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Abstract— In this paper, a decoupled multiple model approach
is used in order to cope with the state estimation of uncertain
nonlinear systems. The proposed decoupled multiple model
provides flexibility in the modelling stage because the dimension
of the submodels can be different and this constitute the main
difference with respect to the classically used multiple model
schema. The state estimation is performed using a Proportional
Integral Observer (PIO) which is well known for its robustness
properties with respect to uncertainties and perturbations. The
Lyapunov second method is employed in order to provide
sufficient conditions, in LMI terms, and to compute the optimal
gains of the PIO. The effectiveness of the proposed methodology
is illustrated by a simulation example.

I. I NTRODUCTION

In many real world engineering applications, the knowledge
of the system state is often required not only for control
purpose but also for monitoring and fault diagnosis. In
practice however, the measurements of the system state can
be very difficult or even impossible, for example when an
appropriate sensor is not available or economically viable.
Model-based state estimation is a largely adopted strategy
used in order to cope with this important problem. Typically
a state estimation is provided by means of an observer whose
inputs are the inputs and the outputs of the system and the
outputs are the estimated states. Note that the structure ofan
observer is based on the mathematical model of the consid-
ered system. Therefore, the accuracy of the state estimation
depends on the accuracy of the used mathematical model
and the quality of the employed measurements. However, a
mathematical model is an abstract representation of the real
world and it only provides an approximation to dynamic
behaviours of the actual system. Consequently, modelling
errors between the system and its model are unavoidable.
Besides, the employed measurements are also affected by
external disturbances due to the interactions between the
system and its environment.

Hence, many efforts have been made in the past two
decades to improve robustness of the state estimation of
linear systems affected by disturbances and parametric un-
certainties (e.g. in [1]–[3] norm-bounded uncertainties are
considered). However, dynamic behaviour of most of real
systems is nonlinear and consequently a linear model is not
able to provide a good characterisation of the system in

This work is partially supported by the Conseil Régional de Lorraine
(France).

The authors are with Centre de Recherche en Auto-
matique de Nancy (CRAN), Nancy-Université, CNRS, 2
avenue de la Forêt de Haye F-54516, Vandœuvre-lès-Nancy
{rodolfo.orjuela, benoit.marx, jose.ragot,
didier.maquin}@ensem.inpl-nancy.fr

the whole operating range. On the other hand, the observer
design problem for generic nonlinear models is delicate and
so far this problem remains unsolved in a general way.

Multiple model approach is an appropriate tool for mod-
elling complex systems using a mathematical model which
can be used for analysis, controller and observer design. The
basis of the multiple model approach is the decomposition of
the operating space of the system into a finite number ofop-
erating zones(each operating zone is delimited by aweight-
ing function). Hence, the dynamic behaviour of the system
inside of an operating zone can be modelled using simple
structural submodels, for example linear models. Finally,
the approximation of the system behaviour is performed by
associating the submodels and by taking into consideration
their respective contributions via an interpolation mechanism.
Note that a large class of nonlinear systems can accurately
be modelled using multiple models.

The choice of the structure used to associate the submodels
constitutes a key point in the multiple modelling framework.
Indeed, the submodels can be aggregated using various
structures [4]. Classically, the association of submodelsis
performed in the dynamic equation of the multiple model
using a common state vector. This model, known asTakagi-
Sugeno multiple model, has been initially proposed, in a
fuzzy modelling framework, by Takagi and Sugeno [5] and
in a multiple model modelling framework by Johansen and
Foss [6]. This model has been largely considered for analysis,
modelling, control and state estimation of nonlinear systems
(see among others [7]–[9] and references therein).

In this paper, an other possible way for building a multiple
model is employed. This model results of the association
of submodels in the output equation of the multiple model.
This model, known asdecoupled multiple model, has been
suggested in [4]. Note also that the proposed model has been
successfully employed in modelling [10], [11], control [12]–
[14] and state estimation [15], [16] of nonlinear systems.
The main feature of the decoupled multiple model is that
submodels of different dimensions can be used. This fact
introduces some flexibility degrees in the modelling stage
in particular when the model is obtained using a black box
modelling strategy. Indeed, the dimensions (e.g. number of
states) of the submodels can be well adapted to each oper-
ating zone and consequently the total number of parameters
necessary for describing the system can be reduced.

This paper deals with the design of a Proportional-Integral
Observer (PIO) for a class of nonlinear system modelled by
a decoupled multiple model with parameter uncertainties.
The parameter uncertainties are assumed to be unknown,



time-varying and norm bounded. With respect to the classic
proportional observer, the PIO offers more additional degrees
of freedom and it is appreciated for its robustness properties
with respect to perturbations and imperfections in the model
(details are given in section III). The PIO design problem
consists in finding the gains of the observer such that the state
estimation error remains globally bounded for all admissible
uncertainties and perturbations. Furthermore, the PIO design
based on the multiple model representation does not seems
reported previously to the best authors’ knowledge.

The outline of this paper is as follows. Discussion about
decoupled multiple model is proposed in section II. In section
III, the PIO design problem is investigated and the gains
of the observer are obtained by LMI optimization. Finally,
in section IV, a simulation example illustrates the state
estimation of a decoupled multiple model.

II. ON THE DECOUPLED MULTIPLE MODEL

REPRESENTATION

In this paper, an uncertain nonlinear system described by
a decoupled multiple model is considered. The state space
representation of this multiple model is given by:

ẋi(t) = (Ai + ∆Ai)xi(t)+ (Bi + ∆Bi)u(t)+Diw(t) , (1a)

yi(t) = Cixi(t) , (1b)

y(t) =
L

∑
i=1

µi(ξ (t))yi(t)+Ww(t) , (1c)

wherexi ∈ R
ni andyi ∈ R

p are respectively the state vector
and the output of theith submodel;u ∈ R

m is the input,
y∈ R

p the output andw∈ R
r the perturbation. The matrices

Ai ∈ R
ni×ni , Bi ∈ R

ni×m, Di ∈ R
ni×r , Ci ∈ R

p×ni and
W ∈ R

p×r are known and appropriately dimensioned. The
parametric uncertainties in the system are represented by
matrices∆Ai and∆Bi (details are given in section II-A).

The complete partition of the operating space of the system
is performed using a characteristic variable of the system
called decision variableξ (t) that is assumed to be known
and real-time available (e.g. the inputs and/or exogenous
signals). Note also that the validity of the submodels are
quantified by theweighting functionsµi(ξ (t)) which delimit
each operating zone. They satisfy the following convex sum
constraints:

L

∑
i=1

µi(ξ (t)) = 1 and 0≤ µi(ξ (t)) ≤ 1, ∀i = 1...L, ∀t. (2)

Thanks to the above properties, the contributions of several
submodels can be taken into account simultaneously and
therefore the dynamic behaviour of the multiple model can
be truly nonlinear instead of a piecewise linear behaviour.

Note that the contributions of the submodels are taken into
account via a weighted sum in the output equation of the
multiple model. Consequently, dimensions of the submodels
can be different and therefore this multiple model form
is suitable for a black box modelling of complex systems
with variable structure and/or variable complexity in each
operating zone. The model parameters can be obtained from

a set of measured input and output data using appropriate
black box identification tools proposed for instance in [10],
[11], [17].

Remark 1: It should be mentioned that the outputsyi(t)
of the submodels are intermediary modelling signals only
used in order to provide a representation of the real system
behaviour. The submodel outputsyi(t) are internal signals of
the multiple model and consequently they are not available
physically (measures are unavailable). Hence, they cannotbe
employed for driving an observer. Only the global output of
the multiple model can be used for this purpose.

A. Model uncertainties

The parametric uncertainties in the system are represented
by the following norm-bounded matrices:

∆Ai = µi(ξ (t))MiFi(t)Ni , (3)

∆Bi = µi(ξ (t))HiSi(t)Ei , (4)

whereMi , Ni , Hi andEi are known constant matrices of ap-
propriate dimension andFi(t) andSi(t) are unknown, real and
possibly time-varying matrices with Lebesgue-measurable
elements satisfying:

FT
i (t)Fi(t) ≤ I and ST

i (t)Si(t) ≤ I ∀t . (5)

Note that the uncertainties of each submodel are taken into
consideration according to the validity degree of each sub-
model via its associated weighting functionµi(ξ (t)). Indeed,
the uncertainties of a submodel can be neglected when its
respective contribution is not taken into consideration for
provide the overall multiple model output.

Notations: the following notations will be used all along this
paper.P > 0 (P < 0) denotes a positive (negative) definite
matrix P; XT denotes the transpose of matrixX, I is the
identity matrix of appropriate dimension anddiag{A1, ...,An}
stands for a block-diagonal matrix with the matricesAi on
the main diagonal. TheL2−norm of a signal, quantifying

its energy is denoted and defined by‖e(t)‖2
2 =

∞
∫

0
eT(t)e(t)dt.

Finally, we shall simply writeµi(ξ (t)) = µi(t).

III. O N THE PROPORTIONAL-INTEGRAL OBSERVER

The conventional Luenberger or proportional observer only
uses a proportional correction injection term given by the
output estimation error. In the PIO an additional injection
termz(t), given by the integral of the output estimation error,
is included in the dynamic equation of the observer. Thanks
to this additional degree of freedom some robustness degrees
of the state estimation with respect to the system uncertain-
ties and perturbation are introduced [1], [18], [19]. The PIO
has also been successfully employed in the synchronization
of a chaotic system by [20]. The extension of the PIO design,
based on dissipativity framework, to a particular nonlinear
system whose non linearity is assumed to satisfy a sector
bounded constraint, has been recently proposed in [21].



In this section, sufficient conditions for ensuring conver-
gence and optimal disturbance attenuation of the estimation
error are established in LMI terms [22] using the Lyapunov
method. Note that the classic observer design cannot be
employed directly in a multiple model framework because
the interaction between submodels must be taken into con-
sideration in the observer design procedure for ensuring the
observer stability for any blend between the submodels.

Firstly new notation of the decoupled multiple model
needed to design a PIO is introduced. The suggested PIO
is then presented and its design is proposed by introducing
someH∞ performances.

A. Augmented form of the decoupled multiple model

Consider the following augmented state vector:

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T
∈ R

n, n =
L

∑
i=1

ni (6)

and the supplementary variablez(t) =
t
∫

0
y(ξ )dξ needed for

the PIO design. Thus, the decoupled multiple model (1) may
be rewritten in the following compact form:

ẋ(t) = (Ã+ ∆Ã)x(t)+ (B̃+ ∆B̃)u(t)+ D̃w , (7a)

ż(t) = C̃(t)x(t)+Ww(t) , (7b)

y(t) = C̃(t)x(t)+Ww(t) , (7c)

where
Ã = diag{A1 · · · Ai · · · AL} , (8)

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T

, (9)

D̃ =
[

D1
T · · · Di

T · · · DL
T
]T

, (10)

C̃(t) =
L

∑
i=1

µi(t)C̃i , (11)

C̃i =
[

0 · · · Ci · · · 0
]

(12)

with the parametric uncertainties given by:

∆Ã =
L

∑
i=1

µi(t)M̃iFi(t)Ñi , (13)

∆B̃ =
L

∑
i=1

µi(t)H̃iSi(t)Ei , (14)

M̃i =
[

0 · · · Mi
T · · · 0

]T
, (15)

Ñi =
[

0 · · · Ni · · · 0
]

, (16)

H̃i =
[

0 · · · Hi
T · · · 0

]T
. (17)

Finally, the equations (7) can be rewritten in the following
augmented form:

ẋa(t) = (Ãa(t)+C1∆ÃC
T
1 )xa(t)+C1(B̃+ ∆B̃)u(t)

+ D̃aw(t) , (18a)

y(t) = C̃(t)C
T
1 xa(t)+Ww(t), (18b)

z(t) = C
T
2 xa(t) , (18c)

where

xa(t) =

[

x(t)
z(t)

]

, Ãa(t) =

[

Ã 0
C̃(t) 0

]

, D̃a =

[

D̃
W

]

,

C1 =
[

I 0
]T

, C2 =
[

0 I
]T

.

Let us notice that, by using the convex properties of the
weighting functions, the matrix̃Aa(t) can be rewritten as:

Ãa(t) =
L

∑
i=1

µi(t)Ai , (19)

where

Ai =

[

Ã 0
C̃i 0

]

. (20)

B. PIO structure

The state estimation of the decoupled multiple model (18) is
achieved by using the following PIO:

˙̂xa(t) = Ãa(t)x̂a(t)+C1B̃u(t)+KP(y(t)− ŷ(t))

+KI (z(t)− ẑ(t)) , (21a)

ŷ(t) = C̃(t)C
T
1 x̂a(t) , (21b)

ẑ(t) = C
T
2 x̂a(t) (21c)

which has a similar structure of the PIO used in [20]. Notice
that the use of the supplementary integral actionz(t) in
the dynamic equation is at the origin of the designation
Proportional-Integral Observer. This matrixKI introduces a
freedom degree in the observer design.

C. Design of the PIO

Consider the state estimation error defined by:

ea(t) = xa(t)− x̂a(t) (22)

and its dynamics by:

ėa(t) = (Ãa(t)−KPC(t)C
T
1 −KIC

T
2 )ea(t)+C1∆Ãx(t)

+ C1∆B̃u(t)+ (D̃a−KPW)w(t) . (23)

Finally, (7a) and (23) can be gathered as follows:

ε̇(t) = Aobs(t)ε(t)+ Φw̄(t) , (24)

where

ε(t) =
[

eT
a (t) xT(t)

]T
, (25)

w̄(t) =
[

wT(t) uT(t)
]T

, (26)

Aobs(t) =

[

Ãa(t)−KPC(t)C
T
1 −KIC

T
2 C1∆Ã

0 Ã+ ∆Ã

]

,(27)

Φ =

[

D̃a−KPW C1∆B̃
D̃ B̃+ ∆B̃

]

. (28)

Notice that the proportional gainKP can be used to reduce
the impact of the perturbation on the estimation errorea(t)
(see (27)). On the other hand, the observer dynamics can be
improved with the help of the integral gainKI (see (28)).
Note also that, from equation (24),ε(t) is stable if and
only if the the decoupled multiple model (7) with admissible
uncertainties∆Ã is stable and the observer gainsKP andKI

are chosen so that̃Aa(t)−KPC(t)C
T
1 −KIC

T
2 is also stable. In

the sequel, the two following assumptions will be considered:



Assumption 1:The decoupled multiple model (7) with
admissible uncertainties∆Ã is stable.

Assumption 2:The input and the perturbation are bounded
energy signals, i.e.‖u(t)‖2

2 < ∞ and‖w(t)‖2
2 < ∞.

The robust PIO design problem can thus be formulated as
finding the matricesKP and KI such that the influence of
w̄(t) on the estimation errorea(t) is attenuated and the state
estimation error remains globally bounded for any blend
between the submodels. To this end, the followingobjective
minimizing signalwhich only depends on the estimation error
ea(t) is introduced:

ν(t) =
[

Y 0
]

ε(t) , (29)

whereY is a matrix of appropriate dimension chosen by the
designer. Finally, the expected performances of the PIO can
be formulated by the followingH∞ performances:

lim
t→∞

ea(t) = 0 for w(t) = 0, Fi(t) = 0, Si(t) = 0 , (30a)

‖ν(t)‖2
2 ≤ γ2‖w(t)‖2

2 for w(t) 6= 0 andν(0) = 0 , (30b)

whereγ is theL2 gain fromw̄(t) to ν(t) to be minimised.

Theorem 1:Consider the uncertain model (18) and as-
sumptions 1 and 2. There exists a PIO (21) ensuring the
objective (30) if there exists symmetric positive definite
matricesP1 ∈ R

(n+p)×(n+p) and P2 ∈ R
n×n, matricesLP ∈

R
(n+p)×p and LI ∈ R

(n+p)×p and positive scalarsγ, τ i
1 and

τ i
2 such that the following condition holds fori = 1...L

minγ subject to














Γi +ΓT
i +YTY 0 Ψ 0 P1C1M̃i P1C1H̃i
0 Λi P2D̃ P2B̃ P2M̃i P2H̃i

(∗) (∗) −γ I 0 0 0
0 (∗) 0 φi 0 0

(∗) (∗) 0 0 −τ i
1I 0

(∗) (∗) 0 0 0 −τ i
2I















< 0 ,

where
Γi = P1Ai −LPC̃iC

T
1 −LIC

T
2 ,

Ψ = P1D̃a−LPW ,

Λi = P2Ã+ ÃTP2 + τ i
1ÑT

i Ñi ,

φi = −γ I + τ i
2ET

i Ei

for a prescribed matrixY. The observer gains are given by
KP = P−1

1 LP andKI = P−1
1 LI ; theL2 gain fromw̄(t) to ν(t)

is given byγ =
√

γ.
Proof: The proof is deferred to the appendix.

IV. A SIMULATION EXEMPLE

Consider the decoupled multiple model withL = 2 different
dimension submodels given by:

A1 =





−0.1 −0.3 0.6
−0.5 −0.4 0.1
−0.3 −0.2 −0.6



 , A2 =

[

−0.3 −0.1
0.4 −0.2

]

,

B1 =
[

0.3 0.5 0.6
]T

, B2 =
[

0.4 0.3
]T

,

D1 =
[

0.1 −0.1 0.1
]T

, D2 =
[

−0.1 −0.1
]T

,

C1 =

[

−0.4 0.3 0.5
0.5 0.3 0.4

]

, C2 =

[

0.4 −0.2
0.3 0.2

]

,

M1 =
[

−0.1 0.2 −0.1
]T

, M2 =
[

−0.2 0.1
]T

,

N1 =
[

0.1 −0.2 0.3
]

, N2 =
[

0.1 0.2
]

,

H1 =
[

0.3 −0.1 0.2
]T

, H2 =
[

−0.1 −0.2
]T

,

E1 = −0.2 , E2 = −0.3 ,

W =
[

0.1 −0.1
]

, Y = I(7×7) .

Here, the decision variableξ (t) is the input signal
u(t) ∈ [−1,1]. The weighting functions are obtained from
normalised Gaussian functions:

µi(ξ (t)) = ηi(ξ (t))/
L

∑
j=1

η j(ξ (t)), (31)

ηi(ξ (t)) = exp
(

−(ξ (t)−ci)
2/σ2

)

, (32)

with the standard deviationσ = 0.6 and the centresc1 =−0.3
andc2 = 0.3. The perturbationw(t) is a normally distributed
random signal with zero mean and standard deviation equal
to one. The input, the weighting functions and the outputs
are shown in figure 1. The time-varying signalsFi(t), Si(t)
and the perturbationw(t) are plotted in figure 2. Notice that
for 0 < t < 120 no uncertainties in the multiple model are
considered.
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Fig. 1. Input, weighting functions and outputs
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Fig. 2. Fi(t), Si(t) andw(t)

A solution satisfying conditions of theorem 1 is obtained
using YALMIP interface and SEDUMI solver:

KP =

[

−3.13 1.21 −2.02 3.68 −0.90 0.50 0.49
0.20 0.86 1.00 −1.51 2.74 −0.08 1.08

]T

,

KI =

[

0.16 −0.12 −0.41 0.31 −0.57 0.65 −0.04
−0.13 0.12 0.41 −0.32 0.56 0.02 0.65

]T

with a minimal attenuation level given byγ = 0.8654 and
τ1

1 = 0.74, τ1
2 = 1.37, τ2

1 = 7.67, τ2
2 = 2.08.

In the simulation the initial conditions of the multiple
model arex(0) =

[

0.1 −0.1 0.1 −0.1 0.1
]

and the initial con-
ditions of the observer are equal to zero. Figures 3 and 4
present the comparison between the states of the submodels



and their estimates. Note that the interaction between sub-
models is at the origin of some compensation phenomenons
in the state estimation. For example, if the output of sub-
model 1 is only taken into consideration (i.e.µ1(t)≈ 1) then
naturally a bad state estimation of the submodel 2 is provided
by the observer. However, the overall output estimation of the
multiple model is not truly affected by this bad estimation.
Finally, a comparison between the outputs of the multiple
model and their estimates is shown in figure 5. Note that the
output estimation errors remain globally bounded despite that
model uncertainties and perturbations appear in the model.
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Fig. 3. States of submodel 1 and its estimates
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V. CONCLUSIONS

In this paper a PIO design is presented for a class of
uncertain nonlinear system which can be modelled with

the help of a decoupled multiple model. This model is
suitable for modelling variable structure systems because
the dimension of the submodels can be different in each
operating zone. Sufficient conditions, in LMI terms, for
ensuringH∞ performances of the estimation error are es-
tablished using Lyapunov method. The effectiveness of the
proposed approach is illustrated via a simulation example.
Further research, in a fault diagnosis perspective, will beto
investigate the sensibility of the state estimation with respect
to perturbations, model uncertainties and faults in order to
establish the sensibility of the fault symptoms of the system.

APPENDIX PROOF OF THE THEOREM

Lemma 1:For any constant real matricesX and Y with
appropriate dimensions, a matrix functionF(t) bounded-
norm, i.e.FT(t)F(t) ≤ I, then the following property holds
for any positive matrixQ

XF(t)Y+YTFT(t)XT ≤ XQ−1XT +YTQY .

Consider the following quadratic Lyapunov function:

V(t) = eT
a (t)P1ea(t)+xT(t)P2x(t) , (33)

whereP1 = PT
1 > 0 et P2 = PT

2 > 0. The objectives (30) are
guaranteed if there exists a Lyapunov function (33) such that
[22]:

V̇(t) < −νT(t)ν(t)+ γ2wT(t)w(t) . (34)

The time-derivative of (33) along the trajectories of (24) and
(7a) is given by:

V̇(t) = ΩT(t)

[

PAobs(t)+AT
obsP(t) PΦ

(∗) 0

]

Ω(t) , (35)

P = diag{P1, P2} , (36)

Ω(t) =
[

εT(t) wT(t)
]T

. (37)

Now, by taking into consideration (35), the condition (34)
becomes:

ΩT(t)

[

PAobs(t)+AT
obs(t)P+

[

YTY 0
0 0

]

PΦ
(∗) −γ2I

]

Ω(t) < 0 , (38)

which is a quadratic form inΩ(t). By using the definitions of
Aobs andΦ given respectively by (27) and (28), the inequality
(38) is also guaranteed if:








Γ+ ΓT +YTY P1C1∆Ã Ψ P1C1∆B̃
(∗) X1 +X2 P2D̃ P2(B̃+ ∆B̃)
(∗) (∗) −γ2I 0
(∗) (∗) 0 −γ2I









< 0, (39)

where

Γ = P1(Ãa(t)−KPC(t)C
T
1 −KIC

T
2 ) , (40)

Ψ = P1(D̃a−KPW) , (41)

X1 = P2Ã+ ÃTP2 , (42)

X2 = P2∆Ã+ ∆ÃTP2 , (43)



Notice that by using the definition of̃Aa(t) andC(t) given
respectively by (19) and (11),Γ can be rewritten as :

Γ =
L

∑
i=1

µi(t)Γi , (44)

Γi = P1(Ai −KPC̃iC
T
1 −KIC

T
2 ) . (45)

At this point, by considering (44) and (43), the nominal and
the uncertain terms in (39) may be dissociated as follows:

L

∑
i=1

µi(t)









Γi + ΓT
i +YTY 0 Ψ 0
0 X1 P2D̃ P2B̃

(∗) (∗) −γ2I 0
0 (∗) 0 −γ2I









+Z+ZT < 0, (46)

where

Z =









0 P1C1∆Ã 0 P1C1∆B̃
0 P2∆Ã 0 P2∆B̃
0 0 0 0
0 0 0 0









. (47)

Now, by introducing the definitions of∆Ã and∆B̃ given by
(13) and (14) thenZ+ZT becomes:

Z+ZT =
L

∑
i=1

µi(t)
{

X̃iỸi + ỸT
i X̃T

i

}

, (48)

where

X̃i =









P1C1M̃i P1C1H̃i

P2M̃i P2H̃i

0 0
0 0









, (49)

Ỹi =

[

Fi(t) 0
0 Si(t)

][

0 Ñi 0 0
0 0 0 Ei

]

. (50)

Notice that the dependence of the unknown functionsFi(t)
andSi(t) upon (48) can be removed, by using the lemma 1
with Qi = diag

{

τ i
1,τ

i
2

}

, as follows:

Z+ZT ≤
L

∑
i=1

µi(t)

{

X̃i

[

τ i
1 0

0 τ i
2

]−1
X̃T

i + Ỹi

[

τ i
1 0

0 τ i
2

]

ỸT
i

}

. (51)

Finally, using the definition (42) ofX1, the inequality (46)
is guaranteed if fori = 1...L the following inequality holds:















Γi +ΓT
i +YTY 0 Ψ 0 P1C1M̃i P1C1H̃i
0 Λi P2D̃ P2B̃ P2M̃i P2H̃i

(∗) (∗) −γ2I 0 0 0
0 (∗) 0 φi 0 0

(∗) (∗) 0 0 −τ i
1I 0

(∗) (∗) 0 0 0 −τ i
2I















< 0, (52)

where
Λi = P2Ã+ ÃTP2 + τ i

1ÑT
i Ñi , (53)

φi = −γ2I + τ i
2ET

i Ei . (54)

This condition follows from the use of (51) in (46), the
use of the well known Schur complement and the convex
sum properties ofµi(t). Note that asymptotic convergence
towards zero of the estimation error, when no uncertainties
and no perturbations affect the system, is guaranteed by the
negativity of the block(1,1) in (52).

Finally, let us notice that (52) is not a LMI inP1, KP, KI

and γ. However, it becomes a LMI by settingLP = P1KP,
LI = P1KI and γ = γ2. Now, standard convex optimization
algorithms can be used to find matricesP1, P2 LP and LI

minimising γ. This completes the proof of theorem 1.
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