI estimations [9]–[12]. It has been established that, in
the context of system supervision, the PIO can be used as
robust residual generator [11], [13].

However, most of these works assume that the system has
a linear behaviour whereas in practice many processes have
generally a nonlinear dynamic behaviour. Hence the use of a
single linear model for modelling the dynamic behaviour of a
system in the whole operating space can be unsuited because
the linearity assumption of the system is only valid in the
neighbourhood of an operating point. On the other hand,
the observer design problem for generic nonlinear models is
delicate and actually this problem is not solved in a general
way.

Multiple models are an effective tool to accurately repre-
sent nonlinear dynamic behaviours using a model structure
potentially usable for extending, in anelegantway, some
results obtained in the linear control theory to nonlinear
systems. In this modelling strategy the complexity of the
system is reduced by a decomposition of the operating range
of the system in a finite number of operating zones [14].
Each operating zone is then characterised by asubmodel,
often a linear model, and the global model is obtained by
interpolating the submodels via aweighting function.

A multiple model can therefore be viewed as an asso-
ciation of a set of submodels blended by an interpolation
mechanism. As pointed in [15], different multiple models
can be obtained using different aggregation structures of
the submodels. Basically, two main structures can be dis-
tinguished. In the first one, the submodels share the same
state vector (Takagi-Sugeno multiple model); in the second
one, the submodels are decoupled and their state vectors are
different (decoupled multiple model). Of course, the resulting
multiple models obtained by the association of the same set
of submodels do not give an equivalent dynamic behaviour.

The Takagi-Sugeno model has been largely considered
for analysis, modelling, control and state estimation of
nonlinear systems (see among others [14], [16]–[18] and
references therein). Notice that structural similaritiesbetween
the Takagi-Sugeno multiple model and others models, for
example linear parameter varying models (LPV), have been
established in the literature [19]. Notice that in this multiple



model, the submodel association is performed in the dynamic
equation of the model via a common state vector. Conse-
quently, the dimension of the submodels must be identical.
Hence, the use of this multiple model in some black box
modelling problems can lead to a redundant multiple model
because the submodel dimensions must be identical in each
operating zone even if a low dimension submodel can be
used in a particular zone.

The second multiple model structure can be expected to be
more flexible in the modelling stage because the aggregation
of submodels is performed in such a way that the dimension
of the submodels may be different. Therefore the dimension
of each submodel can be well adapted to each operating
zone (details are given in section 2). Note that in contrast
to the Takagi-Sugeno form, less attention has been paid in
the literature to the decoupled multiple model. However,
few works in modelling [20], [21], control [22]–[24] and
state estimation [25], [26] of nonlinear systems have made
a successful implementation of this structure and shown its
relevance.

The main contribution of this paper is the extension of
the proportional-integral observer design procedure usedin
the linear theory to the nonlinear systems modelled by
a decoupled multiple model. Exponential convergence is
obtained in the disturbance free case and in the presence
of UI, H∞ performance is assured.

The paper is organized as follows. The decoupled multiple
model is presented in section 2. Preliminaries and problem
statement are presented in section 3. In section 4, the
robustH∞ observer design is investigated and the gains of
the observer are obtained by LMI optimization. Finally, in
section 5, a simulation example illustrates the state and UI
estimations of a decoupled multiple model.

II. ON THE DECOUPLED MULTIPLE MODEL

The multiple model exploits the idea that complex dynamic
behaviours can be accurately represented with the help of an
interpolation of simple submodels. In this modelling frame-
work the aggregation of these submodels can be performed
using several ways. The decoupled multiple model is among
them [15]. In this paper, it is slightly modified using a state
space representation as follows:

ẋi(t) = Aixi(t)+Biu(t)+Diη(t)+Viw(t) , (1a)

yi(t) = Cixi(t) , (1b)

y(t) =
L

∑
i=1

µi(ξ (t))yi(t)+Eη(t)+Ww(t) , (1c)

wherexi ∈ R
ni andyi ∈ R

p are respectively the state vector
and the output of the ith submodel;u ∈ R

m is the known
input,η ∈R

q the unknown input,y∈R
p the measured output

and w ∈ R
r the perturbation. The matricesAi ∈ R

ni×ni ,
Bi ∈ R

ni×m, Di ∈ R
ni×q, Vi ∈ R

ni×r , Ci ∈ R
p×ni , E ∈ R

p×q

andW ∈ R
p×r are known and appropriately dimensioned.

The so called decision variable signalξ (t) is assumed to
be known and real-time available (e.g. the inputs, the outputs
and exogenous signals). The contribution of the submodels

are quantified by the weighting functionsµi(ξ (t)) that satisfy
the following convex sum constraints:

L

∑
i=1

µi(ξ (t)) = 1 and 0≤ µi(ξ (t)) ≤ 1, ∀i = 1...L, ∀t. (2)

It should be mentioned that the weighting functions may
take intermediary values over the range 0 to 1. This is
due to possible overlapping of operating zones. Therefore
the multiple model has a true nonlinear dynamic behaviour
instead of a piecewise linear behaviour.

As pointed in the introduction, in this multiple model no
blend between the parameters of the submodels is performed.
Consequently, the dimension (i.e. the number of states) of
the submodels can be different and therefore this multiple
model form is suitable for a black box modelling of complex
systems with variable structure and/or variable complexity in
each operating zone. The model parameters can be obtained
from a set of measured input and output data using appro-
priate identification methods proposed for instance in [20],
[21], [27].

Besides, in this multiple model, the outputsyi(t) of the
submodels are “virtual outputs”, i.e. no physical interpre-
tation is available. These outputs must be considered as
artificial modelling signals only used in the goal to provide
a representation of the real system behaviour. Consequently
the outputsyi(t) cannot be viewed as accessible signals and
therefore they cannot be employed for driving an observer.

Finally, let us remark that in some particular situations,
a discontinuity in the multiple model output appears when
a submodel that is away of the current operating zone is
suddenly taken into consideration for building the multiple
model output. Of course, this phenomenon does not appear
in a systematic way and it depends on the dynamics of the
submodels and/or on the choice of the decision variable.
When the input of the system is employed as decision
variable, this undesirable phenomenon can effectively be
overcame by using a filtered value of the decision variable
instead of its direct value. Usually, a low-pass filter with unit
gain is employed. The parameters of this filter are obtained
using a priori knowledge of the system [23] or by considering
them as unknown parameters in the identification stage [27].

Notations: the following notations will be used all along this
paper.P > 0 (P < 0) denotes a positive (negative) definite
matrix P; XT denotes the transpose of matrixX, I is the
identity matrix of appropriate dimension anddiag{A1, ...,An}
stands for a block-diagonal matrix with the matricesAi on
the main diagonal. TheL2−norm of a signal, quantifying

its energy is denoted and defined by‖e(t)‖2
2 =

∞
∫

0
eT(t)e(t)dt.

Finally, we shall simply writeµi(ξ (t)) = µi(t).

III. PRELIMINARIES AND PROBLEM FORMULATION

Let us consider the decoupled multiple model (3) in the
following compact form:

ẋ(t) = Ãx(t)+ B̃u(t)+ D̃η(t)+ Ṽw(t) , (3a)

y(t) = C̃(t)x(t)+Eη(t)+Ww(t) , (3b)



where:

Ã = diag{A1 · · · Ai · · · AL} , (4)

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T

, (5)

D̃ =
[

D1
T · · · Di

T · · · DL
T
]T

, (6)

Ṽ =
[

V1
T · · ·Vi

T · · ·VL
T
]T

, (7)

C̃(t) =
[

µ1(t)C1 · · · µi(t)Ci · · · µL(t)CL
]

, (8)

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T
∈ R

n, n =
L

∑
i=1

ni . (9)

The reader may have noticed that the matrixC̃(t) can be
rewritten as follows:

C̃(t) =
L

∑
i=1

µi(t)C̃i , (10)

whereC̃i is a constant block matrix given by:

C̃i =
[

0 · · · Ci · · · 0
]

. (11)

Our objective is to provide a simultaneous estimation of
the state and the UI of the system (3). To this end, the
following PIO is employed:

˙̂x(t) = Ãx̂(t)+ B̃u(t)+ D̃η̂(t)+ K̃(y(t)− ŷ(t)) , (12a)
˙̂η(t) = K̃1(y(t)− ŷ(t)) , (12b)

ŷ(t) = C̃(t)x̂(t)+Eη̂(t) . (12c)

The use of an integral action given in the second equation of
(12) is at the origin of the designationProportional-Integral
Observer. The use of this integral action allows a reconstruc-
tion of the UI under the following two assumptions:
Assumption 1:The unknown input signalη(t) is supposed
to be a constant signal.
Assumption 2:The perturbation is bounded energy signal,
i.e. ‖w(t)‖2

2 < ∞.

Now, let us define the state estimation error by:

e(t) = x(t)− x̂(t) , (13)

and its time-derivative by:

ė(t) =
L

∑
i=1

µi(t)(Ã− K̃C̃i)e(t)+ (D̃− K̃E)ε(t)

+ (Ṽ − K̃W)w(t) . (14)

whereε(t) is the UI estimation error given by:

ε(t) = η(t)− η̂(t) , (15)

and its time-derivative is given by:

ε̇(t) = η̇(t)− K̃1C̃(t)e(t)− K̃1Eε(t)− K̃1Ww(t) . (16)

Note that the first term of the right-hand side of the above
equation vanishes by considering the assumption 1:

ε̇(t) = −K̃1C̃(t)e(t)− K̃1Eε(t)− K̃1Ww(t) . (17)

Finally, by introducing the following augmented vector:

Σ(t) =
[

eT(t) εT(t)
]T

∈ R
n+q , (18)

the equations (14) and (17) can be gathered as follows:

Σ̇(t) = Ãa(t)Σ(t)+ (Va−KaW)w(t) , (19)

where

Ãa(t) =
L

∑
i=1

µi(t)Φi , (20)

Φi = Aa−KaCi , (21)

and

Aa =

[

Ã D̃
0 0

]

, Ka =

[

K̃
K̃1

]

, Ci =

[

C̃T
i

ET

]T

, Va =

[

Ṽ
0

]

. (22)

The robust observer design problem can thus be formu-
lated as finding the matrix gainKa ∈ R

(n+p)×p such that the
influence ofw(t) on Σ(t) is attenuated. Now let us consider
the following objective signal:

z(t) = HΣ(t) , (23)

whereH is a prescribed constant matrix and the following
H∞ performance constraints:

lim
t→∞

Σ(t) = 0 for w(t) = 0 , (24a)

‖z(t)‖2
2 ≤ γ2‖w(t)‖2

2 for w(t) 6= 0 andz(0) = 0, (24b)

whereγ is theL2 gain fromw(t) to z(t) to be minimised. The
matrix H in (23) is used in order to take into consideration
totally or partially the components of the estimation error
Σ(t) given by (18). Notice that the condition (24a) will
be investigated by imposing the exponential convergence
of the estimation error. The exponential convergence of the
estimation error is a way to ensure a convergence velocity of
the estimation error via adecay rateand to improve dynamic
performances of the observer.

IV. U NKNOWN INPUT OBSERVER DESIGN

This section deals with theH∞ estimation problem, based
on the decoupled multiple model (3), using the PIO (12).

It should be noted that, in the multiple model framework,
an unstable multiple model can be obtained via the interpo-
lation of a set of stable submodels and a stable multiple
model can be obtained via an interpolation of a set of
unstable submodels. Hence, independent observer designs for
each submodel cannot guarantee the global convergence of
the estimation error (19). Indeed, the blending between the
submodel outputs must be taken into consideration in the
observer design.

In this section, conditions for ensuring the estimation error
convergence, under constraints (24), are established in LMI
framework [28] using a quadratic Lyapunov function. Our
main result is summarized in the following theorem:

Theorem 1:The PI observer (12) for the decoupled mul-
tiple model (3), under constraints (24), is obtained if there
exists a symmetric, positive definite matrixP and a matrix
M minimizing γ > 0 under the following LMIs

[

∆i + ∆T
i +HTH Γ
ΓT −γ I

]

< 0, i = 1...L (25)



where

∆i = P(Aa + αI)−MCi ,

Γ = PVa−MW ,

for a prescribedα > 0.
The observer gain is given byKa = P−1M and theL2 gain

from w(t) to z(t) is given byγ =
√

γ.
Proof: Let us consider the quadratic Lyapunov function:

V(t) = ΣT(t)PΣ(t), P > 0 P = PT , (26)

classically, the exponential convergence of the estimation
error Σ(t) when w(t) = 0 is investigated by taking into
consideration the following condition:

V̇(t) < −2αV(t) , (27)

where α is the so calleddecay rate. Here, the above
condition is replaced by the following condition:

V̇(t) < −2αV(t)−zT(t)z(t)+ γ2wT(t)w(t) . (28)

in order to guaranteed robust performances (24). Indeed, it
can be noted that the integration of condition (28) yields:

∞
∫

0

(V̇(t)+2αV(t))dt < −

∞
∫

0

zT(t)z(t)dt

+ γ2

∞
∫

0

wT(t)w(t)dt , (29)

and by taking into consideration the positivity of the Lya-
punov function,V(∞) > 0 andV(0) = 0, the left-hand side
of this inequality is positive and implies that:

‖z(t)‖2
2 < γ2‖w(t)‖2

2 , (30)

hence the attenuation level between the perturbationw(t)
and the objective signalz(t), given by (24b), is ensured if
the condition (28) is fulfilled.

Consequently, conditions verifying (28) must be estab-
lished in order to satisfy robust performances (24) and
exponential convergence of the estimation error.

The time-derivative of (26) along the trajectories of (18)
is given by:

V̇(t) = Σ̇T(t)PΣ(t)+ ΣT(t)PΣ̇(t) , (31)

that becomes by using (19):

V̇(t) = ΣT(t)
(

ÃT
a (t)P+PÃa(t)

)

Σ(t)

+ wT(t)(Va−KaW)TPΣ(t) (32)

+ ΣT(t)P(Va−KaW)w(t) .

The above equation can be rewritten in the following com-
pact form as:

V̇(t) = ψ(t)TΩ(t)ψ(t) , (33)

where
Ω(t) =

[

ÃT
a (t)P+PÃa(t) P(Va−KaW)
(Va−KaW)TP 0

]

, (34)

ψ(t) =
[

ΣT(t) wT(t)
]T

. (35)

Now, substituting (26) and (33) into (28) yields:

ψT(t)

{

Ω(t)+

[

HTH +2αP 0
0 −γ2I

]}

ψ(t) < 0 , (36)

which is a quadratic form inψ(t). Therefore the negativity of
the above expression is guaranteed by ensuring the negativity
of the expression inside the brackets.
Hence, by using (34) and the definition (20) ofÃa(t), the
negativity of (36) is satisfied by:

L

∑
i=1

µi(t)

[

ΦT
i P+PΦi +HT H +2αP P(Va−KaW)

(Va−KaW)TP −γ2I

]

< 0 , (37)

which is also guaranteed according to the convex sum
properties of the weighting functions (2) by:

[

ΦT
i P+PΦi +HTH +2αP P(Va−KaW)

(Va−KaW)TP −γ2I

]

< 0 , (38)

for i = 1...L.
Finally, let us notice that this inequality is not a LMI in

P, Ka, α and γ. However, it becomes a LMI by choosing a
prescribedα and settingM = PKa andγ̄ = γ2. Now, standard
convex optimization algorithms can be used to find matrices
P andM minimising γ̄, for a prescribedα.

On the other hand, the negativity of condition (38) implies
the negativity of the bloc (1,1), consequently:

P(Aa + αI−KaCi)+ (Aa+ αI−KaCi)
TP < 0 , (39)

for i = 1...L, which means that exponential convergence of
the estimation error is guaranteed in the free perturbation
case because the matrix̃Aa(t) in (19) is Hurwitz for any
blend between the submodel outputs [26]. Hence, the condi-
tion (24a) is satisfied underw(t) = 0 and this completes the
proof.

V. SIMULATION EXAMPLE

Consider the following two submodels of a decoupled
multiple model:

A1 =





−0.2 0.1 0
0.2 −0.9 0.8
0 −0.8 −0.7



 , A2 =

[

−0.25 0
−0.4 −0.3

]

,

B1 =
[

0.5 0.4 0.3
]T

, B2 =
[

−0.5 0.7
]T

,

C1 =

[

0.8 0.5 0.7
0.4 −0.7 −0.2

]

, C2 =

[

0.9 0.6
0.5 −0.4

]

,

D1 =





0.1 0.3
0.2 0.4
0 −0.2



 , D2 =

[

0.1 0.3
−0.1 0.5

]

,

V1 =

[

0.0 −0.1 0.0
0.2 −0.3 0.1

]T

, V2 =

[

0.0 −0.1
0.2 0.0

]T

,

E =

[

0.1 0.2
0.5 −0.3

]

, W =

[

0.1 0
0 0.1

]

.

Here, the objective signalz(t) to be attenuated is the state
estimation error of the submodels, thusH = [I(5×5) 0(5×2)]
in (23). The disturbance and the UI of the system are
respectively given by:

w(t) =

[

0.4sin(40t)
0.35sin(60t)

]

, η(t) =

[

η1(t)
η2(t)

]

,



where η1(t) is a piecewise constant signal for which the
assumption 1 is well checked, andη2(t) is voluntarily taken
as a ramp betweent = 600 andt = 1000, so the assumption
1 is not fulfilled in this range (see figures 2 and 3).

The weighting functions are obtained from normalised
Gaussian functions:

µi(ξ (t)) = ωi(ξ (t))/
L

∑
j=1

ω j(ξ (t)) , (40)

ωi(ξ (t)) = exp
(

−(ξ (t)−ci)
2/σ2

)

, (41)

with the standard deviationσ = 0.5 and the centres
c1 = 0.25 andc2 = 0.75. Here, the decision variableξ (t)
is the filtered input signalu(t) of the system:

ξ̇ (t) = −0.1ξ (t)+0.1u(t) , (42)

and the input signalu(t) is a piecewise constant signal with
variable amplitudes in the range of variation[0,1]. Note that
the weighting functions are not null or equal to one (see
figure 1 (bottom)). Consequently the multiple model output
is obtained by taking into consideration the contribution of
both submodels all the time.

On the other hand, the eigenvalues of the submodels are
given by :

λ1 =
[

−0.19 −0.80±0.78i
]

, (43)

λ2 =
[

−0.3 −0.25
]

, (44)

thus the dynamics of the submodels are different and the
dynamic behaviour of the multiple model can be expected
to be nonlinear (figure 1 (top)). A solution to conditions of
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Fig. 1. Multiple model outputs (top) and weighting functions (bottom)

theorem 1 can be found by using, for example, YALMIP
interface [29] coupled to SeDuMi solver [30]. Choosing a
decay rateα = 0.1, conditions of theorem 1 are fulfilled
with:

Ka =

[

2.56 −0.08 −1.82 2.28 3.80 3.18 2.94
0.95 −0.64 −1.29 0.81 1.64 3.34 1.07

]T

with a minimal attenuation level given byγ = 1.29. The
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Fig. 2. State estimation errors of submodel 1
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Fig. 3. State estimation errors of submodel 2

state estimation errors obtained by the proposed observer
are plotted in figures 2 and 3 and the provided UI estimation
in figures 4 and 5. Let us notice that in the simulation the
initial conditions of the multiple model are not null and the
initial conditions of the observer are null. It can be seen from
these figures that the state estimation error remains globally
bounded and close to zero. It is punctually affected when
the value of the UI changes abruptly, for example att = 33,
obviously the assumption 1 is not respected. On the other
hand, the proposed observer yields an excellent UI estimation
even if the assumption 1 is not truly respected (see figures 4
and 5). Note however that in both case the estimation error
has a good transient response.
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Fig. 4. η1(t) and its estimate

As one can see in this example, the assumption 1 is needed
for theoretical proofs but our approach remains effective
in practical cases where the assumption 1 is not satisfied.
Notice that the UI must be a low frequency signal. The
UI reconstruction can be improved by replacing the use of
only one observer by a bank of dedicate observers. Hence
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Fig. 5. η2(t) and its estimate

each observer is designed using the same procedure but
by changing the prescribed matrixH in (23) in order to
obtain different attenuation levels. As clearly seen from these
pictures, the proposed observer provides good dynamic and
robust performances.

VI. CONCLUSION AND FUTURE WORKS

In the present paper an extension of proportional-integral
observer is presented for estimating the state variables and
the unknown inputs of nonlinear systems modelled by a
decoupled multiple model. Thanks to the structure of the
proposed model the number of the states, i.e. the dimension,
of each submodel may be different and consequently some
flexibility in a black box modelling stage can be is provided.
Systematic procedure, based on the LMI framework, has
been established in order to design an UI observer which en-
sures the exponential convergence and robust performances
of the estimation error. The effectiveness of the proposed
approach is illustrated via a simulation example.

The suggested observer can be used, as an extension of the
classic generalized observer scheme, in the detection and the
isolation of sensor and actuator failures of complex systems.
Improvements to the proposed observer, in order to take
into consideration a more general class of unknown inputs,
provides promising prospects in the future. In particular,
the use of several integral actions by using a Multi-Integral
Observer architecture can be an effective way in order to
apply the proposed procedure to non constant unknown
inputs.
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