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Abstract: The multiple model approach is an elegant and a powerful tool for modelling real-world
complex processes. In this modelling framework, a judicious combination of a set of submodels
makes it possible to describe the behaviour of a non-linear system. Two different structures of
multiple models can be distinguished according to whether the submodels share a common state
vector (Takagi-Sugeno multiple model) or not (decoupled multiple model). This latter structure is
an interesting alternative to the popular Takagi-Sugeno multiple model because different orders
of submodels can be considered. The decoupled multiple model is nowadays increasingly used
to perform the identification and the control of non-linear systems. However, to our knowledge,
the state estimation problem of non-linear systems represented by this structure is not thoroughly
investigated. The present paper deals with this worthwhile problem.
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1 Introduction

A mathematical model is frequently necessary in order to

cope with the state estimation problem in many engineering

and science processes. An analytical model, often

non-linear, can be obtained when the nature of the process

is well understood. However, such non-linear models may

be unusable in practice because the direct extension of

conventional linear control tools, for designing a control law

or setting up a diagnosis strategy, is not always possible.

Assuming that the considered process evolves around

an operating point, a linear model can be identified via a

conventional linear identification. Hence, the obtained linear

model can be handled with the classical linear system theory.

However, assuming that the process only evolves in the

neighbourhood of a single operating point can be in practice,

a serious limitation. Consequently, a single linear model is

not able to describe the whole behaviour of the process in the

operating range.

According to the foregoing assumption building a model

both accurate and usable in practice, for a given process,

needs the completion of two opposite objectives. New

modelling techniques have been developed in order to

cope with these difficulties. The multiple model approach,

often related to the operating regime decomposition

(Murray-Smith and Johansen, 1997), is among these

techniques.

The backbone of the multiple model approach is the

decomposition of the operating space of a non-linear system

into a finite number of operating zones. Each operating zone

is characterised by a submodel, often a linear model. The

validity of each submodel is defined via a weighting function

that ranges between zero and one. According to the zone

where the non-linear system evolves, the output of each

submodel is more or less requested in order to describe

the whole behaviour of the non-linear system. Finally, the

approximation of the whole behaviour of the non-linear

system is achieved by a weighted combination (a blend) of

the submodel contributions. (see Leith and Leithead, 2000)

and the references therein for an extensive overview about

different approaches based on this same principle.

It is important to notice that a large class of

non-linear systems can efficiently be approximated by a

multiple model, with a wished accuracy, by increasing the

number of submodels and by a parametric optimisation of

the weighting functions. Therefore, the multiple model can be

considered as an universal approximation tool of non-linear

systems. In other respects, most of the analysis tools available

for linear systems can be partially extended to the analysis

of non-linear systems represented by a multiple model if the

submodels are linear and for particular weighting functions.

These characteristics set the multiple model approach as an

elegant tool with several uses in the fields of identification,

control and diagnosis of a large class of complex systems.

As mentioned above, the output of the multiple model

is carried out by taking judiciously into account the

contribution of each submodel. Two different structures

can be distinguished in order to provide the combination

between the submodels (Filev, 1991). In the first structure,

the submodels share the same state vector (Takagi-Sugeno

multiple model); in the second one, the submodels are

decoupled and their state vectors are different (decoupled

multiple model).

The Takagi-Sugeno multiple model has been largely

popularised in this modelling framework. The state

estimation problem has been widely addressed (Chadli et al.,

2005; Guerra et al., 2006; Rhee and Won, 2006; Tanaka and

Sugeno, 1990; Ting, 2006) in the perspective of designing a

stabilising control law. The classically used state estimator

is an extension of the proportional (Luenberger) observer.

However, some other classes of state estimators have been

proposed, for instance, sliding mode observers (Bergstern

et al., 2002) and unknown input observers (Akhenak

et al., 2004). The state estimation can also be useful for

setting up a diagnosis strategy based on the residual signals

evaluation (Lopez-Toribio et al., 2000; Rodrigues et al.,

2006).

Despite the fact that the decoupled multiple model has

been less investigated than the Takagi-Sugeno multiple

model, this kind of multiple model seems to be an interesting

alternative. Indeed, the major interest of the decoupled

multiple model lies in the fact that the order of each submodel

can be different. Therefore, the identification capacity of this

multiple model is increased and it can be used to perform the

identification (Orjuela et al., 2006; Thiaw et al., 2007; Venkat

et al., 2003) and the control (Gatzke and Doyle III, 1999;

Gawthrop, 1995; Gregorcic and Lightbody, 2000) of highly

non-linear systems. More recently, (Kanev and Verhaegen,

2006) have proposed a method for evaluating the submodel

weights of this kind of multiple model. The previously quoted

works have illustrated a successful implementation of this

structure and have shown its relevance. However, to the best

of the authors’ knowledge, the state estimation problem of

a non-linear system using a decoupled multiple model has

been poorly considered in the literature.

This paper proposes a method for designing an observer

for a non-linear system modelled by a decoupled multiple

model. The outline of this paper is as follows. Section 2

introduces the two multiple model structures, namely the

Takagi-Sugeno multiple model and the decoupled multiple

model. Stability of decoupled multiple model is investigated

in Section 3. In Section 4, the state estimation problem is

considered. Sufficient conditions are given, in Linear Matrix

Inequalities (LMIs) terms, in order to ensure the convergence

of the estimation error. Eigenvalue assignment problem, in

a specific subregion of the complex plane, for the proposed

observer is also discussed in this section. Finally, in Section 5,

the state estimation of a decoupled multiple model and its

application to sensor fault detection and isolation is illustrated

through a simple simulation example.

Notation: The following notations will be used all along this

paper. P > 0 (P < 0) denotes a positive (negative) definite

matrix P ; XT denotes the transpose of matrix X and I is

the identity matrix of appropriate dimension. We shall simply

write µi(ξ(t)) = µi(t).

2 Multiple model structures

The multiple model structures can be divided into two main

categories: Takagi-Sugeno multiple model and decoupled
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multiple model. In the first case, the submodels use a common

state vector; in the second one, the submodels have a different

state vector.

Once the multiple model structure has been chosen, among

the above mentioned structures, a non-linear system can be

identified using available identification tools for estimating

multiple model parameters (see Babuska and Verbruggen,

2003; Gasso et al., 2001; Murray-Smith and Johansen, 1997;

Orjuela et al., 2006; Venkat et al., 2003 for further details

about these techniques).

2.1 Takagi-Sugeno multiple model

The Takagi-Sugeno multiple model, also called multiple

model with a common state, is widely used in the multiple

model analysis and synthesis (Murray-Smith and Johansen,

1997). The structure of this multiple model is defined by

(see Figure 1):

ẋ(t) =

L
∑

i=1

µi(ξ(t))
{

Aix(t) + Biu(t)
}

(1)

y(t) =

L
∑

i=1

µi(ξ(t))Cix(t)

where x ∈ R
n is the common state vector of the submodels,

u ∈ R
m the input, y ∈ R

p the output, Ai ∈ R
n×n, Bi ∈ R

n×m

and Ci ∈ R
p×n are constant matrices.

Figure 1 Takagi-Sugeno multiple model architecture

u(t)

�1(�(t))

�2(�(t))

∏

∏

∏

∏

∏

∏

�

�

∫
x(t) x(t)

y(t)

A1x(t) + B1u(t)

A2x(t) + B2u(t)

�L(�(t))

�1(�(t))

C1x(t)

C2x(t)

CLx(t)

�2(�(t))

�L(�(t))

ALx(t) + BLu(t)

Moreover, the µi(ξ(t)) are the weighting functions that

ensure smooth transitions between the submodels. They have

the following properties:

L
∑

i=1

µi(ξ(t)) = 1, ∀t (2a)

0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1...L, ∀t (2b)

where ξ(t) is the decision variable that depends on the

measurable signals, for example, the input and/or the output

of the system.

In this multiple model framework, the relative contribution

of each submodel is taken into account thanks to a weighted

sum of submodel parameters. Indeed, this multiple model can

be regarded as a system whose parameters vary with time as

follows:

ẋ(t) = Ã(t)x(t) + B̃(t)u(t) (3)

y(t) = C̃(t)x(t)

where

Ã(t) =

L
∑

i=1

µi(ξ(t))Ai, B̃(t) =

L
∑

i=1

µi(ξ(t))Bi,

C̃(t) =

L
∑

i=1

µi(ξ(t))Ci

The above structure is frequently found in several modelling

approaches: piecewise linear model (Sontag, 1981), radial

basis functions networks (Fritzke, 1997), fuzzy models

(Tanaka and Sugeno, 1990), Linear Parameter Varying

(LPV) models (Shamma and Athans, 1991), etc. Differences

between these approaches are due to the choice and the

interpretation of the weighting functions on the one hand and

to the structure of the submodel employed on the other hand.

However, despite different names, these approaches have a

similar mathematical basis.

2.2 Decoupled multiple model

Filev (1991) proposes another multiple model structure

based on a parallel interconnection of the submodels (see

Figure 2). Here, this structure is slightly modified using a

state representation as follows:

ẋi(t) = Aixi(t) + Biu(t)

yi(t) = Cixi(t) (4)

y(t) =

L
∑

i=1

µi(ξ(t))yi(t)

where xi ∈ R
ni and yi ∈ R

p are the state vector and the

output vector of the ith submodel respectively and where u,

y, ξ , Ai ∈ R
ni×ni , Bi ∈ R

ni×m and Ci ∈ R
p×ni have been

defined in the previous section.

Here, the contribution of each submodel is taken into

account via a weighted sum of the submodel outputs

(blending in the static equation). Indeed, as seen from

Figure 2, this multiple model is built by a parallel

interconnection ofWiener model (i.e. a linear model followed

by a non-linear function). Therefore, each submodel evolves

independently in its own state space depending on the input

control and its initial state.

Thanks to this fact, the dynamics of the submodels

are completely decoupled and consequently the dimension of

the state vectorxi of each submodel can be different (of course

the output vectors dimensions must be identical). Therefore,

this structure is well adapted for modelling strongly

non-linear systems whose structure varies with the operating

regime, for example when the complexity of the dynamic

behaviour is not uniform in the operating range.

It should be noted that the fundamental difference between

the decoupled multiple model schema and the popular

schema employed in a gain scheduling strategy lies in the
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fact that in the latter case only one model is used at the same

time (switching). Consequently, a crisp transition between

submodels appears, unlike the proposed schema where a

smooth transition between the submodels may be ensured

via the weighting functions.

Figure 2 Decoupled multiple model architecture
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3 Stability of multiple models

In this section, a basic sufficient condition for ensuring the

stability of the Takagi-Sugeno multiple model is reminded

and the stability of the decoupled multiple model is

investigated.

3.1 Takagi-Sugeno multiple model

The stability of the Takagi-Sugeno multiple model (3) is

established with the help of the Lyapunov direct method

(Tanaka and Sugeno, 1990). The asymptotic stability is

guaranteed if there exists a matrix P symmetric, positive

definite such that:

AT
i P + PAi < 0, i = 1, 2, ..., L (5)

The above condition is only a sufficient condition. It is

interesting to note that the stability of the Takagi-Sugeno

multiple model is not guaranteed by the individual stability

of each submodel. Indeed, the stability of this multiple model

depends on the existence of a common positive definite matrix

P for all submodels.

3.2 Decoupled multiple model

By using an augmented state vector, Equation (4) may be

rewritten in the following compact form:

ẋ(t) = Ãx(t) + B̃u(t)

y(t) = C̃(t)x(t) (6)

where

Ã =

















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL

















, B̃ =

















B1

...

Bi

...

BL

















C̃(t) =
[

µ1(t)C1 · · · µi(t)Ci · · · µL(t)CL

]

x(t) =
[

xT
1 (t) · · · xT

i (t) · · · xT
L (t)

]T
∈ R

n, n =

L
∑

i=1

ni

Theorem 1: The decoupled multiple model (4) is stable if and

only if all of the eigenvalues of the matrix Ã lie in the open

left half-plane, that is, if and only if all of the submodels are

stable; in other words, if there exists Pi = P T
i > 0 such that:

AT
i Pi + PiAi < 0, i = 1, 2, ..., L (7)

Proof: The stability of the decoupled multiple model can

be easily established by investigating the eigenvalues of the

constant matrix Ã. The matrix Ã is a block diagonal matrix;

therefore the eigenvalues of this matrix are in the open

left-half complex plane if and only if all eigenvalues of all

matrices Ai are also in the left-half complex plane.

Let us notice that the Theorem 2 provides a necessary and

sufficient condition.

To sum up, the stability of the decoupled multiple model

is equivalent to the stability of all the submodels, in contrast

to the stability of the Takagi-Sugeno multiple model that

depends on the solution of a set of LMIs (Boyd et al., 1994).

4 State estimation

In this section, the state estimation problem of a

non-linear system modelled by a decoupled multiple model

is considered.

It should be reminded that, in the proposed schema, the

output of the system is approximated by a weighted sum of

the submodel outputs. Therefore, the observer design for each

submodel cannot be accomplished with conventional tools.

Indeed, in our approach, it is necessary to take into account

the blend between the submodel outputs in order to guarantee

the convergence of the estimation error for any blend.

Consequently, the Lyapunov second method is employed

in order to establish sufficient conditions, in terms of a set of

LMIs, for ensuring the estimation error convergence.

4.1 Observer structure

The state estimation is achieved with the help of the following

proportional gain observer:

˙̂xi(t) = Ai x̂i(t) + Biu(t) + Ki(y(t) − ŷ(t))

ŷi(t) = Ci x̂i(t) (8)

ŷ(t) =

L
∑

i=1

µi(ξ(t))ŷi(t)

where x̂i ∈ R
ni is the state estimation vector of the ith

submodel, y ∈ R
p the output of the multiple model, ŷ ∈ R

p

the estimated output and Ki ∈ R
ni×p the gain of the ith

observer to be determined. It is assumed in the sequel that

the decision variable ξ(t) is measurable.

The observer Equations (8) can also be written using the

partitioned matrices already defined by Equation (6):

˙̂x(t) = Ãx̂(t) + B̃u(t) + K̃(y(t) − ŷ(t))

ŷ(t) = C̃(t)x̂(t)
(9)

where the blocks of the partitioned matrix K̃ are the gain

matrices Ki of each observer:

K̃ =
[

KT
1 · · · KT

i · · · KT
L

]T
∈ R

n×p (10)
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The design of the observer consists in finding a matrix K̃

ensuring that the estimation error given by:

e(t) = x(t) − x̂(t) (11)

tends to zero for any combination between the submodel

outputs and for any initial conditions.

From Equation (11) and by using Equations (6) and (9),

the time derivative of the estimation error is given by:

ė(t) = Aobs(t)e(t) (12)

where

Aobs(t) = Ã − K̃C̃(t) (13)

The solution of the differential Equation (12) gives the

evolution of the estimation error. However, the analytical

solution of this differential equation is not easily established

due to the time-varying matrix Aobs(t). The Lyapunov second

method is employed in order to cope with this difficulty.

This method allows us to analyse the estimation error of the

observer without the explicit integration of the differential

Equation (12).

4.2 Convergence of the estimation error

The exponential convergence of the estimation error (α-

stability of the observer) is a way to ensure a convergence

velocity of the estimation error via a decay rate and

to improve dynamic performances of the observer. The

following theorem provides sufficient conditions for ensuring

the exponential convergence of the estimation error.

Theorem 2: Consider the decoupled multiple model (6)

and the observer (9). The exponential convergence of the

estimation error is guaranteed if there exists a symmetric

and positive definite matrix P , a matrix G and a positive

scalar α such that:

(Ã + αI)T P + P(Ã + αI) − (GC̃i)
T − GC̃i < 0

for i = 1...L, where C̃i = [ 0 ··· Ci ··· 0 ].

The observer gain is given by K̃ = P −1G.

Proof: The proof of this theorem is performed by using the

following quadratic Lyapunov function:

V (t) = eT (t)P e(t), P > 0 P = P T (14)

The exponential convergence of the estimation error is

guaranteed if:

∃P = P T > 0, α > 0 : V̇ (t) + 2αV (t) < 0 (15)

where α is called the decay rate. Indeed, the solution of the

Equation (15) is given by:

V̇ (t) ≤ V (0) exp(−2αt), ∀t ≥ 0 (16)

Due toλmin(P ) ‖e(t)‖2 ≤ V (t) ≤ λmax(P ) ‖e(t)‖2, the norm

of the estimation error can be bounded by:

‖e(t)‖ ≤

√

λmax(P )

λmin(P )
exp(−αt) ‖e(0)‖ , ∀t ≥ 0 (17)

The derivative of (14) with respect to time yields:

V̇ (t) = ėT (t)P e(t) + eT (t)P ė(t) (18)

that becomes by employing (Gatzke and Doyle, 1999):

V̇ (t) = eT (t)
{

AT
obs(t)P + PAobs(t)

}

e(t) (19)

Using (14) and (19), the inequality (15) becomes:

eT (t)
{

AT
obs(t)P + PAobs(t) + 2αP

}

e(t) < 0 (20)

that is a quadratic form in e(t). Therefore, the above

inequality is satisfied if the following inequality holds:

AT
obs(t)P + PAobs(t) + 2αP < 0 (21)

that is a sufficient condition for ensuring the exponential

convergence of the estimation error.

Thanks to the weighting functions property 2(a), it should

be noted that the matrix Aobs(t) can be rewritten as follows:

Aobs(t) =

L
∑

i=1

µi(t)φi (22)

φi = Ã − K̃C̃i (23)

where the constant bloc matrix C̃i is given by:

C̃i =
[

0 · · · Ci · · · 0
]

(24)

Hence, using the previous definition of matrix Aobs(t), the

inequality (21) becomes:

L
∑

i=1

µi(t)φ
T
i P + P

L
∑

i=1

µi(t)φi + 2αP < 0 (25)

Considering the weighting functions property 2(a), the

inequality (25) is also equivalent to:

L
∑

i=1

µi(t)φ
T
i P + P

L
∑

i=1

µi(t)φi +

L
∑

i=1

µi(t)2αP < 0 (26)

The inequality (26) holds if the following inequalities are

satisfied:

φT
i P + Pφi + 2αP < 0, i = 1, ..., L (27)

or equivalently by substituting φi by its definition (23):

ÃT P + P Ã − (K̃C̃i)
T P − PK̃C̃i

+2αP < 0, i = 1, ..., L (28)

Let us notice that the above inequalities are bilinear in K̃

and P . Therefore, it is not possible to solve them directly

using standard convex optimisation algorithms. However, the

following change of variable:

G = PK̃

can be useful in order to linearise (28). Finally, the matrix

inequalities (28) become:

ÃT P +P Ã−(GC̃i)
T −GC̃i +2αP <0, i =1, ..., L (29)

that are linear inequalities in P and G. Now, a solution can

be found using classical LMI tools. The proof of Theorem 2

is completed by factoring the terms in P .

Remark 1: Exponential convergence error is a strong form of

convergence; it implies asymptotic convergence. Indeed, the

asymptotic convergence of the estimation error is obtained by

considering a decay rate equal to zero (α = 0) in Theorem 2.
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4.3 Eigenvalues assignment

Dynamic performances of the estimation error (e.g.

convergence velocity, damping, etc.) can be enforced by

assigning the eigenvalues of the matrix Aobs(t) in a specific

region of the complex plane.

Let us notice that the exponential convergence of the

estimation error is carried out by assigning the eigenvalues

of the matrix Aobs(t) in the shifted left-half plane. Hence,

the convergence velocity of the estimation error is enforced.

However, in this approach, only the real parts of the

eigenvalues of the matrix Aobs(t) are assigned (the real parts

of eigenvalues of Aobs(t) are lower than −α). Consequently,

dynamics with strong oscillations can appear because the

imaginary part of the eigenvalues is unbounded.

In order to avoid this phenomenon, the eigenvalues of

the matrix Aobs(t) can be assigned in a particular region

S of the complex plane. Chilali and Gahinet (1996) have

proposed a general characterisation for eigenvalues clustering

in subregions of the complex plan in terms of LMIs.

The region S defined by the intersection of a disk (centred

at the origin, with radius r) and the shifted left-half plane

(i.e. S(α, r) = {z ∈ C, |z| < r, ℜe(z) < − α}) can be

used in order to guarantee a good convergence velocity and a

good damping of the estimation error. The following theorem

ensures that the eigenvalues of the matrix Aobs(t) lie in the

proposed region S(α, r) .

Theorem 3: Consider the decoupled multiple model (6) and

the observer (9). The eigenvalues of the matrix Aobs(t) are

assigned inside the prescribed region S(α, r) if there exists

a symmetric and positive definite matrix P and a matrix G

such that:

[

−rPP Ã − GC̃i

ÃT P − (GC̃i)
T − rP

]

< 0

(Ã + αI)T P + P(Ã + αI) − (GC̃i)
T − GC̃i < 0

for i = 1...L. The observer gain is given by K̃ = P −1G.

Proof: The proof of this theorem is performed by using the

notion of D-stability of a matrix introduced by Chilali and

Gahinet (1996). A matrix A is called D-stable if and only if

its eigenvalues are inside a region D in the complex plan.

For example, the matrix A is D-stable in the region defined

by a disk (centred at the origin, with radius r) if the following

LMI is satisfied:

[

−rP PA

AT P −rP

]

< 0, P = P T > 0 (30)

Hence, the first inequality of the Theorem 3, that ensures

the D-stability in the disk, is obtained by substituting matrix

A by Aobs(t) in (30), by using the weighting functions

properties (2) and finally, by employing the following change

of variables G = PK̃ .

The second inequality of the Theorem 3, that ensures the

D-stability in the shifted left-half plane, is given directly

by the Theorem 2. Finally, the intersection of these two

regions is obtained by finding a common solution to these

two inequalities.

5 Simulation example

A simple simulation example is presented in this section in

order to illustrate the state estimation of a multiple model and

its application to sensor fault detection.

5.1 State estimation of the multiple model

Consider the non-linear system represented by a multiple

model with L = 2 submodels and where the matrices Ai ,

Bi and Ci are given by:

A1 =





−2 1 0.8

0.6 −3 0

0.5 1 −2



 , A2 =









−3 1 2 1.5

2 −1 −5 −2

0.5 3 1 −1

−3 2.5 1 −0.5









B1 =
[

1 0.2 0.5
]

, B2 =
[

0.5 1 0.25 0.75
]

C1 =





0.2 0.8 0

0 1 0.5

0.2 0 0.7



 , C2 =





0.2 0 0.9 1

1 0.6 1 0

0 0.2 0 0.7





The input u(t) is a filtered sequence of piecewise constant

signals with variable amplitude ∈ [0, 1]. The weighting

functions are obtained from normalised Gaussian functions:

µi(ξ(t)) =
ωi(ξ(t))

∑L
j=1 ωj (ξ(t))

, i = 1...L (31)

ωi(ξ(t)) = exp

(

− (ξ(t) − ci)
2

σ 2

)

(32)

with the standard deviation σ = 0.4 and the centres c1 = 0.3

and c2 = 0.7. The decision variable ξ(t) of the weighting

functions is the input signal u(t).

The evolution of the input signal u(t) and the weighting

function µ1(t) are shown in Figure 3. As it is clearly shown,

the two submodels are requested at any time in order to

generate the output of the multiple model. Indeed, the

weighting function µ1(t) is never null or equal to one.

Eigenvalues of the matrix Ã are in the left-half complex

plane:

λ =





















−1.03

−3.23

−2.73

−1.16 + 4.09i

−1.16 − 4.09i

−0.58 + 1.33i

−0.58 − 1.33i





















(33)

therefore, the multiple model is stable.

A solution of LMIs, in order to obtain the observer gain,

can be performed thanks to dedicated numerical toolbox

(included in scientific softwares such as Matlab and Scilab).

Here, we have used the TKLMITOOL toolbox, developed by

El Ghaoui et al. (1997), to solve the LMIs problems.
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Figure 3 Input u(t) and weighting function µ1(t)
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A solution of the theorem 3 is given by:

K̃ =





















−0.4948 0.6717 0.3961

−0.2948 0.0926 0.5942

0.6912 −0.8356 0.6917

0.4237 −0.4415 1.3269

0.4239 −2.8102 1.4686

−0.5212 1.6465 −0.0572

1.1962 −4.2020 3.2268





















with a decay rate α = 0.55 and a radius r = 4.3.

Figures 4 and 5 show the evolution of the estimation

error, where the initial state of the multiple model is

equal to:

x(0) =
[

1 0.8 0 0.2 0.7 1 0.3
]T

Figure 4 Estimation error of the submodel 1
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The proposed observer yields a good state estimation of the

multiple model. The difference between the initial condition

of the multiple model and the multiple observer only provides

an error around the time origin.

A noise (normally distributed with zero mean and an

unitary variance) is added on the measured output y(t) in

order to illustrate the robustness of the proposed observer. As

seen from Figure 6, the proposed observer provides a good

output estimation even if the used measured signal presents

a sensor noise.

Figure 5 Estimation error of the submodel 2
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Figure 6 Measured noisy outputs (solid line) and estimated

outputs (dashed line)
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5.2 Sensor fault detection

The proposed observer can be useful with the view of doing

a sensor fault detection of a non-linear system represented by

a multiple model.

The ‘measured’ output ỹ(t) is given by:

ỹ(t) = y(t) + δ(t) + ǫ(t) (34)

where δ(t) is the fault vector and ǫ(t) the noise (here,

normally distributed with zero mean and an unitary variance).

Several fault detection methods based on the state

estimation allow the sensor fault detection and isolation

(see, e.g. Frank, 1990; Isermann, 2005, for further

details about these methods). Classic observer schemes (e.g.

Dedicated Observer Scheme (DOS) or Generalised Observer

Scheme (GOS)) can be employed in order to generate faults

accentuated signals also called residual signals.

Assuming that the considered system is undisturbed, a

DOS can be employed. In this scheme several observers for a

single output are used. The ith observer is only driven by the

ith output (observer 1 is driven by ỹ1, observer 2 by ỹ2 and

so on). A bank of observers is employed in order to generate

the residual signals ri,j sensitive to sensor faults δ(t). The

residual signal ri,j is performed as the difference between

the ith measured output of the system and the ith estimated

output obtained with the observer j . It allows, coupled with

a decision logic, the detection of sensor faults.
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An incidence matrix (Table 1) is built in order to analyse

how the residual signals ri,j are affected by a fault δi . In this

matrix, a ‘1’ element indicates that the residual signal ri,j

is sensitive to the fault δi while a ‘0’ element indicates that

the residual signal ri,j does not respond to the fault δi . A ‘?’

element indicates that no decision can be taken.

Table 1 Incidence matrix

δ1 δ2 δ3

r1,1 ? 0 0

r2,1 ? 1 0

r3,1 ? 0 1

r1,2 1 ? 0

r2,2 0 ? 0

r3,2 0 ? 1

r1,3 1 0 ?

r2,3 0 1 ?

r3,3 0 0 ?

The first column of the above incidence matrix is built by

considering the following scenario:

1 The output ỹ1 is corrupted by a sensor fault δ1 but the

outputs ỹ2 and ỹ3 are free of fault. Hence, the state

estimation performed by the observer 1 is corrupted

and the residual signal ri,1 can be different from zero.

However, compensation phenomenons can appear

(due to non-linearity of the observer) and consequently

faults can be masked (the value of residual signals ri,1

may be null).

2 On the other hand, the state estimation performed by

the observers 2 and 3 is correctly performed because

these observers are driven by the outputs free of

faults. Therefore, the residual signals r1,2 and r1,3 are

undoubtedly sensitive to a fault δ1 whereas r2,2, r3,2,

r2,3 and r3,3 are not sensitive to this same fault. Hence,

it is this configuration that must be exploited in order

to conclude about the presence of a fault on the

output ỹ1.

The second and third columns of the incidence matrix can be

built in a similar way.

For the considered example, a fault on the output y1(t)

occurs between t = 3 and t = 4.5 and another fault on the

output y2(t) appears between t = 7.5 and t = 9. In both

cases the faults are biases of constant amplitude equal to one.

Sensor faults are effectively detected using the residual

signals (see Figure 7) generated by the bank of observers

and the incidence matrix (Table 1). In this simple example,

the proposed observer allows the detection and isolation of

sensor faults of a decoupled multiple model.

6 Conclusion and perspectives

A new observer, based on a decoupled multiple model, has

been used in order to achieve the state estimation of a non-

linear system. This observer is an attractive alternative to

the well known observer based on a Takagi-Sugeno multiple

model. Indeed, in the proposed architecture the submodels

do not share a common state vector and consequently the

dimension of the submodels can be different.

Figure 7 Residual signals
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The proposed state estimation has been performed via an

extension of the classic proportional gain observer. Sufficient

conditions for ensuring the convergence of the estimation

error have been established in LMIs terms. Dynamic

performances of the proposed observer have been enforced

thanks to an eigenvalues assignment of the observer in a

specific region of the complex plane.

A simulation example allowed to illustrate the state

estimation of a multiple model on the one hand and the sensor

fault detection and localisation using a bank of observers

on the other hand. Encouraging results are obtained in this

direction.

Further studies should be held to extend the proposed

approach to the design of other types of observers such as

proportional integral observer or unknown input observer,

in order to take into account possible uncertainties of the

multiple model. In order to reduce the conservatism of

the proposed solution, other Lyapunov functions, such as

piecewise Lyapunov functions, could also be considered.
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