Unknown input observers for switched lot of directly designing methods have been developed. For
nonlinear discrete time descriptor systems  instance, Praly et al. [22], [15], [28] contributed someutts
on observer design using high-gain techniques. Besanabn an
D. Koenig, B. Marx and D. Jacquet Hammouri [3] and Dawson [12], studied the observer design
from the solution of Riccati equation for Lipschitz nonlare
systems. Adaptive observers have been proposed for special

technique for state estimation of discrete-time, nonlinear switche classes of nonlinear systems [23], [5]. For the class ofaglob

descriptor systems is developed. The considered systems aré"pSCh_ItZ nonlinear systems, existence condition havenbee
Composed of linear and nonlinear parts. An observer g|V|ng established for full-order observer and also for reducetfo

a perfect unknown input (Ul) decoupled state estimation is observers respectively in [24] and [32]. The design method
proposed. Sufficient conditions of global convergence of obsesis s pased on the solution of a Riccati equation. More recently
are proposed. Numerical examples are given to illustrate this based on the linear matrix inequality (LMI) approach both
method. proportional and proportional integral observer for noeér
Index Terms— Switched descriptor systems, hybrid systems, descriptor system has been proposed in [17]. According to
unknown input observers, poly-quadratic stability. remark 1 in [17] the nonlinear systems considered in thigpap
is more general than [5], [24], [32]. Moreover, we proposed t
I. INTRODUCTION extend the design of a proportional observer for an unsquare
rectangular) switched descriptor system which includébo
[ and Lipschitz nonlinearities. The systems considerexl ar
o in a general form and seem to be the first using convex

Abstract—In this paper, a linear matrix inequality (LMI)

Switched control and/or observer systems has recently
ceived much attention. Switched systems belong to a spe

class of hyb”d. systems. They are defined by a COIIeCtI(?ﬂ)timization. Briefly an extension of UIO design for linear
of dynamical (linear and/or nonlinear) subsystems toget stem to nonlinear system is proposed

with a swiiching rule that specifies the switching betwee This note is organized as follows. Section Il presents the

these subsy_s_tems. A Survey on pasm _problems n SW'tcr}?r%blem statement. A design method of the proportional
system Stab.'“ty and design is available in [2.6] (see_therref observer and the main results of this note are given in sectio
ences therein). Many such problems occur in practice: Po BM 1 section IV the performance of the proportional s

converter ;ystems where thg switching signal is'determin gserver is evaluated through two numerical examples. The
by pulse with PWM modulation and gain scheduling contr roof of the detectability condition is provided in appeadi
systems are examples among many others. One can st fﬁ/

: o . ally, section V concludes the paper.

the existence of a switching rule that ensures stabilityhef t y pap

switched system. One can assume that the switching sequence

is not known a priori and look for stability results under Il. PROBLEM FORMULATION

arbitrary switching sequences. On the one hand, most of theconsider the switched nonlinear descriptor systems

contributions in this field deal with stability analysis and

control synthesis [7], [18]. On the other hand, unknown tnpu ~ La+1)Tk+1 = Aa(e)Zh + Fagrydi + Ha(k) Pk L

observers (UIO) have been widely studied for nonsingular Y& = Catkytr + Gak)dr

systems [9], [29], singular system [10], [6], [16], nonlare |\ here & Ay € RPX™ are in the general form

descriptor systems [17] and recently for switched nongargu ;,q a(g+1)' (k) | pxq pXmg
) - and may be rectangulaf, ;) € RP*?, H,yy € R ,

systems [20]. Nevertheless, there is no result extendieg t@ p € RN G € RMX4 p <,z € R, d € RY

method mentioned in [20] to the general representation &f = b(an uk,k)a: R" x R x N — R anciy c R™

switched nonlinear descriptor systems although many IBBCt jenote respectively the descriptor vector, the unknowmitinp
systems can be described by them [2] and their fault diagnogictor, the nonlinearity vector and the output vector. la th

may be based on UIO design [21]. sequel, disturbances or partial inputs which are inadokssi
As mentioned in [32], there are generally two broad apyie called UI. The signat € R is the control input vector.
proaches for nonlinear observer design. In the first approac, (k) is a piecewise constant switching signal taking value
the objective is to find a coordinate transformation so that tsom the finite index set — {1,2,...,h}. At a switching
state estimation error dynamics are linear in the new ceorgf,a 1. we havea(k — 1) # a(k)’. The: ordered sequence of
nates and them linear techniques can be performed [13], [1fe switching times is said to be the switching time sequence
[30]. Necessary and sufficient conditions have been est&tli o the switching signal. It is assumed that the switchingetim
[30], [19] for the existence of such a coordinate transform@gqyence is real-time accessible, depending on the control
tion. The second approach does not need the transformatigt or on the measured output, or using a finite automation
and the observer design is directly based on the origi any strategy{ (E;, A;, F;, H;, C;, G;) : i € ¢} are a family
system. Because of the complexity of nonlinear systems,,a matrices parameterized by an index set {1,2, ..., h}
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Vandoeuvre-les-Nancy Cedex, France. symmetric positive definite matrix, )" is the pseudoinverse



matrix, (.)" is the orthogonal complemernt,|| stands for the
Euclidean norm(.), stands for(.),,, .x+1) » for instance
Ty = Tok),a(k+1)-

Remark 1: The orthogonal complement for a realn x p
matrix A with rank ¢ is defined agn — ¢) x n matrix such
that AA+ =0 and A+ AT > 0.

Assumptions: In the sequel it is assumed that

Remark 3: The assumptionsrank {g“(k’)} = ¢ and

a(k
rank [Coy  Gaky] = m ensure respec(ti\)/ely that the Ul's
and measurements are linearly independent. This can always
be satisfied by redefining the Ul and measurement vector [10].
While, according to remark Iy + 2m > n + q + rankG )
is necessary in order to ensure tlfil;i+ is well defined.

Our aim is to design an observer in the form,

Al the nonlinearityp(xy, uk, k) is globally Lipschitz in
z with Lipschitz constanty, i.e., 2pq1 = iy 20 + K ype + Tiey Ho() @ (28, up, k) @
p(xr, ur, k) — (2, up, K)|| < vl — 2l B = 2+ Nak-1).am U
Vu € R™ keN wherez, € R™ and
For instance, the sinusoidal terms usually encoun- [Te. Ni, Ku, )= \P@L - Zoz(k)e)é:r
tered in many problems of robotics are all gIObwlvith
Lipschitz. Moreover, most nonlinearities are loca
Lipschitz if they are considered in a given neigh- Eakt1)  Aar) Far) 0
borhood (see the def. in [23]). Ok, = Co(kt1) Ga(k+1)
[Eagk+1)  Fa 0 8 _C}‘(k) _Goa(k) 8
rank G(,(k) 0 —4in
A2 _Ca(k+1) 0 Ga k+1) U= [In Onx(n+2q)] ’ eng:r = (In+p+2m - 9k+ @Z:r)
=n +rankGqo 1) + rank IFD‘(’C) Ky = Kk, + 1 No(e—1),a(k)
B A r (k) F The problem of the observer design is also reduced to finding
A3 rank |© 10_ i _G 1} = n + rank [Gl] matricesZ,,;) such that the estimat, converges asymptot-
L i ¢ g ically to the statery.
=V |z|>1, i€
p+2m >n+q+rankGo), Il. OBSERVER DESIGN
For : . . .
Ad rank Gom | — q, In this section, a new method is presented to design the
ok [Ca(k) Gugo] = m observer (2) for switched nonlinear system (1). The foltayvi
alk)  Malk) theorem will give the structure of the observer.
] In 0 0 Theorem 1: Under A2, there exist matrice¥},, Ny,
Remark 2: Define Vi = [Copyry 0 —Inp|, Vo = Kir., ;. such that
0 In 0 o
I, 0 0 I, Fogiy 0 Try Eae1) + Niy Caerry = In 3)
8 I(;z (} andI' = . 0 G(B(k) . 0 Oy, = Th, Aak) — K1k, Car) (4)
- o(k+1) a(k+1) _ —
or Ey1) = In, the assumption A2 becomes equivalent Tiey Fagr) = Kaky Gagry =0 )
to assumption (12) given in [11] since Niy Gagker) =0 (6)

k
rank I' =n +rank Guxq1) + rank |:Ga((k)):|

is equivalent to

I, 0 0
rank ViI'Vo= |0 I, O
0 0 -1

Fa k
n+rankGo 1) + rank{Ga((k))]

which is equivalent to

I, Fomy 0
rank | 0 Cogi1)Far) Gaget)

n +rankGq 41y + rank [Fa

which is equivalent to (12) given in [11].
a(k+1)
to condition (1-1) given by [29].

In addition foris solvable provided the matrikl, ; = 77,14,
a(k), the assumption A2 becomes equivalergtable, 71 1y = I,, and Ky, |Gy = T1 1 F1. In other words,

and the difference of the state estimation epr= x; — .
becomes

ent1 = i, ex + Tho, Hogrydr (7)

where
Ok = B(Th, up, k) — G(Zk, up, k) (8)
K, = Kig, + 1k, No—1),a(k) )

Remark 4: Consider the single system (1) where= {1},
a(k-i—l) = a(k-i—l) = ]., Ea(k—i—l) = El, A(,(k) = Al,
Fa(k‘) = I, Ha(k) = 0, Ca(k) = (¢ and Ga(k) = (1.
When G; has full row rank, the matrixC;2 defined in [10]
is necessarily equal to zero. Consequently the matriges
and M defined by (24) and (25) in [10] cannot be computed
and the observer is unfeasible. Furthermore in our approach
whenG has full row rank, it follow that the onlyv; ; which
fulfills Ny G, = 0 is the zero matrix. So, the observer (2)
— K17101 is

E; must be nonsingulafTy ; = E;') and the row image of



Elel has to be included in the row image 6f, while the trices P, P,,..P, and matriced/;, Us,..U;, satisfying

solution KLl_olf Ky, ,G1 = E; El must ensure. the stability P+ PT - P, X Xo 0

of I,y = E{ Ay — K;,:Cy. This is very restrictive, but a N P 0
1

. ; ) : I .
solution may exists. So, our observer may exist even if the . . ] 70” >0, Vi,jee (17)
number of Ul in measurement equation is equal to the number N " : I
n

of the measurement. In addition the detectability conditio

A3 is the usual condition defined in UIO theory, see foien the state estimation erreg converges globally towards
instance (23) in [10]. So the methodologies proposed is M Orgins. X1 = P¥O; ;01 — U;Of;p1; and Xo =
less restrictive than those reported in the literature [B)], Pi¥©; ;¢2i — Ui ;p2;. Moreover, the resulting observer

[11], [6], [29], [17]. gains are given by (14) and (9), where the matricgsare
Proof: Suppose that (3) hold, then 1 = 21 — dryq 9VEN by Z; = P U
becomes Proof:  Consider the switched Lyapunov function
V(ek, k) = e} Pyyyer Where Py > 0 is a positive definite
ek+1 = Tk, Eakr1)Tht+1 — 2k+1 — N Goeg1)di+1 matrix. If such a Lyapunov function exists and its differenc

AV = V(egy1,k + 1) — V(ex, k) is negative definite along

and from (1), (2) and (8)¢x+1 becomes system trajectories of (7), then the origin of the systemig7)

Chi1 = (Tk+A ) — Wi, T, Bagry — Kk+Ca(k)) Tk globally asympf[otically stablg. Cpmputing the differens#’,
Wy + To, H m  Ni, Caerdis along the solution of (7)AV is given by
+ (Tey Fagry) — (Kk+ — ey Na(k-1),a(k)) Gay) di AV =€i1 Pair1)€h+1 = ¢k Paryn
(10) =€£H£+ Pa(k+1)Hk+ €L — egPa(k)ek
Substituting (9) into (10) and using the constraints (4-6), + 2€£HZ+ Po (k1) Ty a(k)qgk
Tok-1),a00) Lak) T Nak—1),a(6) Cak) = In (7) is obtained. T Ha(k Tk+ Pogesn Tk, a(k)¢

Rewriting (7) and (3, 4, 5, 6) respectively as
<ep Hk+Pa(k+1)Hk+ek

eerr = [The Ney Ky Tl J9ramer + 26{ I, Pagsny T, Hay G

. J;[TMNNMKKMH Hkg P20 (k) Pk (E) + 0k HE iy T, Pogegty Ty Hagy® (F)
=Tk, N, K, i, |06y, (12) T Payer — 3Tk + 226l e
where . 7T 5o T
since from Al and (8) we have¢? ¢y + v2eler > 0.

Aa(k) Ho iy Now, AV can be written as
O1’n><n Omxn T HT P T. H

Pla(k) = -C ) Pa(k) = 0 AV (ep, k) < eI [ k4 kyfa(k+1) Lk Ha(k) ] e

nx(:) On:n (erk) S ea, | HE 0T, Patrr )Ty Hagry — In, |

whereTy, = HaPa(kﬂ—l)H/@r — Py + 7?1, and el =
[ el ¢l ]. The differenceAV (e, k) is negative definite
forany [ el ¢F | £0if

S)
rank |: \Ilj+:| = rank@;u (13) |:Fk+ . Hg+Pa(k+1)Tk+Ha(k)
* Hoon T, Patery Ty Hay — Ing

The solution[T},, Ny, Kip, Iy, ] of (12) depends on
the rank of matrix9,, . A solution exists if and only if [25]

] <0 (18)

which is equivalent ta42. Therefore, underd2, the general

solution of (12) is As this inequality has to be satisfied under arbitrary sviitgh

law, it follows that it should hold for special configuration
[Tl@r Nk+ K1k+ HkJJ — \I}@;:_ — Zoz(k)@lJc:r (14) o (k —+ 1) :] and o (k) = 1. DefineX3 = ]DZ — Hijjnl»J —
~%I,,, then (18), becomes
where@,ﬁ+ = (In+p+zm - @k+®;§:) and Z, ) is an arbi- X5 _TIT P.T. . H.
trary l;natrix of ?pp)ropria'ze d)imensm(n.) A . " —HiTTiTijﬂ,jHi +1,,
Substituting (14) into (11) gives (7), wheié,, and T}, . . ’
are determined by known matrices and by the arbitrary matt‘w"Ch is equivalent, by Schur complement, to
Za(k) as follows |—Pj PjHi,j PjTi’jHi]
\‘* Pq;f'yQIn 0 J>0 Yi,j €€
k

]>0 Vi,j€e  (19)

i, =VO) 1a(k) = Za(k)Ok, P10k (15) X I

n¢
_yo+ 1L
Tyey Har) —‘I’®k+@2a(k) = Za(k) O, Pao(k) (16)  which is equivalent, by Schur complement, to

[ | pP; P ; PT,;H; 0
Now, the condition of global stability of (7) is stated in the * P 0 v,

following theorem. * In, 0

. >0 Vi,jee
Theorem 2: If there exist symmetric positive definite ma- |_* * * InJ




which is equivalent by Lemma 1 of [31] to Example 1. From [24] the observer (2) for system (1a,1b)
' T ' o P is guaranteed to be stable for all nonlinearities with Lipsc
|—P’ th —b Bl PTG H 0 -| constant of magnitude less tham9. Using our above LMI

* B 0 Vn > 0(20) formulation, itis proposed to find the largest Lipschitz stamt
* * I 0 (20) .

2 I ~ such that the observer (2) exists for system (1). The system
* * * n

o (1a,1b) considered in [24] is in first approximated by theeEul
Vi,j € ¢ approximation where for a good approximation the sample

where the matricesS, M, @ and G in [31] are directly tlm(ej IIS fllxedhtoTe f 0'1015' L:t c_onlsg;:r ge_dlslcrie-tlme

identified by 5 = P, MT = [, T,,H; 0], Q = model (D) wheres = {l}, a(k)=1Vk Ey =1, 4 =
P; 0 "/In L+T,A A= 1 1,F1:07G1:0,H1:T6I2and
* I, 0| andG = B Substiuting (16) and/; = C1 = [0 1].Itis assumed that the nonlinearity(xy, uy, k)
o I is globally Lipschitz inz; with Lipschitz constanty and A2

P,Z; into (20) with o (k) = i anda (k+1) = j, (17) is > 90Pay LI k P

obtained. holds sinceFE = I, and A3 holds for all z.

) - . For a known Lipschitz constant, the Theorem 2 gives
Remark 5: The feasibility of (17), or equivalently of (19), . ’
implies that the pairs(\IJG o1 @“9011) are detectable. the gain observet; such that observer (2) for system (1)

Indeed, according to Theorem 2, satisfying (17) is equivale It?rtriz;[:(e)gre:gki;rin be reformulated as the following conve
to guarantee the stability of the state estimation error (95J P

whatever the switching rule can be. This includes the case max ~ subject to(17) and P, = plT >0 (22)
where the switching rule leads to a linear behavior, i.e. U1

ak+1) = a(k) = i and II;; has to be Hurwitz. In I, A

other words fora(k+ 1) = a (k) = i, the existence of a c, 0

solution P; > 0, U;, of the LMI (17) needs that the matrixWherei =j =1, 6y, = 0 - and¥ = [, Onxn.

IL,, = \If@mgoh Z; @maph is Hurwitz (in the meaning of 0 -

Lyapunov stability) since the elemefit, 1) of (19) implies Applying the convex opiimization problem defined by (22),

—P + 1], Pll s < —?Inym < 0. the following results are obtainedy = 0.9950, Ty, =
Remark 6: Of course, the switched detectability of the|l —9.99 N 9.99 Koo - —0.8881 and

system (7) is not ensured by the assumption that for each syb- 0.0141|" ~** 0.9859|" 11 0.0152

systemi € ¢, the pair \I/@l P14 6)1 ,¢1i) is detectable (see 0.9001 0 .

the example in sectlo(n 7.2 given by ([4])) but the detecitgbil 0.0001 0.0047|" It can be noted that the maximal

of each pa”(q}@l 011, ©; 19012) is a necessary condition toconstant of Lipschitz obtained by the present approachdeta

solve (17). Moreover an arbitrary choice @f; can involve than the Lipschitz constant given by [24].0f = [1 0], the

a loss of detectability of the paifTO;,p1;, O ;¢1;) (see maximal constant of Lipschitz ig = 1.4142.

[9]) To overcome the problem of an arb|trary choice of The following example shows that a switched observer may
;. the computation of a suitabld;; is included in the exist for a more general class.

design procedure. That is why (7) is rewritten as (11) whereExample 2. Consider the switched nonlinear descriptor
[T, Np, K, y,]is given by (14). Thus the matrix Systems (1) where

Z; involved inT; ; (14) plays the role of a parametrization. The
. ’ A _ 1000 Ji, O
switched observer design is finally reduced to the compmniati ’
) . : ) . - 0100 0 fa2;
of the gain matrice¥;, i € ¢, ensuring the asymptotic stability E=19 010l fi=]|o 0 ;
of system (7) under arbitrary switching signal. 00 0 0 0 1
Now the following results can be established.
Lemma 1: There exist matrice; such that the matrices -1 a;z, O a4, T1k
I, = ‘I/@;-fiapli — Z;O7¢1: is Hurwitz if and only if the A -1 0 0 1 o= | T2k
pair (PO ,01;, ©f¢1,) is detectable, which is equivalent to ! 0 -1 ‘az3 O ok T3k
(21), which is equivalent to A3. 0 O 0 0.5 T4k
_ + o1 1
rank zI, L\IJGN@M =n,V |z| > 1 (21) 1 0 O 0
O; ¢ H. = 0 or =vsinz1,C; = | 0 0 co3, 1
Proof: See the appendix. [ | ! hs1, |’ T i ’
0 0 0 O C34;

V. EXAMPLES 10 J
. . . . . 1k

In this section, the results are illustrated with two simu- Gi= | 0 0 | . dp = [ do, } e ={1,2},7y=025,
lations. In the first one, the studied system is nonsingular, Lo ’
it is deri\{ed frqm the continuous' system of [24], While the — 0.01sec, dyy = sin4kT,, doy, = sin 0.1kT,,
second simulation concerns a switched systems subject,to Ul

nonlinearities and algebraic constraints. a1z, = 0.4,a12, = 0.6,a33, = —0.4,a33, = —0.6,



— —x1
alq, = 0'27(1142 = 070231 = 1,C232 = 0’0341 = 1’0342 =0, 22 1111 _estimate of x1

2 1
hai, = 1,h31, =0, f11, =0, f11, =1, fao, =1, fa2, =0 - o
and where the switching time sequence is given by table 1. i:
- kTe 0
k .. 149]50|51|52]...]|250] 251|252 |253 ... : e

0 49150515 08
ak—D) 2. (2 (2 2|1 [...JT |1 |1 [2 ... ot 238 et 238
a(k) 2 (2 2 (1T |1 [..J1 |1 |2 |2
ak+D) 2] 2 |1 |1 |1 1T 12 2 |2 —
( ) 15[ einmate of x3
TABLE |

SWITCHING SEQUENCE

Remark 7: If the switching time sequence is unknown a
priori, a switching rule can be defined, for instance see
example 1 in [20].

0 1 2 3 4 5 0 1 2 3 4 5

(a) Switching time sequence and state estimation

0.5 0
Al gorithm 04f -0.05
1) The assumptiomd1 holds forvy = 0.5. AssumptionA2 0312 ot
holds for all couples{(2,2); (2,1); (1,1); (2,2)}, for ME -
instancea(k + 1) = 2, a(k) = 1, and the equality ON 025
E2 F; 1 0 F :zi B kTe o i see
0 Gl 0 =n + rankG2 + Tank |: 1:| 0 0.02 0.04 0.06 0.08 0.1 0.45 0.5 0.55 0.6
02 O G2 Gl 0.2 12
is satisfied. The assumptiotB holds for all|z| > 1 and 0 !
for all i € e = {1,2}. > >
2) From table 11, ¢2,,01,,¢2,,022,021,011, O1 06 04
and U are computed. Since assumptions Al, A2, A3 s
and A4 hold, one can solve the convex optimization ™
problem defined in theorem 2. More precisely, finding 25 2 26 2 27 %0 ooz oo oo oo o1
Py, P, Uy, Uy subject toPy = P >0, P, = P >0, (b) zoom of the state estimation

(17) with 4,j = 2,2, (17) with 4, = 2,1, (17) with
1,7 = 1,1 and (17) withi, 7 = 1, 2. After 26 iterations, Fig. 1. Switching time sequence and state estimation perfaenan
the gainsZ,, Z, are obtained. From (14) we deduce

[Too Nop Ki,, Is] =007, — 7505, where the parametdrs;, is a coefficient of the matrix,, )

’ oot L of system (1). Ifhs;, increases themy,., decreases since
[To1 Moy Kay,y 1] =065, ZQ@ZE there is linear dependant of the nonlinear teifx;,, uy, k).
[Tiy Nig Ki,, L] =961, — Z,67,

V. CONCLUSION
[T12 Nio Ky, H1,2} :\Il@;r,g _Z1@i2

A rigorous method for the design of observers for switched
3) Using the matlab/simulink software two S-functions argonlinear descriptor systems in the presence of Ul has been
written, the first for system (1) and second for thgresented. Existence conditions of such observers hawe bee
observer (2). According to table 1, the matricEs,, given and proved with a strict LMI formulation. Furthermore
Ky, Mg, and No(k—1),ax) @re updated with,, = 3 polyquadratic stability is used to assess state estimdtits
Kk, + 1, Nok—1),ak)- interesting to note that the systems addressed in this paper
Simulation results show, through figures 1(a), 1(b) a goast a more general class than those reported in the literature
state estimation performance. The estimation of the state Moreover, from [27] an extension to design a robust observer

is not presented due to space limitation. for an uncertain switched descriptor system can be devejope
Remark 8: If a common quadratic Lyapunov functionthis is actually studied.

V (e, k) = el Pey is imposed (i.e.Py = P, = P andU; =

U, = U,), the corresponding LMI are found to be unfeasible. VI. APPENDIX
Indeed, the polyquadratic stability is less conservatiamtthe It is proved that assumption A3, or (21) are equivalent to
quadratic stability. the existence of matrice8; such thatll; ; are Hurwitz.

Remark 9: If the convex optimization, defined by (22), Proof A3 < (21). Define the following nonsingular matri-
is applied, the following maximal bound is obtained for cesWi;, W5 and the full-column rank matri¥Vs;
different value ofhs, : I, —0OF

9,7
ha |1 |12 [ 126 | 127 | 128 wa=| e Y Wa= |0 O
Ymax | 184.3 | 98.87 | 49.53 | 35.05 | 1.1763 il L2(n+a) 0 ©:0F




-I, 0 0 0 © 6]
zI, I, O 0 0
W3 = 0 0 I, O 0 (7]
0o 0 o0 -—-I, O
0 0 0 =zI, I
According to remark 5, fora(k+1) = a(k) = i the el

existence of a solution?;, > 0, U;, of the LMI (17)

needs that the matritl; ; is Hurwitz, therefore each pair
( \Il@;fitpm G)i,;%i ) must be detectable. The proof is
decomposed in two parts. (10]

1) Let prove that A3 is equivalent to

rank { o ] — 2n — rankG;
01 O

=n+q,V |z > 1,

(11]

(23)
1E€¢ (12]
2) Let prove that (23) is equivalent to (21).

13
Proof 1) FromWWs, the relation (23) is equivalent to (3]

I o [14]
mnk{zn o }W3—2n—rankGi:n+q,
1 i
V]e|>1, i€e [15]
which is equivalent to [16]
ZEi - Az _Fi 0
rank 2C; 2G; G | —rankG;
C; G, O [17]
=n+gqV |z|>1, i€e

which is equivalent to43. (18]

Proof 2) Slnce@:z(%“@jjl = Gj_z s @1,7@2—1@771 = 61,7

andrank [ @\I’/L ] = rank®©;;, we obtain(23) (9]

[20]
& rankWsy, [ ZI" g } Wi — 2n — rankG;
1i iy [21]
= n+qV|z|>1, ice
21 VO o 2]
o n+m — 4,5 P 1
- rank®;; + rank { Oto, } 23]
—2n — rankG; [24]
= n+gqV |z|>1, i€¢ 25
i 2lntm — WGL“PM
< rank { G, ] + rank [ @f,‘i@li 261
= n+qV|z|>1, ice [27]
< (21)

whererank ©; ; =2ntrank Grank {é‘l} andrank {g’] =q. [28]
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