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Abstract: A particular class of multiple model, known as decoupled multiple model, is used in
order to cope with the state estimation problem of nonlinear systems. This attractive kind
of multiple model is characterized by submodels of which the state belong to the spaces
of various dimensions, in contrast to the popular Takagi-Sugeno multiple model where the
dimension of the state space of the submodels is identical. Thus the decoupled multiple model
is suitable for modelling complex systems with variable structure in the operating range and
this fact offers promising prospects in the modelling, control and diagnosis of complex non
linear systems. An original procedure for designing a Proportional observer and a Proportional-
Integral observer ensuring H∞ performances is proposed. Sufficient conditions for ensuring the
estimation error convergence are derived employing the LMI framework. Comparison between
the state estimation provided by both observers is given via a simulation example.
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1. INTRODUCTION

The state estimation of nonlinear systems has received
much attention since many years. However, despite the
growing efforts made in this domain this problem remains
nowadays unsolved in a general way.

The idea in order to cope with the state estimation
of nonlinear systems basically consists in extending the
design of the popular Luenberger (Proportional) observer,
used in the linear system framework, to the nonlinear
systems. However, the direct transition from linear systems
to nonlinear ones remains delicate. Hence, new modelling
techniques have been proposed in order to make “easier”
and “elegant” this transition. One among them is the
multiple model approach.

A multiple model can be viewed as a set of submodels,
often linear models, combined between them thanks to an
interpolation mechanism. In this modelling strategy, each
submodel captures the dynamic behaviour of the nonlinear
system in a particular operating zone and the interpola-
tion mechanism, employed for taking into consideration
the contribution of each submodel, is a set of weighting
functions that range between zero and one.

A multiple model is then able to provide an accurate ap-
proximation of complex systems by increasing the number
of submodels. On the other hand, most of the existing tools
in linear systems framework can be partially extended
to nonlinear systems represented by a multiple model, of
course the submodels must be linear models. Let us notice
that the multiple model approach can easily be related to

the operating regime based modelling framework [Murray-
Smith and Johansen, 1997] and to the fuzzy modelling
framework [Takagi and Sugeno, 1985].

In the multiple model framework, two major structures can
be distinguished in order to build a multiple model [Filev,
1991]. In the first structure, the submodels share the same
state vector (Takagi-Sugeno multiple model); in the second
one, the submodels are decoupled and their state vectors
are different (decoupled multiple model). Consequently,
this last multiple model offers flexibility in the modelling
step because the submodel dimensions can be adapted to
the complexity of each operating zone.

The Takagi-Sugeno model has been successfully used for
modelling the dynamic behaviour of nonlinear systems.
The observer design based on this multiple model has been
largely addressed [Tanaka and Sugeno, 1992, Guerra et al.,
2006, Ting, 2006]. The classically used state estimator is
an extension of the proportional observer. However, some
other classes of state estimators have been proposed, for
instance, sliding mode observers [Bergstern and Driankov,
2002] and unknown inputs observer for Takagi-Sugeno
descriptor systems [Marx et al., 2007].

By comparison with the Takagi-Sugeno multiple model,
the decoupled multiple model has been poorly considered
in the literature. However, a few works in the control
domain [Gawthrop, 1995, Gatzke and Doyle III, 1999,
Gregorcic and Lightbody, 2000] and in modelling [Venkat
et al., 2003, Thiaw et al., 2007] of nonlinear systems
have made a successful implementation of this structure
and shown its relevance. The design of a proportional



observer based on this multiple model has been recently
investigated in [Orjuela et al., 2007].

This paper deals with the design of the state estimators of
nonlinear system modelled by a decoupled multiple model.
Our main contributions are the extension of a previous
work in order to design a Proportional observer (PO) by
ensuring H∞ performance on the one hand and; the design
of a Proportional-Integral observer (PIO), based on this
multiple model, that seems not reported previously on the
other hand.

The outline of this paper is as follows. The two classic
structures of a multiple model are detailed and compared
in section 2. Preliminaries and notations are presented
in section 3. In section 4, the state estimation problem
is investigated using a PO and a PIO. The gains of
the observers are obtained by LMI optimization. Finally,
in section 5, a simulation example illustrates the state
estimation of a decoupled multiple model.

2. STRUCTURES OF MULTIPLE MODELS

A multiple model is built by judiciously taking into ac-
count the contribution of different submodels. Two basic
structures of multiple models can be distinguished ac-
cording to the use of a single state vector or not by the
submodels.

Concerning the identification step, there exist different
techniques for the parameter estimation of the submodels
considering a particular multiple model structure. See
[Murray-Smith and Johansen, 1997, Gasso et al., 2001,
Venkat et al., 2003, Orjuela et al., 2006] and the references
therein for further information about these techniques.

2.1 Takagi-Sugeno multiple model

The structure of the Takagi-Sugeno multiple model is given
by [Murray-Smith and Johansen, 1997]:

ẋ(t) =
L

∑

i=1

µi(ξ(t)){Aix(t) +Biu(t)} , (1a)

y(t) =

L
∑

i=1

µi(ξ(t)){Cix(t)} +Wω(t) ,

where x ∈ R
n is the state vector, u ∈ R

m the control
input, y ∈ R

p the output, ω ∈ R
q the measurement noise

and Ai ∈ R
n×n, Bi ∈ R

n×m, Ci ∈ R
p×n andW ∈ R

p×q are
known and constant matrices of appropriate dimensions.

The so called decision variable ξ(t) is a perfectly known
and accessible signal, for example, the control input and/or
a measurable output of the system.

The µi(ξ(t)) are the weighting functions that ensure the
transition between the submodels. They satisfy the follow-
ing convex sum properties:

L
∑

i=1

µi(ξ(t)) = 1 , ∀t (2a)

0 ≤ µi(ξ(t))≤ 1 . ∀i = 1...L, ∀t (2b)

The reader may have noticed that the Takagi-Sugeno mul-
tiple model can be regarded as a variable parameter model.
Indeed, in this multiple model, the contribution of each
submodel is taken into consideration thanks to a blend
between the parameters of the submodels. Therefore, a
common state space is shared by all submodels.

2.2 Decoupled multiple model

The structure of the decoupled multiple model is given by
[Filev, 1991]:

ẋi(t) =Aixi(t) +Biu(t) , (3a)

yi(t) =Cixi(t) , (3b)

y(t) =

L
∑

i=1

{µi(ξ(t))yi(t)} +Wω(t) , (3c)

where xi ∈ R
ni and yi ∈ R

p are respectively the state
vector and the output of the ith submodel; y ∈ R

p is the
output of the multiple model. The known and constant
matrices Ai ∈ R

ni×ni , Bi ∈ R
ni×m, Ci ∈ R

p×ni and
W ∈ R

p×q are of appropriate dimensions.

Let us notice that in this multiple model no blend between
the parameters of the submodels is performed. Indeed, the
submodel contribution is taken into account via a weighted
sum between the submodel outputs and consequently the
submodels do not share the same state space. Hence, the
main feature of this multiple model is that the dimension
(i.e. the number of states) of the submodels can be different
and thanks to this fact, complex systems with variable
structure in the operating range can be well modelled.

Note that the outputs yi(t) of the submodels are artificial
modelling signals only used in order to provide an approx-
imation of the output of the real system. Therefore the
outputs yi(t) cannot be employed as accessible signals for
driving an observer.

3. PRELIMINARIES AND NOTATIONS

For the simplicity of mathematics manipulations, let us
introduce the following augmented state vector:

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L(t)

]T ∈ R
n, n =

L
∑

i=1

ni. (4)

Now, the decoupled multiple model (3) may be rewritten
in the following compact form:

ẋ(t) = Ãx(t) + B̃u(t) , (5a)

y(t) = C̃(t)x(t) +Wω(t) , (5b)

where:

Ã=















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL















, B̃ =















B1

...
Bi

...
BL















,

C̃(t) = [µ1(ξ(t))C1 · · ·µi(ξ(t))Ci · · ·µL(ξ(t))CL] .



Let us notice that the matrix C̃(t) can be rewritten as
follows:

C̃(t) =

L
∑

i=1

µi(ξ(t))C̃i , (6)

where C̃i is a constant bloc matrix given by:

C̃i = [0 · · · Ci · · · 0] . (7)

Besides, for convenience, the following notations will be
used all along this paper. P > 0 (P < 0) denotes a positive
(negative) definite matrix P ; XT denotes the transpose
of matrix X and I is the identity matrix of appropriate
dimension. The L2−norm of a signal, quantifying its

energy is denoted and defined by ‖e(t)‖2

2
=

∞
∫

0

eT (t)e(t)dt.

We shall simply write µi(ξ(t)) = µi(t).

4. STATE ESTIMATION

This section deals with the H∞ estimation problem, based
on a decoupled multiple model, using a PO on the one
hand, and a PIO on the other hand. Conditions for
ensuring stability and optimal noise attenuation of both
observers are established in LMIs terms [Boyd et al., 1994]
using the Lyaounov method.

4.1 Design of a Proportional observer

The design of a PO based on the decoupled multiple model
has been investigated in a previous work [Orjuela et al.,
2007]. These results are extended in this note in order to
ensure H∞ performances of the estimation.

The proposed PO is given by:

˙̂x(t) = Ãx̂(t) + B̃u(t) + K̃(y(t) − ŷ(t)) , (8a)

ŷ(t) = C̃(t)x̂(t) , (8b)

where x̂(t) is the state estimation and ŷ(t) the output

estimation and K̃ ∈ R
n×p is the observer gain to be

determined.

Define the state estimation error by:

e(t) = x(t) − x̂(t) , (9)

and its time-derivative by:

ė(t) =Aobs(t)e(t) − K̃Wω(t) , (10)

where Aobs(t) is given by:

Aobs(t) =

L
∑

i=1

µi(t)φi , (11)

φi = Ã− K̃C̃i . (12)

Remark 1. It is easy to notice, from equation (10), that the
measurement noise affects directly the estimation error.
Indeed, the measurement noise signals is modified by the
observer gain K̃.

The design of the PO (8) consist in finding a matrix K̃
such as the estimation error (9) satisfy the following H∞

performances:

lim
t→∞

e(t) = 0 for ω(t) = 0 , (13a)

‖e(t)‖2

2
≤ γ2 ‖ω(t)‖2

2
for ω(t) 6= 0 and e(0) = 0 , (13b)

where γ is the L2 gain from ω(t) to e(t) to be minimised.

Remark 2. It is well known, in the multiple model frame-
work, that the stability of submodels does not guarantee
the stability of the submodel combination. For example,
the individual stability of matrices φi, given by (12), is
not sufficient in order to guarantee the stability of the
time-varying matrix Aobs(t) given by (11). Consequently,
the classic PO design cannot be employed directly in order
to obtain the gain matrix K̃. Indeed, the blending between
the submodels must be taken into account in the observer
design in order to ensure the convergence of the estimation
error (9). Classically, the Lyapunov method is used in
order to cope with this problem.

Assumption 1. The measurement noise is a bounded en-
ergy signal, i.e. ‖ω(t)‖

2
<∞.

Theorem 1. The optimal PO (8) for the decoupled multi-
ple model (5), under H∞ constraints (13), is obtained if
there exist a symmetric, positive definite matrix P and a
matrix G minimizing γ̄ > 0 under the following LMIs

[

Ai + AT
i + I B

BT −γ̄I

]

< 0, i = 1...L (14)

where Ai = PÃ−GC̃i ,

B =−GW .

The observer gain is given by K̃ = P−1G and the L2 gain
from ω(t) to e(t) is given by γ =

√
γ̄.

Proof. Consider the quadratic Lyapunov function:

V (t) = eT (t)Pe(t), P > 0 P = PT , (15)

and γ > 0 such that

V̇ (t) < −eT (t)e(t) + γ2ωT (t)ω(t), ∀t . (16)

Notice that the integration of both sides of (16) yields:

∞
∫

0

V̇ (t)dt <−
∞
∫

0

eT (t)e(t)dt+ γ2

∞
∫

0

ωT (t)ω(t)dt , (17)

that it is also equivalent to:

V (∞) − V (0)<−‖e(t)‖2

2
+ γ2 ‖w(t)‖2

2
, (18)

and by taking into account the fact that V (∞) > 0 and
V (0) = 0, the above inequality becomes:

‖e(t)‖2

2
< γ2 ‖w(t)‖2

2
, (19)

hence the attenuation level between the measurement
noise and the estimation error, given by (13b), is guar-
anteed if condition (16) is fulfilled.

Now, conditions verifying (16) must be established in order
to satisfy conditions (13). The time-derivative of (15)
along the trajectories of (10) is given by:

V̇ (t) = ėT (t)Pe(t) + eT (t)P ė(t), (20)

that becomes using (10):



V̇ (t) = eT (t)
(

AT
obs(t)P + PAobs(t)

)

e(t) (21)

− ωT (t)(K̃W )TPe(t) − eT (t)PK̃Wω(t) .

The above equation can be rewritten as:

V̇ (t) = ψ(t)T Ω(t)ψ(t) , (22)

where

Ω(t) =

[

AT
obs(t)P + PAobs(t) −PK̃W

−(K̃W )TP 0

]

, (23)

ψ(t) =
[

eT (t) ωT (t)
]T

. (24)

Now, in order to ensure that (16) for shall satisfy the
following conditions:

ψT (t)

{

Ω(t) +

[

I 0
0 −γ2I

]}

ψ(t) < 0 , (25)

which is a quadratic form in ψ(t). Hence, by using (23)
and (11), the negativity of (25) is satisfied if:

L
∑

i=1

µi(t)

[

(Ã− K̃C̃i)
TP + P (Ã− K̃C̃i) + I −PK̃W
−(K̃W )TP −γ2I

]

< 0

(26)

Now, according to the convex sum properties (2b), the
above inequality is also satisfied if:

[

(Ã− K̃C̃i)
TP + P (Ã− K̃C̃i) + I −PK̃W
−(K̃W )TP −γ2I

]

< 0 , (27)

for i = 1...L.

Finally, let us notice that (27) is not a LMI in P , K̃ and γ.

However, it becomes a strict LMI by setting G = PK̃ and
γ̄ = γ2. Now, standard convex optimization algorithms
can be used to find matrices P and G for a minimal value
of γ̄.

Note also that the condition (14) in the theorem 1 implies:

(PÃ−GC̃i) + (PÃ−GC̃i)
T < 0, i = 1...L , (28)

which means that the matrix Aobs(t), given by (11), is
Hurwitz for any blend between the submodel outputs
[Orjuela et al., 2007]. Hence, the asymptotic convergence
of the estimation error is ensured under ω(t) = 0 and
condition (13a) is therefore satisfied. 2

4.2 Design of a Proportional-Integral observer

The concept of PIO proposed in [Beale and Shafai, 1989]
can be extended in order to provide a robust state estima-
tion of a nonlinear system. In a PIO an integral term of the
estimation error is taken into account via a supplementary
variable z(t). Hence, thanks to this extra integral variable
a robustness degree of the state estimation with respect
to the plant perturbation is achieved [Weinmann, 1991].
Our approach for designing the PIO is similar to the
approach proposed in [Hua and Guan, 2005] used in the
synchronization of a chaotic system.

Hence, the decoupled multiple model (5) becomes:

ẋ(t) = Ãx(t) + B̃u(t) , (29a)

ż(t) = C̃(t)x(t) +Wω(t) , (29b)

y(t) = C̃(t)x(t) +Wω(t) , (29c)

where z(t) =
t
∫

0

y(ξ)dξ.

The above equations can be rewritten in the following
augmented form:

ẋa(t) = Ã1(t)xa(t) + C̄1B̃u(t) + C̄2Wω(t) , (30a)

y(t) = C̃(t)C̄T
1 xa(t) +Wω(t), (30b)

z(t) = C̄T
2 xa(t) , (30c)

where

xa(t) =

[

x(t)
z(t)

]

, Ã1(t) =

[

Ã 0

C̃(t) 0

]

, C̄1 =

[

I
0

]

, C̄2 =

[

0
I

]

.

(31)

The state estimation of the decoupled multiple model (30)
is achieved via the following PIO:

˙̂xa(t) = Ã1(t)x̂a(t) + C̄1B̃u(t) +KP (y(t) − ŷ(t))

+KI(z(t) − ẑ(t)) , (32a)

ŷ(t) = C̃(t)C̄T
1 x̂a(t) , (32b)

ẑ(t) = C̄T
2 x̂a(t) . (32c)

Notice that the use of the integral action z(t) is at the
origin of the designation Proportional-Integral Observer.

Define the state estimation error by:

ea(t) = xa(t) − x̂a(t) , (33)

and its time-derivative by:

ėa(t) = Ãobs(t)ea(t) + (C̄2W −KPW )ω(t) , (34)

where Ãobs(t) is defined by:

Ãobs(t) = Ã1(t) −KP C̃(t)C̄T
1 −KIC̄

T
2 . (35)

Remark 3. It is easy to see, from equation (34), that the
attenuation of the measurement noise can be adjusted via
the choice of KP .

Let us notice that, by taking into account the form (6) of

C̃(t), the matrix Ã1(t) becomes:

Ã1(t) =
L

∑

i=1

µi(t)Āi , (36)

where

Āi =

[

Ã 0

C̃i 0

]

. (37)

Finally, by using (6) and (36), the matrix Ãobs(t) can be
rewritten as:

Ãobs(t) =

L
∑

i=1

µi(t)Φi , (38)

Φi = Āi −KP C̃iC̄
T
1 −KIC̄

T
2 . (39)



Theorem 2. The optimal PIO (32) for the decoupled mul-
tiple model (30), under H∞ constraints (13), is obtained
if there exist a symmetric, positive definite matrix P and
matrices LP and LI minimizing γ̄ > 0 under the following
LMIs

[

Ai + AT
i + I B

BT −γ̄I

]

< 0, i = 1...L (40)

where Ai = PĀi − LP C̃iC̄
T
1 − LIC̄

T
2 ,

B = PC̄2W − LPW .

The observer gains are given by KP = P−1LP and
KI = P−1LI ; the L2 gain from ω(t) to e(t) is given
by γ =

√
γ̄.

Proof. The proof of the above theorem is omitted here.
Indeed, this proof is carried out in a similar way to the
previous case. 2

5. SIMULATION EXAMPLE

Considerer the decoupled multiple model with L = 2
different dimension submodels given by:

A1 =

[

−2.0 0.5 0.6

−0.3 −0.9 −0.5

−1.0 0.6 −0.8

]

, A2 =

[

−0.8 −0.4

0.1 −1.0

]

,

B1 =

[

1.0 0.8 0.5
]

T

, B2 =

[

−0.5 0.8
]

,

C1 =

[

0.9 −0.8 −0.5

−0.4 0.6 0.7

]

, C2 =

[

−0.8 0.6

0.4 −0.7

]

,

W =

[

0.4 0

0 −0.3

]

.

Here, the decision variable ξ(t) is the input signal
u(t) ∈ [0, 1]. The weighting functions are obtained from
normalised Gaussian functions:

µi(ξ(t)) = ηi(ξ(t))/

L
∑

j=1

ηj(ξ(t)), (41)

ηi(ξ(t)) = exp
(

−(ξ(t) − ci)
2
/σ2

)

, (42)

with the standard deviation σ = 0.5 and the centres
c1 = 0.25 and c2 = 0.75. The measurement noise ω(t) is
a normally distributed random signal with mean zero and
standard deviation one. The input, the weighting functions
and the outputs are shown in figure 1.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

u(t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

µ
i
(t)

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

y(t)

time(s)

Fig. 1. Input, weighting functions and outputs

A solution to conditions of theorems 1 and 2 can be found
by using, for example, YALMIP interface [Löfberg, 2004]
coupled to SeDuMi solver. Conditions of theorem 1 are
fulfilled with:

K̃ =

[

0.193 −0.030 0.092 −0.032 −0.014

0.224 0.113 0.220 −0.016 −0.027

]T

,

with an attenuation index γ2 = 2. The obtained matrix
PP is given in appendix.

Conditions of theorem 2 are fulfilled with:

KP =

[

0.004 −0.035 −0.007 −0.017 −0.003 0.934 −0.032

0.017 0.027 0.030 0.007 −0.005 0.002 0.941

]T

,

KI =

[

0.142 0.568 0.131 0.050 0.008 2.626 0.017

0.139 0.519 0.156 −0.010 0.008 0.017 2.496

]T

,

with an attenuation index γ2 = 0.1. The obtained matrix
PPI is given in appendix.
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Fig. 2. State estimation errors of submodel 1
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Fig. 3. State estimation errors of submodel 2
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Fig. 4. State estimation errors of submodel 1 under per-
turbation
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Fig. 5. State estimation errors of submodel 2 under per-
turbation



It can be noted the gap between the attenuation levels
obtained with the PO and the PIO. The state estimation
obtained using the proposed PO and PIO is depicted in
figures 2 and 3. Let us notice that the initial conditions of
the multiple model are not null and the initial conditions
of the observers are null.

Now, a constant perturbation equal to 0.5 is added to the
output y1(t) at t = 10. This perturbation can be due, for
example, to a sensor fault. The estimation errors provided
by both observers are plotted in figures 4 and 5. As clearly
seen from these pictures, the PIO provides the best state
estimation under the considered perturbation.

6. CONCLUSION

This paper has proposed a new design of a Proportional
observer and a Proportional-Integral observer, based on
a decoupled multiple model approach, for estimating the
state of nonlinear systems. The decoupled multiple model
is suitable for modelling complex systems with variable
structure in the operating range. Indeed, in this multiple
model the dimension of the submodels can be adapted
to the complexity of the operating zones because each
submodel has a different state vector. The effectiveness
of the proposed approach and a comparison between both
observers are illustrated via a simulation example.

7. APPENDIX

Matrices PP and PPI , solutions to conditions of theorem
1 and 2 are given respectively by:

PP =









3.33 −0.14 −2.68 0.12 −0.07

−0.14 3.89 −1.00 −0.25 0.51

−2.68 −1.00 5.44 0.12 −0.24

0.12 −0.25 0.12 11.50 −10.19

−0.07 0.51 −0.24 −10.19 25.69









,

PPI =















5.196 −0.576 −3.554 0.058 0.010 0.043 0.076

−0.576 5.177 −0.976 −0.144 0.188 −0.959 −0.913

−3.554 −0.976 7.457 0.070 −0.188 0.187 0.110

0.058 −0.144 0.070 8.260 −6.907 −0.111 0.074

0.010 0.188 −0.188 −6.907 19.939 0.054 −0.124

0.043 −0.959 0.187 −0.111 0.054 1.276 0.175

0.076 −0.913 0.110 0.074 −0.124 0.175 1.315















.
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