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Unknown input observers for switched
nonlinear discrete time descriptor systems

D. Koenig, B. Marx and D. Jacquet

Abstract— In this paper, a linear matrix inequality (LMI)
technique for state estimation of discrete-time, nonlinear switched
descriptor systems is developed. The considered systems are
composed of linear and nonlinear parts. An observer giving
a perfect unknown input (UI) decoupled state estimation is
proposed. Sufficient conditions of global convergence of observers
are proposed. Numerical examples are given to illustrate this
method.

Index Terms— Switched descriptor systems, hybrid systems,
unknown input observers, poly-quadratic stability.

I. I NTRODUCTION

Switched control and/or observer systems has recently re-
ceived much attention. Switched systems belong to a special
class of hybrid systems. They are defined by a collection
of dynamical (linear and/or nonlinear) subsystems together
with a switching rule that specifies the switching between
these subsystems. A survey on basic problems in switched
system stability and design is available in [26] (see the refer-
ences therein). Many such problems occur in practice: Power
converter systems where the switching signal is determined
by pulse with PWM modulation and gain scheduling control
systems are examples among many others. One can study
the existence of a switching rule that ensures stability of the
switched system. One can assume that the switching sequence
is not known a priori and look for stability results under
arbitrary switching sequences. On the one hand, most of the
contributions in this field deal with stability analysis and
control synthesis [7], [18]. On the other hand, unknown input
observers (UIO) have been widely studied for nonsingular
systems [9], [29], singular system [10], [6], [16], nonlinear
descriptor systems [17] and recently for switched nonsingular
systems [20]. Nevertheless, there is no result extending the
method mentioned in [20] to the general representation of
switched nonlinear descriptor systems although many practical
systems can be described by them [2] and their fault diagnosis
may be based on UIO design [21].

As mentioned in [32], there are generally two broad ap-
proaches for nonlinear observer design. In the first approach,
the objective is to find a coordinate transformation so that the
state estimation error dynamics are linear in the new coordi-
nates and them linear techniques can be performed [13], [14],
[30]. Necessary and sufficient conditions have been established
[30], [19] for the existence of such a coordinate transforma-
tion. The second approach does not need the transformation
and the observer design is directly based on the original
system. Because of the complexity of nonlinear systems, a
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lot of directly designing methods have been developed. For
instance, Praly et al. [22], [15], [28] contributed some results
on observer design using high-gain techniques. Besancon and
Hammouri [3] and Dawson [12], studied the observer design
from the solution of Riccati equation for Lipschitz nonlinear
systems. Adaptive observers have been proposed for special
classes of nonlinear systems [23], [5]. For the class of global
Lipschitz nonlinear systems, existence condition have been
established for full-order observer and also for reduced-order
observers respectively in [24] and [32]. The design method
is based on the solution of a Riccati equation. More recently,
based on the linear matrix inequality (LMI) approach both
proportional and proportional integral observer for nonlinear
descriptor system has been proposed in [17]. According to
remark 1 in [17] the nonlinear systems considered in this paper
is more general than [5], [24], [32]. Moreover, we proposed to
extend the design of a proportional observer for an unsquare
(rectangular) switched descriptor system which include both
UI and Lipschitz nonlinearities. The systems considered are
also in a general form and seem to be the first using convex
optimization. Briefly an extension of UIO design for linear
system to nonlinear system is proposed.

This note is organized as follows. Section II presents the
problem statement. A design method of the proportional
observer and the main results of this note are given in section
III. In section IV the performance of the proportional switched
observer is evaluated through two numerical examples. The
proof of the detectability condition is provided in appendix.
Finally, section V concludes the paper.

II. PROBLEM FORMULATION

Consider the switched nonlinear descriptor systems

Eα(k+1)xk+1 = Aα(k)xk + Fα(k)dk + Hα(k)φk

yk = Cα(k)xk + Gα(k)dk
(1)

where Eα(k+1), Aα(k) ∈ R
p×n are in the general form

and may be rectangular,Fα(k) ∈ R
p×q, Hα(k) ∈ R

p×nφ ,

Cα(k) ∈ R
m×n, Gα(k) ∈ R

m×q, p ≤ n, x ∈ R
n, d ∈ R

q,

φk = φ(xk, uk, k) : R
n × R

nu × N → Rnφ and y ∈ R
m

denote respectively the descriptor vector, the unknown input
vector, the nonlinearity vector and the output vector. In the
sequel, disturbances or partial inputs which are inaccessible
are called UI. The signalu ∈ R

nu is the control input vector.
α (k) is a piecewise constant switching signal taking value
from the finite index setε = {1, 2, ..., h} . At a switching
time k, we haveα(k − 1) 6= α(k). The ordered sequence of
the switching times is said to be the switching time sequence
of the switching signal. It is assumed that the switching time
sequence is real-time accessible, depending on the control
input or on the measured output, or using a finite automation
or any strategy.{(Ei, Ai, Fi,Hi, Ci, Gi) : i ∈ ε} are a family
of matrices parameterized by an index setε = {1, 2, ..., h}
andi = α (k) . Moreover,α (k) = i andα (k + 1) = j means
that the matrices(Ej , Ai, Fi,Hi, Ci, Gi,Di) are activated.

Notation 1: (.)
T stands for the transpose matrix and(∗) is

used for the blocks induced by symmetry,(.) > 0 denotes a
symmetric positive definite matrix,(.)+ is the pseudoinverse
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matrix, (.)⊥ is the orthogonal complement,||.|| stands for the
Euclidean norm,(.)k+

stands for(.)α(k),α(k+1) , for instance
Tk+

= Tα(k),α(k+1).

Remark 1: The orthogonal complementA⊥ for a realn×p

matrix A with rank q is defined as(n − q) × n matrix such
that AA⊥ = 0 andA⊥A⊥T > 0.

Assumptions: In the sequel it is assumed that
A1 the nonlinearityφ(xk, uk, k) is globally Lipschitz in

x with Lipschitz constantγ, i.e.,

‖φ(xk, uk, k) − φ(x̂k, uk, k)‖ ≤ γ ‖xk − x̂k‖

∀u ∈ R
nu , k ∈ N

For instance, the sinusoidal terms usually encoun-
tered in many problems of robotics are all global
Lipschitz. Moreover, most nonlinearities are local
Lipschitz if they are considered in a given neigh-
borhood (see the def. in [23]).

A2























rank





Eα(k+1) Fα(k) 0
0 Gα(k) 0

Cα(k+1) 0 Gα(k+1)





= n + rankGα(k+1) + rank

[

Fα(k)

Gα(k)

]

A3







rank

[

zEi − Ai −Fi

Ci Gi

]

= n + rank

[

Fi

Gi

]

= ∀ |z| ≥ 1, i ∈ ε

A4















p + 2m > n + q + rankGα(k),

rank

[

Fα(k)

Gα(k)

]

= q,

rank
[

Cα(k) Gα(k)

]

= m

Remark 2: Define V1 =





In 0 0
Cα(k+1) 0 −Im

0 Im 0



, V2 =





In 0 0
0 Iq 0
0 0 −Iq



 and Γ =





In Fα(k) 0
0 Gα(k) 0

Cα(k+1) 0 Gα(k+1)



 .

For Eα(k+1) = In, the assumption A2 becomes equivalent
to assumption (12) given in [11] since

rank Γ = n + rank Gα(k+1) + rank

[

Fα(k)

Gα(k)

]

is equivalent to

rank V1ΓV2=





In 0 0
0 Iq 0
0 0 −Iq





= n+rankGα(k+1) + rank

[

Fα(k)

Gα(k)

]

which is equivalent to

rank





In Fα(k) 0
0 Cα(k+1)Fα(k) Gα(k+1)

0 Gα(k) 0





= n + rankGα(k+1) + rank

[

Fα(k)

Gα(k)

]

which is equivalent to (12) given in [11]. In addition for
α (k + 1) = α (k), the assumption A2 becomes equivalent
to condition (1-1) given by [29].

Remark 3: The assumptionsrank

[

Fα(k)

Gα(k)

]

= q and

rank
[

Cα(k) Gα(k)

]

= m ensure respectively that the UI’s
and measurements are linearly independent. This can always
be satisfied by redefining the UI and measurement vector [10].
While, according to remark 1,p + 2m > n + q + rankGα(k)

is necessary in order to ensure thatΘ⊥

k+
is well defined.

Our aim is to design an observer in the form,

zk+1 = Πk+
zk + Kk+

yk + Tk+
Hα(k)φ (x̂k, uk, k)

x̂k = zk + Nα(k−1),α(k)yk
(2)

wherezk ∈ R
n and

[

Tk+
Nk+

K1k+
Πk+

]

= ΨΘ+
k+

− Zα(k)Θ
⊥

k+

with

Θk+
=









Eα(k+1) Aα(k) Fα(k) 0
Cα(k+1) 0 0 Gα(k+1)

0 −Cα(k) −Gα(k) 0
0 −In 0 0









Ψ =
[

In 0n×(n+2q)

]

, Θ⊥

k+
=

(

In+p+2m − Θk+
Θ+

k+

)

Kk+
= K1k+

+ Πk+
Nα(k−1),α(k)

The problem of the observer design is also reduced to finding
matricesZα(k) such that the estimatêxk converges asymptot-
ically to the statexk.

III. O BSERVER DESIGN

In this section, a new method is presented to design the
observer (2) for switched nonlinear system (1). The following
theorem will give the structure of the observer.

Theorem 1: Under A2, there exist matricesTk+
, Nk+

,

K1k+
, Πk+

such that

Tk+
Eα(k+1) + Nk+

Cα(k+1) = In (3)

Πk+
= Tk+

Aα(k) − K1k+
Cα(k) (4)

Tk+
Fα(k) − K1k+

Gα(k) = 0 (5)

Nk+
Gα(k+1) = 0 (6)

and the difference of the state estimation errorek = xk − x̂k

becomes
ek+1 = Πk+

ek + Tk+
Hα(k)φ̃k (7)

where

φ̃k = φ(xk, uk, k) − φ(x̂k, uk, k) (8)

Kk+
= K1k+

+ Πk+
Nα(k−1),α(k) (9)

Remark 4: Consider the single system (1) whereε = {1} ,

α (k + 1) = α (k + 1) = 1, Eα(k+1) = E1, Aα(k) = A1,
Fα(k) = F1, Hα(k) = 0, Cα(k) = C1 and Gα(k) = G1.
When G1 has full row rank, the matrixC12 defined in [10]
is necessarily equal to zero. Consequently the matricesN

andM defined by (24) and (25) in [10] cannot be computed
and the observer is unfeasible. Furthermore in our approach,
whenG1 has full row rank, it follow that the onlyN1,1 which
fulfills N1,1G1 = 0 is the zero matrix. So, the observer (2)
is solvable provided the matrixΠ1,1 = T1,1A1 − K1,1C1 is
stable,T1,1E1 = In and K11,1

G1 = T1,1F1. In other words,
E1 must be nonsingular

(

T1,1 = E−1
1

)

and the row image of
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E−1
1 F1 has to be included in the row image ofG1 while the

solutionK1,1 of K11,1
G1 = E−1

1 F1 must ensure the stability
of Π1,1 = E−1

1 A1 − K1,1C1. This is very restrictive, but a
solution may exists. So, our observer may exist even if the
number of UI in measurement equation is equal to the number
of the measurement. In addition the detectability condition
A3 is the usual condition defined in UIO theory, see for
instance (23) in [10]. So the methodologies proposed is no
less restrictive than those reported in the literature [8],[10],
[11], [6], [29], [17].

Proof: Suppose that (3) hold, thenek+1 = xk+1 − x̂k+1

becomes

ek+1 = Tk+
Eα(k+1)xk+1 − zk+1 − Nk+

Gα(k+1)dk+1

and from (1), (2) and (8),ek+1 becomes

ek+1 =
(

Tk+
Aα(k) − Πk+

Tk+
Eα(k) − Kk+

Cα(k)

)

xk

+ Πk+
ek + Tk+

Hα(k)φ̃k − Nk+
Gα(k+1)dk+1

+
(

Tk+
Fα(k) −

(

Kk+
− Πk+

Nα(k−1),α(k)

)

Gα(k)

)

dk

(10)

Substituting (9) into (10) and using the constraints (4-6),
Tα(k−1),α(k)Eα(k) + Nα(k−1),α(k)Cα(k) = In (7) is obtained.
Rewriting (7) and (3, 4, 5, 6) respectively as

ek+1 =
[

Tk+
Nk+

K1k+
Πk+

]

ϕ1α(k)ek

+
[

Tk+
Nk+

K1k+
Πk+

]

ϕ2α(k)φ̃k (11)

Ψ =
[

Tk+
Nk+

K1k+
Πk+

]

Θk+
(12)

where

ϕ1α(k) =









Aα(k)

0m×n

−Cα(k)

0n×n









, ϕ2α(k) =









Hα(k)

0m×n

0m×n

0n×n









The solution
[

Tk+
Nk+

K1k+
Πk+

]

of (12) depends on
the rank of matrixΘk+

. A solution exists if and only if [25]

rank

[

Θk+

Ψ

]

= rankΘk+
(13)

which is equivalent toA2. Therefore, underA2, the general
solution of (12) is

[

Tk+
Nk+

K1k+
Πk+

]

= ΨΘ+
k+

− Zα(k)Θ
⊥

k+
(14)

whereΘ⊥

k+
=

(

In+p+2m − Θk+
Θ+

k+

)

and Zα(k) is an arbi-
trary matrix of appropriate dimension.

Substituting (14) into (11) gives (7), whereΠk+
and Tk+

are determined by known matrices and by the arbitrary matrix
Zα(k) as follows

Πk+
=ΨΘ+

k+
ϕ1α(k) − Zα(k)Θ

⊥

k+
ϕ1α(k) (15)

Tk+
Hα(k) =ΨΘ+

k+
ϕ2α(k) − Zα(k)Θ

⊥

k+
ϕ2α(k) (16)

Now, the condition of global stability of (7) is stated in the
following theorem.

Theorem 2: If there exist symmetric positive definite ma-

tricesP1, P2, ..Ph and matricesU1, U2, ..Uh satisfying








Pi + PT
i − Pj X1 X2 0
∗ Pi 0 γIn

∗ ∗ In 0
∗ ∗ ∗ In









> 0, ∀i, j ∈ ε (17)

then the state estimation errorek converges globally towards
the origins. X1,2 = PiΨΘ+

i,jϕ1i − UiΘ
⊥

i,jϕ1i and X2 =

PiΨΘ+
i,jϕ2i − UiΘ

⊥

i,jϕ2i. Moreover, the resulting observer
gains are given by (14) and (9), where the matricesZi are
given byZi = P−1

i Ui.
Proof: Consider the switched Lyapunov function

V (ek, k) = eT
k Pα(k)ek wherePα(k) > 0 is a positive definite

matrix. If such a Lyapunov function exists and its difference
∆V = V (ek+1, k + 1) − V (ek, k) is negative definite along
system trajectories of (7), then the origin of the system (7)is
globally asymptotically stable. Computing the difference∆V ,
along the solution of (7),∆V is given by

∆V =eT
k+1Pα(k+1)ek+1 − eT

k Pα(k)ek

=eT
k ΠT

k+
Pα(k+1)Πk+

ek − eT
k Pα(k)ek

+ 2eT
k ΠT

k+
Pα(k+1)Tk+

Hα(k)φ̃k

+ φ̃T
k HT

α(k)T
T
k+

Pα(k+1)Tk+
Hα(k)φ̃k

≤eT
k ΠT

k+
Pα(k+1)Πk+

ek

+ 2eT
k ΠT

k+
Pα(k+1)Tk+

Hα(k)φ̃k

+ φ̃T
k HT

α(k)T
T
k+

Pα(k+1)Tk+
Hα(k)φ̃ (k)

− eT
k Pα(k)ek − φ̃T

k φ̃k + γ2eT
k ek

since from A1 and (8) we have−φ̃T
k φ̃k + γ2eT

k ek ≥ 0.
Now, ∆V can be written as

∆V (ek, k) ≤ eT
ak

[

Γk+
ΠT

k+
Pα(k+1)Tk+

Hα(k)

∗ HT
α(k)T

T
k+

Pα(k+1)Tk+
Hα(k) − Inφ

]

eak

where Γk+
= ΠT

k+
Pα(k+1)Πk+

− Pα(k) + γ2In and eT
ak

=
[

eT
k φ̃T

k

]

. The difference∆V (ek, k) is negative definite
for any

[

eT
k φ̃T

k

]

6= 0 if
[

Γk+
ΠT

k+
Pα(k+1)Tk+

Hα(k)

∗ HT
α(k)T

T
k+

Pα(k+1)Tk+
Hα(k) − Inφ

]

< 0 (18)

As this inequality has to be satisfied under arbitrary switching
law, it follows that it should hold for special configuration
α (k + 1) = j andα (k) = i. DefineX3 = Pi −ΠT

i,jPjΠi,j −
γ2In, then (18), becomes

[

X3 −ΠT
i,jPjTi,jHi

∗ −HT
i TT

i,jPjTi,jHi + Inφ

]

> 0 ∀i, j ∈ ε (19)

which is equivalent, by Schur complement, to




Pj PjΠi,j PjTi,jHi

∗ Pi − γ2In 0
∗ ∗ Inφ



 > 0 ∀i, j ∈ ε

which is equivalent, by Schur complement, to








Pj PjΠi,j PjTi,jHi 0
∗ Pi 0 γIn

∗ ∗ Inφ
0

∗ ∗ ∗ In









> 0 ∀i, j ∈ ε



4

which is equivalent by Lemma 1 of [31] to








Pi + PT
i − Pj PiΠi,j PiTi,jHi 0
∗ Pi 0 γIn

∗ ∗ Inφ
0

∗ ∗ ∗ In









> 0 (20)

∀i, j ∈ ε

where the matricesS, M, Q and G in [31] are directly
identified by S = Pj , MT =

[

Πi,j Ti,jHi 0
]

, Q =




Pi 0 γIn

∗ Inφ
0

∗ ∗ In



 and G = Pi. Substituting (16) andUi =

PiZi into (20) with α (k) = i and α (k + 1) = j, (17) is
obtained.

Remark 5: The feasibility of (17), or equivalently of (19),
implies that the pairs

(

ΨΘ+
i,iϕ1i, Θ⊥

i,iϕ1i

)

are detectable.
Indeed, according to Theorem 2, satisfying (17) is equivalent
to guarantee the stability of the state estimation error (7)
whatever the switching rule can be. This includes the case
where the switching rule leads to a linear behavior, i.e.
α (k + 1) = α (k) = i and Πi,i has to be Hurwitz. In
other words forα (k + 1) = α (k) = i, the existence of a
solution Pi > 0, Ui, of the LMI (17) needs that the matrix
Πi,i = ΨΘ+

i,iϕ1i − ZiΘ
⊥

i,iϕ1i is Hurwitz (in the meaning of
Lyapunov stability) since the element(1, 1) of (19) implies
−Pi + ΠT

i,iPiΠi,i < −γ2In+m < 0.
Remark 6: Of course, the switched detectability of the

system (7) is not ensured by the assumption that for each sub-
systemi ∈ ε, the pair

(

ΨΘ+
i,iϕ1i, Θ⊥

i,iϕ1i

)

is detectable (see
the example in section 7.2 given by ([4]), but the detectability
of each pair

(

ΨΘ+
i,iϕ1i, Θ⊥

i,iϕ1i

)

is a necessary condition to
solve (17). Moreover an arbitrary choice ofTi,i can involve
a loss of detectability of the pair

(

ΨΘ+
i,iϕ1i, Θ⊥

i,iϕ1i

)

(see
[9]). To overcome the problem of an arbitrary choice of
Ti,i the computation of a suitableTi,i is included in the
design procedure. That is why (7) is rewritten as (11) where
[

Tk+
Nk+

K1k+
Πk+

]

is given by (14). Thus the matrix
Zi involved inTi,i (14) plays the role of a parametrization. The
switched observer design is finally reduced to the computation
of the gain matricesZi, i ∈ ε, ensuring the asymptotic stability
of system (7) under arbitrary switching signal.

Now the following results can be established.
Lemma 1: There exist matricesZi such that the matrices

Πi,i = ΨΘ+
i,iϕ1i − ZiΘ

⊥

i,iϕ1i is Hurwitz if and only if the
pair

(

ΨΘ+
i,iϕ1i, Θ⊥

i,iϕ1i

)

is detectable, which is equivalent to
(21), which is equivalent to A3.

rank

[

zIn − ΨΘ+
i,iϕ1i

Θ⊥

i,iϕ1i

]

= n,∀ |z| ≥ 1 (21)

Proof: See the appendix.

IV. EXAMPLES

In this section, the results are illustrated with two simu-
lations. In the first one, the studied system is nonsingular,
it is derived from the continuous system of [24], while the
second simulation concerns a switched systems subject to UI,
nonlinearities and algebraic constraints.

Example 1: From [24] the observer (2) for system (1a,1b)
is guaranteed to be stable for all nonlinearities with Lipschitz
constant of magnitude less than0.49. Using our above LMI
formulation, it is proposed to find the largest Lipschitz constant
γ such that the observer (2) exists for system (1). The system
(1a,1b) considered in [24] is in first approximated by the Euler
approximation where for a good approximation the sample
time is fixed toTe = 0.01s. Let consider the discrete-time
model (1) whereε = {1}, α (k) = 1 ∀k, E1 = I, A1 =

I2 + TeĀ, Ā =

[

0 1
1 −1

]

, F1 = 0, G1 = 0, H1 = TeI2 and

C1 =
[

0 1
]

. It is assumed that the nonlinearityφ (xk, uk, k)
is globally Lipschitz inxk with Lipschitz constantγ andA2
holds sinceE = I2 andA3 holds for allz.

For a known Lipschitz constantγ, the Theorem 2 gives
the gain observerZ1 such that observer (2) for system (1)
exists. Theorem 2 can be reformulated as the following convex
optimization problem

max
P1,U1

γ subject to(17) and P1 = PT
1 > 0 (22)

wherei = j = 1, Θk+
=









I2 A1

C1 0
0 −C1

0 −I2









andΨ =
[

In 0n×n

]

.

Applying the convex optimization problem defined by (22),
the following results are obtained:γ = 0.9950, T1,1 =
[

1 −9.99
0 0.0141

]

, N1,1 =

[

9.99
0.9859

]

, K1,1 =

[

−0.8881
0.0152

]

and

Π1,1 =

[

0.9001 0
0.0001 0.0047

]

. It can be noted that the maximal

constant of Lipschitz obtained by the present approach is larger
than the Lipschitz constant given by [24]. IfC1 =

[

1 0
]

, the
maximal constant of Lipschitz isγ = 1.4142.

The following example shows that a switched observer may
exist for a more general class.

Example 2: Consider the switched nonlinear descriptor
systems (1) where

Ei =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









, Fi =









f11i
0

0 f22i

0 0
0 1









,

Ai =









−1 a12i
0 a14i

−1 0 0 1
0 −1 a33i

0
0 0 0 0.5









, xk =









x1k

x2k

x3k

x4k









Hi =









1
0
h31i

0









, φk = γ sin x1k, Ci =





1 0 0 0
0 0 c23i

1
0 0 0 c34i



 ,

Gi =





1 0
0 0
1 0



 , dk =

[

d1k

d2k

]

, ε = {1, 2} , γ = 0.5,

Te = 0.01 sec, d1k = sin 4kTe, d2k = sin 0.1kTe,

a121
= 0.4, a122

= 0.6, a331
= −0.4, a332

= −0.6,
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a141
= 0.2, a142

= 0, c231
= 1, c232

= 0, c341
= 1, c342

= 0,

h311
= 1, h312

= 0, f111
= 0, f112

= 1, f221
= 1, f222

= 0

and where the switching time sequence is given by table 1.

k 0 . . . 49 50 51 52 . . . 250 251 252 253 . . .
α(k − 1) 2 . . . 2 2 2 1 . . . 1 1 1 2 . . .
α(k) 2 . . . 2 2 1 1 . . . 1 1 2 2 . . .
α(k + 1) 2 . . . 2 1 1 1 . . . 1 2 2 2 . . .

TABLE I

SWITCHING SEQUENCE

Remark 7: If the switching time sequence is unknown a
priori, a switching rule can be defined, for instance see
example 1 in [20].

Algorithm
1) The assumptionA1 holds forγ = 0.5. AssumptionA2

holds for all couples{(2, 2); (2, 1); (1, 1); (2, 2)}, for
instanceα(k + 1) = 2, α(k) = 1, and the equality





E2 F1 0
0 G1 0
C2 0 G2



 = n + rankG2 + rank

[

F1

G1

]

is satisfied. The assumptionA3 holds for all|z| ≥ 1 and
for all i ∈ ε = {1, 2}.

2) From table 1,ϕ11
, ϕ21

, ϕ12
, ϕ22

,Θ2,2,Θ2,1,Θ1,1, Θ1,2

and Ψ are computed. Since assumptions A1, A2, A3
and A4 hold, one can solve the convex optimization
problem defined in theorem 2. More precisely, finding
P1, P2, U1, U2 subject toP1 = PT

1 > 0, P2 = PT
2 > 0,

(17) with i, j = 2, 2, (17) with i, j = 2, 1, (17) with
i, j = 1, 1 and (17) withi, j = 1, 2. After 26 iterations,
the gainsZ1, Z2 are obtained. From (14) we deduce

[

T2,2 N2,2 K12,2
Π2,2

]

=ΨΘ+
2,2 − Z2Θ

⊥

2,2
[

T2,1 N2,1 K12,1
Π2,1

]

=ΨΘ+
2,1 − Z2Θ

⊥

2,1
[

T1,1 N1,1 K11,1
Π1,1

]

=ΨΘ+
1,1 − Z1Θ

⊥

1,1
[

T1,2 N1,2 K11,2
Π1,2

]

=ΨΘ+
1,2 − Z1Θ

⊥

1,2

3) Using the matlab/simulink software two S-functions are
written, the first for system (1) and second for the
observer (2). According to table 1, the matricesTk+

,

Kk+
, Πk+

and Nα(k−1),α(k) are updated withKk+
=

K1k+
+ Πk+

Nα(k−1),α(k).

Simulation results show, through figures 1(a), 1(b) a good
state estimation performance. The estimation of the statex4

is not presented due to space limitation.
Remark 8: If a common quadratic Lyapunov function

V (ek, k) = eT
k Pek is imposed (i.e.,P1 = P2 = P andU1 =

U2 = U,), the corresponding LMI are found to be unfeasible.
Indeed, the polyquadratic stability is less conservative than the
quadratic stability.

Remark 9: If the convex optimization, defined by (22),
is applied, the following maximal boundγ is obtained for
different value ofh311

:

h311
1 1.2 1.26 1.27 1.28

γmax 184.3 98.87 49.53 35.05 1.1768

0 1 2 3 4 5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

sec

0 1 2 3 4 5

0

0.5

1

sec

alpha(k) x1
estimate of x1

0 1 2 3 4 5

−1

−0.5

0

0.5

1

sec

x2
estimate of x2

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

sec

x3
estimate of x3

kTe 

(a) Switching time sequence and state estimation
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0.1

0.2

0.3
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0.5

(sec)

0.45 0.5 0.55 0.6
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−0.15

−0.1

−0.05

0

sec

2.5 2.55 2.6 2.65 2.7
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

sec

0 0.02 0.04 0.06 0.08 0.1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

sec

x1
estimate of x1

x1
estimate of x1

x2
estimate of x2

x3
estimate of x3

kTe 

(b) zoom of the state estimation

Fig. 1. Switching time sequence and state estimation performance

where the parameterh311
is a coefficient of the matrixHα(k)

of system (1). Ifh311
increases thenγmax decreases since

there is linear dependant of the nonlinear termφ (xk, uk, k).

V. CONCLUSION

A rigorous method for the design of observers for switched
nonlinear descriptor systems in the presence of UI has been
presented. Existence conditions of such observers have been
given and proved with a strict LMI formulation. Furthermore
a polyquadratic stability is used to assess state estimation. It is
interesting to note that the systems addressed in this paperare
of a more general class than those reported in the literature.
Moreover, from [27] an extension to design a robust observer
for an uncertain switched descriptor system can be developed,
this is actually studied.

VI. A PPENDIX

It is proved that assumption A3, or (21) are equivalent to
the existence of matricesZi such thatΠi,i are Hurwitz.

Proof A3 ⇔ (21). Define the following nonsingular matri-
cesW1i,W3 and the full-column rank matrixW2i

W1i =

[

In 0
−Θ+

i,iϕ1i I2(n+q)

]

,W2i =





In −ΨΘ+
i,i

0 Θ⊥

i,i

0 Θi,iΘ
+
i,i



 ,
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W3 =













−In 0 0 0 0
zIn In 0 0 0
0 0 In 0 0
0 0 0 −Iq 0
0 0 0 zIq Iq













According to remark 5, forα (k + 1) = α (k) = i the
existence of a solutionPi > 0, Ui, of the LMI (17)
needs that the matrixΠi,i is Hurwitz, therefore each pair
(

ΨΘ+
i,iϕ1i, Θ⊥

i,iϕ1i

)

must be detectable. The proof is
decomposed in two parts.

1) Let prove that A3 is equivalent to

rank

[

zIn Ψ
ϕ1i Θi,i

]

− 2n − rankGi

= n + q,∀ |z| ≥ 1, i ∈ ε

(23)

2) Let prove that (23) is equivalent to (21).

Proof 1) FromW3, the relation (23) is equivalent to

rank

[

zIn Ψ
ϕ1i Θi

]

W3 − 2n − rankGi = n + q,

∀ |z| ≥ 1, i ∈ ε

which is equivalent to

rank





zEi − Ai −Fi 0
zCi zGi Gi

Ci Gi 0



 − rankGi

= n + q,∀ |z| ≥ 1, i ∈ ε

which is equivalent toA3.
Proof 2) SinceΘ+

i,iΘi,iΘ
+
i,i = Θ+

i,i , Θi,iΘ
+
i,iΘi,i = Θi,i

andrank

[

Θi,i

Ψ

]

= rankΘi,i, we obtain(23)

⇔ rankW2i

[

zIn Ψ
ϕ1i Θi,i

]

W1i − 2n − rankGi

= n + q,∀ |z| ≥ 1, i ∈ ε

⇔
rankΘi,i + rank

[

zIn+m − ΨΘ+
i,iϕ1i

Θ⊥

i,iϕ1i

]

−2n − rankGi

= n + q,∀ |z| ≥ 1, i ∈ ε

⇔ rank

[

Fi

Gi

]

+ rank

[

zIn+m − ΨΘ+
i,iϕ1i

Θ⊥

i,iϕ1i

]

= n + q,∀ |z| ≥ 1, i ∈ ε

⇔ (21)

whererank Θi,i =2n+rank Gi+rank

[

Fi

Gi

]

andrank

[

Fi

Gi

]

=q.
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[4] G. Böker and J. Lunze, ”Stability and performance of swiching Kalman
filters,” Int. J. Contr., vol. 75, no. 16/17, pp. 1269-1281, 2002.

[5] Y. M. Cho and R. Rajamani, ”A systematic approach to adaptive
observer synthesis for NL systems,”IEEE Trans. Automat. Contr., vol.
42, no. 4, pp. 534-537, 1997.

[6] D. Chu and V. Mehrmann, ”Dirturbance decoupled observer design for
descriptor systems,”Sys. Contr. Lett. vol. 38, pp. 37-48, 1999.

[7] J. Daafouz, P. Riedinger and C. Iung, ”Stability Analysis and Control
Synthesis for Switched Systems: A Switched Lyapunov Function Ap-
proach,” IEEE Trans. Automat. Contr., vol. AC-47, no. 11, pp. 1883-
1887, Nov. 2002.

[8] M. Darouach, M. Zasadzinski, and D. Mehdi, ”State estimation of
stochastic singular linear systems,”Int. J. Syst. Sci., vol. 2, no. 2, pp.
345-354, 1993.

[9] M. Darouach, M. Zasadzinski and S. J. Xu, ”Full-order observers for
linear systems with unknown inputs,”IEEE Trans. on Automat. Contr.,
vol. 39, no. 3, pp. 606-609, 1994.

[10] M. Darouach, M. Zasadzinski and M. Hayar, ”Reduced-order observer
design for descriptor systems with unknown inputs,”IEEE Trans.
Automat. Contr., vol. 41, no. 7, pp. 1068-1072, 1996.

[11] M. Darouach, M. Zasadzinski and M. Boutayeb, ”Extension of minimum
variance estimation for systems with unknown inputs,”Automatica, vol.
39, pp. 867-876, 2003.

[12] D. M. Dawson, ”On the state observation and output feedback problems
for nonlinear uncertain dynamic systems,”Syst. Control Lett., vol. 18,
pp. 217-222, 1992.

[13] A. J. Kerner and A. Isodori, ”Linearization by output injection and
nonlinear observers,”Syst. Control Lett., vol. 3, pp. 47-52, 1983.

[14] A. J. Kerner and W. Respondek, ”Nonlinear observers with linearizable
error dynamics,”SIAM Journal on Control and Optimization, vol. 23,
no. 2, pp. 197-216, 1985.

[15] H. K. Khalil and F. Esfandiari, ”Semiglobal stabilization of a class of
nonlinear systems using output feedback,”IEEE Trans. on Automat.
Contr., vol. 38, pp. 1412-1415, 1993.

[16] D. Koenig, ”Unknown input proportional multiple-integral observer
design for linear descriptor systems: application to state and fault
estimation,” IEEE Transaction of Automatic and Control, Vol. 50, no.
2, pp. 212 – 217, Feb. 2005.

[17] D. Koenig, ”Observer design for unknown input nonlinear descriptor
systems via convex optimization,”IEEE Transaction of Automatic and
Control, vol. 51, no. 6, pp. 1047 – 1052, June 2006.

[18] D. Lieberzon and A. S. Morse, ”Basic problems in stability and design
of switching system,”IEEE Control Syst. Mag., vol. 19, no. 5, pp. 59-70,
oct. 1999.

[19] R. Marino, ”Adaptive observers for single-output nonlinear systems,”
IEEE Trans. on Automat. Contr., vol. 35, pp. 1054-1058, 1990.

[20] G. Millerioux and J. Daafouz, ”Unknown input observersfor switched
linear discrete time systems,”Proceeding of the American Control
Conference, pp. 5802-5805, Massachussets, USA, June 2004.

[21] R. J. Patton, R. N. Clark and P. M. Frank, ”Fault diagnosis in dynamic
systems,”Englewood Cliffs, NJ: Prentice-Hall.

[22] L. Praly and Z. P. Jiang, ”Stabilization by output feedback for systems
with ISS inverse dynamics,”Syst. Control Lett., vol. 21, pp. 19-33, 1993.

[23] S. Raghavan and J. K. Hedrick, ”Observer design for a class of nonlinear
systems,”Int. J. Control, vol. 59, no. 2, pp. 515-528, 1994.

[24] R. Rajamani, ”Observers for Lipschitz Nonlinear Systems,” IEEE Trans.
on Automat. Contr., vol. 43, no. 3, pp. 397-401, 1998.

[25] C. R. Rao and S.K. Mitra, ”Generalized Inverse of Matrices and Its
applications,”New York: Wiley, 1971.

[26] Z. Sun and S.S. Ge, ”Analysis and synthesis of switched linear control
systems,”Automatica, vol. 41, pp. 181-195, 2005

[27] Y. G. Sun, L. Wang and G. Xie, ”Delay-dependent robust stability
and stabilization for discrete-time switched with mode-dependent time-
varying delays,” Applied mathematics and computation, Elsevier, Article
in press, 2006.

[28] A. Teel and L. Praly, ”Global stabilizability and observability imply
semi-global stabilizability by output feedback,”Sys. Contr. Lett. vol. 22,
pp. 313-325, 1994.

[29] M. E. Valcher, ”State observers for discrete-time linear systems with
unknown inputs,”IEEE Trans. on Automat. Contr., vol. 44, no. 2, pp.
397-401, 1999.

[30] X. H. Xiao and W. Gao, ”Nonlinear observer design by observer error
linearization”,SIAM Journal on Control and Optimization, vol. 27, no.
1, pp. 199-216, 1989.

[31] G. Xie and L. Wang, ”Quadratic stability and stabilization of discrete-
time systems with state delay,”Proceeding of the Conf. on Dec. and
Contr., pp. 3235-3240, Bahamas, USA, Dec. 2004.

[32] F., Zhu and Z. Han, ”A note on observers for Lipschitz nonlinear
systems,”IEEE Trans. on Automat. Contr., vol. 47, no. 10, pp. 1751-
1754, 2002.


