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Abstract— In this paper, a decoupled multiple model approach  the whole operating range. On the other hand, the observer
is used in order to cope with the state estimation of uncertai  design problem for generic nonlinear models is delicate and
nonlinear systems. The proposed decoupled multiple model so far this problem remains unsolved in a general way.

provides flexibility in the modelling stage because the dimesion Multiol del hi iate tool f d
of the submodels can be different and this constitute the mai uluple model approach 1s an appropriate tool 1or mod-

difference with respect to the classically used multiple mael  €lling complex systems using a mathematical model which
schema. The state estimation is performed using a Proportiml ~ can be used for analysis, controller and observer desiga. Th

Integral Observer (PIO) which is well known for its robustness  pasis of the multiple model approach is the decomposition of
properties with respect to uncertainties and perturbatiors. The the operating space of the system into a finite numbepef

Lyapunov second method is employed in order to provide . . . L .
sufficient conditions, in LMI terms, and to compute the optimal  ©rating zonegeach operating zone is delimited byweight-

gains of the P10. The effectiveness of the proposed methoagly ~ INg functior). Hence, the dynamic behaviour of the system
is illustrated by a simulation example. inside of an operating zone can be modelled using simple
structural submodels for example linear models. Finally,
the approximation of the system behaviour is performed by
In many real world engineering applications, the knowledggssociating the submodels and by taking into consideration
of the system state is often required not only for controheir respective contributions via an interpolation medi.
purpose but also for monitoring and fault diagnosis. INote that a large class of nonlinear systems can accurately
practice however, the measurements of the system state ¢agnmodelled using multiple models.

be very difficult or even impossible, for example when an The choice of the structure used to associate the submodels
appropriate sensor is not available or economically viablgonstitutes a key point in the multiple modelling framework
Model-based state estimation is a largely adopted strateghieed, the submodels can be aggregated using various
used in order to cope with this important problem. Typicallystructures [4]. Classically, the association of submodels

a state estimation is provided by means of an observer whoserformed in the dynamic equation of the multiple model
inputs are the inputs and the outputs of the system and theing a common state vector. This model, knowalsagi-
outputs are the estimated states. Note that the structae OfSugeno multiple modehas been initially proposed, in a
observer is based on the mathematical model of the considizzy modelling framework, by Takagi and Sugeno [5] and
ered system. Therefore, the accuracy of the state estimatig a multiple model modelling framework by Johansen and
depends on the accuracy of the used mathematical mog®jss [6]. This model has been largely considered for arslysi
and the quality of the employed measurements. However,miodelling, control and state estimation of nonlinear syste
mathematical model is an abstract representation of tHe rggee among others [7]-[9] and references therein).

world and it only provides an approximation to dynamic |In this paper, an other possible way for building a multiple
behaviours of the actual system. Consequently, modellingodel is employed. This model results of the association
errors between the system and its model are unavoidabig. submodels in the output equation of the multiple model.
Besides, the employed measurements are also affected Tiis model, known aslecoupled multiple modehas been
external disturbances due to the interactions between tBgggested in [4]. Note also that the proposed model has been
system and its environment. successfully employed in modelling [10], [11], control [42

Hence, many efforts have been made in the past twa4] and state estimation [15], [16] of nonlinear systems.
decades to improve robustness of the state estimation Tfie main feature of the decoupled multiple model is that
linear systems affected by disturbances and parametric wuubmodels of different dimensions can be used. This fact
certainties (e.g. in [1]-{3] norm-bounded uncertainties a introduces some flexibility degrees in the modelling stage
considered). However, dynamic behaviour of most of reah particular when the model is obtained using a black box
systems is nonlinear and consequently a linear model is nglodelling strategy. Indeed, the dimensions (e.g. number of
able to provide a good characterisation of the system igates) of the submodels can be well adapted to each oper-

. . . G _ ating zone and consequently the total number of parameters
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I. INTRODUCTION



time-varying and norm bounded. With respect to the classi set of measured input and output data using appropriate
proportional observer, the P1O offers more additional degr black box identification tools proposed for instance in [10]
of freedom and it is appreciated for its robustness progeerti[11], [17].

with respect to perturbations and imperfections in the hode remark 1:1t should be mentioned that the outpust)

(details are given in section Ill). The PIO design problemyt the submodels are intermediary modelling signals only
consists in finding the gains of the observer such that thie stq seq in order to provide a representation of the real system
estimation error remains globally bounded for all admigsib phehaviour. The submodel outpuigt) are internal signals of
uncertainties and perturbauons. Furthermpre, the Pi@udes ¢ multiple model and consequently they are not available
based on the_mulnple model representation does not seel§ysically (measures are unavailable). Hence, they cédymot
reported previously to the best authors’ knowledge. employed for driving an observer. Only the global output of

The outline of this paper is as follows. Discussion aboue multiple model can be used for this purpose.
decoupled multiple model is proposed in section Il. In secti

lll, the PIO design problem is investigated and the gaing pModel uncertainties

of the observer are obtained by LMI optimization. Finally, ) o
in section IV, a simulation example illustrates the statd € parametric uncertainties in the system are represented

estimation of a decoupled multiple model. by the following norm-bounded matrices:
Il. ON THE DECOUPLED MULTIPLE MODEL AA = Wi(E())MIRON 3)
REPRESENTATION AB = pi(&(t)HiSMHE , (4)

In this paper, an.uncertain qonlinegr system described ’WhereMi, Ni, Hi andE; are known constant matrices of ap-
a decoupleq mult|pl_e mod_el is consujere_d. The state SPaGfypriate dimension and (t) andS (t) are unknown, real and
representation of this multiple model is given by: possibly time-varying matrices with Lebesgue-measurable

(1) = (A+OAX(L)+ (Bi+AB)u(t) + Diw(t) , (1a) elements satisfying:
yi(t) = Gxi(t) , (1b) FTOR({M) <l and S(O)S{t) <! Wt . (5)
L
y(t) = _Zlui(f(t))yi (t) +Wwt) , (1c) Note that the uncertainties of each submodel are taken into

consideration according to the validity degree of each sub-
wherex € R" andy; € RP are respectively the state vectormodel via its associated weighting functigr(¢ (t)). Indeed,
and the output of thé!" submodel;u € R™ is the input, the uncertainties of a submodel can be neglected when its
y € RP the output andv € R" the perturbation. The matrices respective contribution is not taken into consideration fo
A € RWN B g RWM D; € RW*T, C e RPN and provide the overall multiple model output.
W € RP*" are known and appropriately dimensioned. The

parametric uncertainties in the system are represented Rtations: the following notations will be used all along this

matricesAA; andAB; (details are given in section II-A).  paper.P > 0 (P < 0) denotes a positive (negative) definite
The complete partition of the operating space of the systematrix P; X denotes the transpose of mati | is the

is performed using a characteristic variable of the systeidentity matrix of appropriate dimension ad@g{A, ..., Ay}

called decision variableé (t) that is assumed to be known stands for a block-diagonal matrix with the matriogson

and real-time available (e.g. the inputs and/or exogenotse main diagonal. Th&,—norm of a signaool, guantifying

signals). Note also that the validity of the submodels ar : . 2 T.T
quantified by theveighting functiongs; (& (t)) which delimit s energy is denoted and defined (0l = é e (e(tydt.

each operating zone. They satisfy the following convex surinally, we shall simply writey; (¢ (t)) = pi(t).

constraints:
IIl. ON THE PROPORTIONALINTEGRAL OBSERVER

L
Zlﬂi(f(t)) =land 0<p(€(t)) <1,vi=1.L,Vt. (2) The conventional Luenberger or proportional observer only
= uses a proportional correction injection term given by the
Thanks to the above properties, the contributions of séverautput estimation error. In the PIO an additional injection
submodels can be taken into account simultaneously atetrmz(t), given by the integral of the output estimation error,
therefore the dynamic behaviour of the multiple model cars included in the dynamic equation of the observer. Thanks
be truly nonlinear instead of a piecewise linear behaviour.to this additional degree of freedom some robustness degree
Note that the contributions of the submodels are taken intf the state estimation with respect to the system uncertain
account via a weighted sum in the output equation of thées and perturbation are introduced [1], [18], [19]. Th©PI
multiple model. Consequently, dimensions of the submodelsas also been successfully employed in the synchronization
can be different and therefore this multiple model fornof a chaotic system by [20]. The extension of the PIO design,
is suitable for a black box modelling of complex system$ased on dissipativity framework, to a particular nonlmea
with variable structure and/or variable complexity in eaclsystem whose non linearity is assumed to satisfy a sector
operating zone. The model parameters can be obtained frdmounded constraint, has been recently proposed in [21].
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In this section, sufficient conditions for ensuring conver- y_t)
gence and optimal disturbance attenuation of the estimatio
error are established in LMI terms [22] using the Lyapunov C; = [| o}T’ C,= [o |]
method. Note that the classic observer design cannot be
employed directly in a multiple model framework because
the interaction between submodels must be taken into co®!
sideration in the observer design procedure for ensuriag th . L _
observer stability for any blend between the submodels. Aq(t) = _Zﬂi (L (19)

Firstly new notation of the decoupled multiple model =
needed to design a PIO is introduced. The suggested PY(nere ~
is then presented and its design is proposed by introducing A= P O} i
someH. performances. G O

Let us notice that, by using the convex properties of the
ghting functions, the matriR,(t) can be rewritten as:

(20)

B. PIO structure

A. Augmented form of the decoupled multiple model The state estimation of the decoupled multiple model (18) is

Consider the following augmented state vector: achieved by using the following PIO:
L 3 = AR C1Bu(t) + Kp(y(t) — (1))
X(t) = [ ()X ©) - 1)) eRn=Fn (6) %t A%+
(t) = P ) () (1)) 2 K (zZ(t) - 2(1)) , (21a)
yt) = CEOTiRalt 21b
and the supplementary varialdg) = iZy(é)dé needed for )2/8 _ Ciéa(i)xa() ’ ((Zlci

the PIO design. Thus, the decoupled multiple model (1) may o ] )
be rewritten in the following compact form: which has a similar structure of the PIO used in [20]. Notice

that the use of the supplementary integral actigf) in

xt) = (A+DAX()+ (B+AB)u(t)+Dw , (7a) the dynamic equation is at the origin of the designation
2(t) COX(t) +Ww(t) | (7b)  Proportional-Integral Observer. This mati introduces a
yit) é(t)x(t)+Ww(t) ’ (7¢) freedom degree in the observer design.
where C. Design of the PIO
A = diag{Ay---A --- A} , (8) Consider the state estimation error defined by:
5 T
B = [Ba-B"--BT] , 9) ealt) = Xa(t)—Ra(t) (22)
= T
b = [DlT DT DLT] ) (10)  andits dynamics by:
L
o = 3 ues (11) &) = (Aalt)—KeC(t)C] — K] )ea(t) + C1OAX(E)
. = + Ci0Bu(t) + (Da— KpW)w(t) . 23
& -0 .G . 0 w2 18BU(t) + (Ba— KeW)wi(t) (23)
Finally, (7a) and (23) can be gathered as follows:
with the parametric uncertainties given by: ) _
] E) = Awdt)e(t) - OW(H) (24)
A = ZUi OMRON (13) where
= T
3 L N et) = [ X)) (25)
AB = i(OHiS(H)E 14 — T
i;ul( ) |S( ) 1 (14) W(t) — [WT('[) uT(t)} T’ ] (26)
N = [0---Ni---0] , (16) 0 A+DA
~ Dy, —KpW C31AB
H = [O---HiT---O]T ) (17) b = { a DP éiAB} (28)
Finally, the equations (7) can be rewritten in the followingNotice that the proportional gailkp can be used to reduce
augmented form: the impact of the perturbation on the estimation eegt)
, ~ T — ~ (see (27)). On the other hand, the observer dynamics can be
Xa(t) = (NAa(t)""ClAACl)Xa(t)+Cl(B+AB)u(t) improved with the help of the integral gaif (see (28)).
+  Daw(t) , (18a) Note also that, from equation (24%(t) is stable if and
yt) = C(t)CIxa(t) +Ww(t), (18b) only if the_the ggcoupled multiple model (7) with admissible
0 — Syt 18 uncertaintieNA |s~stable and the observer gaids andK
At = Cxall) (18¢)  are chosen so that(t) — KpC(t)C) — K(Cy is also stable. In

where the sequel, the two following assumptions will be considere



Assumption 1.The decoupled multiple model (7) with N;=[01 -02 03] , N=[01 02] ,
admissible uncertaintieSA is stable. _ Hy=[03 -01 0.2]T . Hp=[-01 _0_2]T 7
Assumption 2:The input and the perturbation are bounded

. . E;=-0.2 E,=-0.3
energy signals, i.g|u(t)||3 < « and |Jw(t)||3 < co. ! ’ 2 ’

: w=[01 -01], Y=l -
The robust PIO design problem can thus be formulated as . i ) ] )
finding the matricekp and K; such that the influence of Here, the decision variablé(t) is the input signal
W(t) on the estimation errog,(t) is attenuated and the stateU(t) € [~1,1]. The weighting functions are obtained from
estimation error remains globally bounded for any blenfiormalised Gaussian functions:

between the submodels. To this end, the followigective (&) = /Z n;(é (31)

minimizing signatvhich only depends on the estimation error

(1) is introduced: mEw) = exp(—(é(t) ~6)/a ) . G2
vit) = [Y 0]g(t) , (29)

with the standard deviatiom = 0.6 and the centres; = —0.3
whereY is a matrix of appropriate dimension chosen by thendc, = 0.3. The perturbatiom(t) is a normally distributed
designer. Finally, the expected performances of the PIO caandom signal with zero mean and standard deviation equal
be formulated by the following{. performances: to one. The input, the weighting functions and the outputs
lim ea(t) = 0 for w(t) =0, Fi(t) =0,S(t) =0 , (30a) &€ shown in figu.re 1. The time-varyin_g signeﬂ$t),_3(t)
t—eo and the perturbatiow(t) are plotted in figure 2. Notice that
[v(t)]|3 < y?|IW(t)||3 for W(t) # 0 andv(0) =0, (30b) for 0 <t < 120 no uncertainties in the multiple model are

wherey is the £, gain fromw(t) to v(t) to be minimised. considered.

Theorem 1:Consider the uncertain model (18) and as
sumptions 1 and 2. There exists a PIO (21) ensuring tt
objective (30) if there exists symmetric positive definite
matricesP; € R(MPx(MP) and P, € R™", matricesLp €
R(MP)*P and L, € RMP*P and positive scalary, 1} and
7, such that the following condition holds for=1...L

miny subject to

H+rf+Y’y o w o PCM PCH I ‘ ‘ ‘
0 Ai PD P M PoH; time (s)
(S) E:g 3/| g?] 8 8 <0, Fig. 1. Input, weighting functions and outputs
(%) (* 0 0 -1l ] !
(%) (* 0 0 0 — 0
where — O — = :
N = PA-LCCy —LC) p—
Y = PDa—LpW , o
N = P2A+ AT P, + T:iI_NiT Ni , ) 100
@ = -Vl+ TiZEiT Ei 0'5 : ‘ ‘ ‘ ‘ ‘
for a prescribed matri¥Y. The observer gains are given by 0 | | ‘ ‘ | ‘
Kp = P 'Lp andK; = P, 1Ly; the £, gain fromwit) to v(t) % 0 oy %0 &0
is given byy= /. Fig. 2. F(t), S(t) andwi(t)

Proof: The proof is deferred to the appendix. O
A solution satisfying conditions of theorem 1 is obtained

IV. A SIMULATION EXEMPLE using YALMIP interface and SEDUMI solver:

Consider the decoupled multiple model with= 2 different

i . . T
dimension submodels given by: Ko — —-3.13 121 -202 368 —-0.90 050 049
P=1020 08 100 -151 274 -0.08 108| °
-01 -03 06 0.3 01 T
Ai=|-05 04 01|, A=|g g *04 , K | 016 —012 —041 031 -057 065 —0.04
-03 -02 -0.6 : e '=]-013 012 041 -032 056 002 065
B1=[03 05 OG]T , B,=[0.4 0.3]T , with a minimal attenuation level given by = 0.8654 and
1_ 1_ 2 _ 2 _
Di=[01 -01 01 | D,=[-01 —01]" , 17 =074,1;=1.37,1, =7.67,7; =2.08. .
04 03 05 04 02 In the simulation the initial conditions of the multiple
{ 0'4} ; C2= g3 70'2} model arex(0) = [01-0101-0101] and the initial con-
' T ' T ditions of the observer are equal to zero. Figures 3 and 4
=[-01 02 -01] , M=[-02 01} , present the comparison between the states of the submodels



and their estimates. Note that the interaction between sulle help of a decoupled multiple model. This model is
models is at the origin of some compensation phenomenossitable for modelling variable structure systems because
in the state estimation. For example, if the output of sulthe dimension of the submodels can be different in each
model 1 is only taken into consideration (if@.(t) ~ 1) then operating zone. Sufficient conditions, in LMI terms, for
naturally a bad state estimation of the submodel 2 is pravideensuring’H. performances of the estimation error are es-
by the observer. However, the overall output estimatiomef t tablished using Lyapunov method. The effectiveness of the
multiple model is not truly affected by this bad estimationproposed approach is illustrated via a simulation example.
Finally, a comparison between the outputs of the multipl€urther research, in a fault diagnosis perspective, wiltde
model and their estimates is shown in figure 5. Note that thHavestigate the sensibility of the state estimation witbpect
output estimation errors remain globally bounded despdé t to perturbations, model uncertainties and faults in order t
model uncertainties and perturbations appear in the modeéstablish the sensibility of the fault symptoms of the syste

T ‘ ‘ ‘ ‘ APPENDIX PROOF OF THE THEOREM
DM

n ‘ ‘ ‘ ‘ ‘ Lemma 1:For any constant real matriceé andY with
0 100 200 300 400 500 600

appropriate dimensions, a matrix functiéi(t) bounded-
norm, i.e.FT(t)F(t) <, then the following property holds
for any positive matrixQ

XFOY +YTFT()XT <XQXT+YTQY .

Consider the following quadratic Lyapunov function:

I I I I
0 100 200 400 500 600

time (s)
Fig. 3. States of submodel 1 and its estimates V()= e;(t)Plea(t) +x (tPx() , (33)
whereP; = P] >0 etP, =P > 0. The objectives (30) are
guaranteed if there exists a Lyapunov function (33) such tha
_ [22]:

4 ‘ : : ‘ ‘ V(t) < —vT(t)v(t) + YW (t)w(t) . (34)

0 100 200 300 400 500 600

s : ‘ ‘ ‘ ‘ The time-derivative of (33) along the trajectories of (24)Yla
- (7a) is given by:

V(t) _ QT(t) [PADbS(t)(i')Agbsp(t) P(;D:| Q(t) ,(35)

= diag{P, P} , (36)
— [Tt) W) . (37)

I
0 100 200

L L
. 300 400 500 600
time (s) P

Fig. 4. States of submodel 2 and its estimates Q(t)

Now, by taking into consideration (35), the condition (34)

becomes:
100 200 300 T YTy o
— ‘ QT () |PAovslt) + Aond P+ [oYg) Po Q) <0, (38)
| —
0 W\M NMM‘MWM"|W‘wﬁw"mmw'wTJ"'”W\NM'{{N‘MW‘WJW‘W 0l ( * ) Vz |
-0 0 20 30 20 50 500 which is a quadratic form iQ(t). By using the definitions of
! ‘ ‘ ‘ ‘ ‘ - Agpsand® given respectively by (27) and (28), the inequality
0 , (38) is also guaranteed if:
o 100 200 300 a00 500 600 Frarf+yTy H_C]_AA LIJN Pls_:lAéN
. ‘ iy ‘ (%) X1+X2 P.D Py(B+AB)
s B e P g g () ) @ o |<% (9
70'10 160 260 360 460 560 600 ( * ) ( * ) O - y2 I
time (s)
Fig. 5. Output, its estimates and the output estimationrerro where
I = PiAa() —KeCHITL —KICy) . (40)
V. CONCLUSIONS Y = Pi(Da—KpW) , (41)
In this paper a PIO design is presented for a class of Xi = PA+ATR (42)

uncertain nonlinear system which can be modelled with Xo = PAA+AATP, , (43)



Notice that by using the definition d&q(t) andC(t) given
respectively by (19) and (11}, can be rewritten as :

L
_;Ni ori ,

P(A — KeCiTy —KITy) .

r

(44)

N = (45)

At this point, by considering (44) and (43), the nominal and!]
the uncertain terms in (39) may be dissociated as follows: 3

Ni+ri+yly o v o
L N
0 X1 PRD PB T 3]
i(t +7+2" <0, (46
i;HI( ) (*) (*) _V2| 0 ( )
0 (*) 0 —y2| [4]
where 0 PCi0A 0 PT.0B [5]
{0 PAA 0 PAB
Z= 0 0 0 0 (47) [6]
0 0 0 0

Now, by introducing the definitions afA and AB given by 7]

(13) and (14) therz +Z" becomes:

L

uf:;m(t){ﬁﬁﬁﬁ}, (48) O
i=

where [0

—P161~|\7|i Plélh‘HNi 0]

5 PM; P>H;

% = | P R (49)
0 0 [11]

. _ [R@®) o]fo N 0 O

=10 s(t)} [o 0 0 EJ ®0) g

Notice that the dependence of the unknown functibifs)
and§(t) upon (48) can be removed, by using the lemma
with Q; = diag{t}, 75}, as follows:

sl

4
2+7" < _iui(t){% (8 0] R Z}Y.T} . (51)

Finally, using the definition (42) oX;, the inequality (46)
is guaranteed if for = 1...L the following inequality holds:

[15]

. . [16]
G+MT+YTY 0 W 0 PCM PCH

0 ANi BD PB PBM PoH;

(%) (x) =y’ 0 0 0

5 W0 g 0 o | <0 (32 p7

(%) (x) 0 0 -1l 0

(%) (x) 0 0 0 —T15l [18]
where o -

@ —VI+DEE . (54)

This condition follows from the use of (51) in (46), thel20]
use of the well known Schur complement and the convey;
sum properties ofui(t). Note that asymptotic convergence
towards zero of the estimation error, when no uncertainti;e[%sﬂ
and no perturbations affect the system, is guaranteed by the
negativity of the block(1,1) in (52).

Finally, let us notice that (52) is not a LMI iRy, Kp, K|
and y. However, it becomes a LMI by settinge = PiKp,
L = PiK; andy = y2. Now, standard convex optimization
algorithms can be used to find matricBs P, Lp and L,
minimisingy. This completes the proof of theorem 1.
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