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Abstract

This paper presents a method for state-estimation of Takagi-Sugeno descriptor systems (TSDS) affected by

unknown inputs (UI). For ease of implementation’s sake, the proposedobservers are not in descriptor form but

in usual form. Sufficient existence conditions of the unknown input observers are given and strict linear matrix

inequalities (LMI) are solved to determine the gain of the observers. If theperfect unknown input decoupling is not

possible, the UI observer is designed in order to minimise theL2-gain from the UI to the state estimation error. The

two previous objectives can be mixed in order to decouple the estimation to a subset of the UI, while attenuating the

L2 gain from the other UI to the estimation. The proposed UI observers are used for robust fault diagnosis. Fault

diagnosis for TSDS is performed by designing a bank of observers. Asimple decision logic and thresholds setting

allow to determine the occurring fault. The results are established for both the continuous and the discrete time cases.

The proposed method is illustrated by a numerical example.

Index Terms

Takagi-Sugeno systems, singular systems, state estimation, unknown input observers, fault diagnosis.

I. I NTRODUCTION

The Takagi-Sugeno (TS) model proposed by [14] is a well-known structure to represent nonlinear systems into

several linear fuzzy models. In the last two decades, the control and the observation of TS systems have become

challenging problems that received a considerable amount of attention. In [19], stability analysis and controller
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design are addressed, solutions are derived in the linear matrix inequality (LMI) formalism. Relaxed sufficient

conditions for fuzzy controllers and fuzzy observers are proposed in [15], and in [16] via a multiple Lyapunov

function approach.

The descriptor formalism is very attractive for system modelling, as pointed out in [4], since it describes a

wider class of systems including physical systems with non dynamic constraints (e.g. algebraic relations induced

in interconnected systems such as power transfer networks or water distribution networks) or jump behaviour. The

enhancement of the modelling ability is due to the structureof the dynamic equation which encompasses not only

dynamic equations, but also algebraic relations.

Since both TS and descriptor formalisms are attractive in the field of modelling, the TS representation has been

generalised to descriptor systems. The stability and the design of state-feedback controllers for TS descriptor systems

(TSDS) are characterised via LMI in [17],[18], in particular, the problem of nonlinear model following is treated

in [18]. Robust output feedback, andH∞-control are considered for TSDS in [12] and [21] respectively. The study

of TSDS is envisaged with interval methods in [20], in order to take into account the different operating points.

Unfortunately, the problem of observer design, and especially the design of unknown input observers, has resulted

in very few works.

The design of unknown input observer (UIO) is a crucial problem since, in many practical cases, all input signals

cannot be known. Moreover, this class of observers is widelyused in the area of fault diagnosis, even if all the

inputs are known (see chap. 3 in [13]). The design of UIO has received considerable attention in the case of usual

(in opposition to descriptor) linear systems [5], descriptor systems [7], [8], [11] or TS systems [1]. Unfortunately,

to the authors’ knowledge, the design of UIO has not been treated in the generic case of TSDS. The aim of this

paper is not only to generalise the existing works on UIO design to TSDS, but also to apply this new observer in

the field of fault diagnosis of TSDS which has not been treatedso far.

This paper gives a simple extension to TSDS of the design of observers for the state estimation in the presence of

unknown inputs (UI). Under some sufficient conditions, the design of the observer is reduced to the determination

of a matrix. The choice of this parameter is performed by solving strict LMIs. If the estimation error cannot be

decoupled from the UI, anL2 observer is proposed to minimise the influence of the UI on thestate estimation. The

two design objectives can be mixed by decoupling the state estimation from a subset of the UI, and minimising the

L2-gain between the other UI and the state estimation error. The designed observers are used for fault diagnosis, since

the UI can encompass the faults and the disturbances affecting the system. Designing several observers attenuating

the disturbance effect, and decoupling the estimation fromall faults but one lead to the well-known Generalised

Observer Scheme (GOS) for fault diagnosis [13]. The design of observers is detailed both in the continuous time

case, and in the discrete time case.

The paper is organised as follows: the class of studied systems is defined in section II and the main results

about UIO design are detailed in section III. Firstly, the definition of the UIO and the sufficient existence condition

are established. Secondly, the computation of the gains of the observer is established. The design ofL2 observers

is treated in section IV. Section V deals with the design of observers for both UI decoupling and disturbance



attenuation. The application to fault diagnosis is studiedin section VI. Section VII is devoted to a numerical

example.

Notation 1: In the paper,⊗ denotes the Kronecker product. For a given matrixX, XT is the transpose ofX,

X > 0 (resp.X < 0) means thatX is positive (resp. negative) definite,X+ denotes the pseudo-inverse of the matrix

X, and whereX⊥ is defined byX⊥ = I − XX+ .

II. TAKAGI -SUGENO DESCRIPTOR SYSTEMS

To begin with, the class of systems considered in the presentpaper is described. In the continuous time case, a

TSDS is defined by

Eẋ(t) =

r
∑

i=1

hi(w(t)) (Aix(t) + Biu(t) + Did(t)) (1)

y(t) =Cx(t) + Gd(t) (2)

In the discrete time case, a TSDS is defined by

Exk+1 =
r

∑

i=1

hi(wk) (Aixk + Biuk + Didk) (3)

yk =Cxk + Gdk (4)

where x ∈ R
n is the state variable,u ∈ R

nu is the control input,d ∈ R
q is the unknown input (disturbance,

actuator noise, or hidden message in the recovering framework), andy ∈ R
m is the measured output. The matrices

E, Ai, Bi, Di, C andG are supposed to be real, known, constant and with appropriate dimensions according to the

definition of the signals. The matrixE may be singular. The activating functions, denotedhi(w(t)), for i = 1, . . . , r,

are normalised, and satisfy the following constraints

0 ≤ hi(w(t)) ≤ 1,

r
∑

i=1

hi(w(t)) = 1, ∀t

0 ≤ hi(wk) ≤ 1,

r
∑

i=1

hi(wk) = 1, ∀k

The decision variablew(t) (or wk) is supposed to be real-time accessible, depending on the control input, or on

the measured output. Assuming that the same matrixE appears in all the different sub-models is not restrictive if

we consider that the structure of the differential or algebraic relations is imposed by the physical structure of the

system, which generally does not change with time. This formalism still encompasses the varying parameters or

the nonlinearities since the matricesAi are different one from another, and since the activating functions introduce

the nonlinear dynamics. An analogous argument justifies thesingle nature of the output matrixC. The available

measurements are determined by the location and the nature of the sensors which generally do not change (the

sensors are not removed during the operating time).



III. D ESIGN OF UNKNOWN INPUT DECOUPLING OBSERVERS

In this section, our aim is to design a multiple unknown inputobserver. The UIO are widely used in the field

of fault detection and isolation for dynamic systems, because the fault signals are generally unknown. Moreover, a

measured signal can be considered as unknown in order to isolate the default corrupting this particular signal (see

chapter 3 in [3]).

In this study, the proposed observers are not in descriptor form, in order to reduce the implementation complexity.

In the continuous-time case, the proposed multiple UIO is defined by

ż(t) =
r

∑

i=1

hi(w(t)) (Niz(t) + Miu(t) + Liy(t)) (5)

x̂(t) =z(t) + T2y(t) (6)

In the discrete-time case, the proposed multiple UIO is defined by

zk+1 =
r

∑

i=1

hi(wk) (Nizk + Miuk + Liyk) (7)

x̂k =zk + T2yk (8)

The problem of unknown input decoupling observer (UIDO) design is to find the gains of the UIDO (5-6) (resp.

(7-8)), namelyNi, Mi, Li and T2, so that the estimated statêx asymptotically tends to the state of (1-2) (resp.

(3-4)). In other words, the objective is that the estimationerror defined bye(t) = x(t)− x̂(t) (resp.ek = xk − x̂k)

tends to zero whent → ∞ (resp. whenk → ∞), regardless of the unknown input, the control input, and the initial

state.

Firstly, a sufficient rank condition for UI decoupling is given in Lemma 1. Secondly, a sufficient LMI condition

for the convergence of the continuous-time UIO is given in Lemma 2 (it is extended to the discrete-time case in

Corollary 1). Finally, the results are gathered in Theorem 1and a design algorithm is given.

Lemma 1:There exists a continuous-time (resp. discrete-time) unknown input decoupling observer (5-6) for (1-2)

(resp. (7-8) for (3-4)) if the following condition holds

rank X = rank





D1 . . . Dr

Ir ⊗ G



 + n + rank G (9)

Proof: The estimation errore(t) = x(t) − x̂(t) is given by

e(t) = x(t) − x̂(t)

= x(t) − z(t) − T2Cx(t) − T2Gd(t)

Assume that there existT1 andT2 such that, the following equations hold

T1E + T2C =In (10)

T2G =0 (11)



With (10) and (11), the estimation error becomese(t) = T1Ex(t) − z(t). Its time derivative is given by :

ė(t) =T1Eẋ(t) − ż(t)

=

r
∑

i=1

hi(w(t)) [T1(Aix(t) + Biu(t) + Did(t))

−Niz(t) − Miu(t) − Liy(t)]

=

r
∑

i=1

hi(w(t)) [Nie(t)+ (T1Ai− NiT1E− LiC)x(t)

+(T1Bi − Mi)u(t) + (T1Di − LiG)d(t)] (12)

The time derivative of the estimation error is given by :

ė(t) =

r
∑

i=1

hi(w(t))Nie(t) (13)

if the following constraints hold fori = 1, . . . , r

In = T1E + T2C (14)

0 = T2G (15)

0 = T1Ai − NiT1E − LiC (16)

0 = T1Bi − Mi (17)

0 = T1Di − LiG (18)

In order to find the gains of the UIDO, according to the constraints (14-18), new parametersKi = NiT2 − Li are

introduced in (16). Then, the UIDO exists if, fori = 1, . . . , r, the following statements are true

Ni = T1Ai + KiC (19)

In = T1E + T2C (20)

0 = T2G (21)

0 = T1Di + KiG (22)

Mi = T1Bi (23)

Li = NiT2 − Ki (24)

Verifying the constraints (19-22) reduces to findingΘ ∈ R
n×(n+m(r+1)) such that

ΘX = Y (25)

Ni = ΘYi (26)

whereΘ, is given by

Θ =
[

T1 T2 K1 K2 . . . Kr

]

(27)



OnceΘ is known, Mi and Li are deduced from (23) and (24) respectively. The equation (25) is solvable in the

variableΘ if the following condition holds

rank





X

Y



 = rank X (28)

where the matricesX ∈ R
(n+m(r+1))×(n+q(r+1)) andY ∈ R

n×(n+q(r+1)) are defined by

X =











E 0n×q D1 . . . Dr

C G 0m×q . . . 0m×q

0rm×n 0rm×q Ir ⊗ G











(29)

Y =
[

In 0n×q 0n×rq

]

(30)

Obviously, with (30) and (29), the condition (28) becomes

rank





X

Y



 = n + rank G + rank





D1 . . . Dr

Ir ⊗ G





rank X = rank











E 0 D1 . . . Dr

C G 0 . . . 0

0 0 Ir ⊗ G











Then (28) is equivalent to (9). In the discrete-time case, the proof is very similar, thus it is omitted.

Lemma 2:The estimation error of the UIO (5-6) for (1-2) tends to zero if there exists a symmetric positive

definite matrixP ∈ R
n×n and a matrixZ ∈ R

n×(n+m(r+1)) verifying the following LMI for i = 1, . . . , r

(YX+Yi)
T P+PYX+Yi+(X⊥Yi)

T ZT +ZX⊥Yi <0 (31)

where⊗ is the Kronecker product. The matricesX and Y are defined by (29) and (30) respectively, andYi ∈

R
(n+m(r+1))×n are defined by

Yi =











Ai

0m×n

ei ⊗ C











whereei ∈ R
r×1 is the column vector with all its components equal to0, except theith equal to1.

Proof: Suppose that (9) is satisfied, then (25) is solvable and the solutions Θ are given by

Θ = YX+ + ZX⊥ (32)

whereZ ∈ R
n×(n+m(r+1)) is an arbitrary matrix.

With (26) and (32), the matricesNi are defined byNi = YX+Yi+ZX⊥Yi. The state estimation error tends to zero

if the polytopic system (13) is stable. A well known stability condition for polytopic system (see [2]) is the existence

of a symmetric positive definite matrixP verifying NT
i P + PNi < 0 for i = 1, . . . , r. Then the UIDO provides an

estimate of the system state if there exists a matrixZ such thatP(YX+Yi +ZX⊥Yi)+(YX+Yi +ZX⊥Yi)
T P < 0,

for all i = 1, . . . , r. SettingZ = PZ then (31) is obtained, which completes the proof.



This result is extended to the discrete-time case.

Corollary 1: The estimation error of the UIO (7-8) for (3-4) tends to zero if there exists a symmetric positive

definite matrixP ∈ R
n×n and a matrixZ ∈ R

n×(n+m(r+1)) verifying the following LMI for i = 1, . . . , r




Φi (X⊥Yi)
T ZT

Z(X⊥Yi) −P



 < 0 (33)

whereΦi is defined by

Φi = (X⊥Yi)
T ZT (YX+Yi) + (YX+Yi)

T Z(X⊥Yi)

+ (YX+Yi)
T P(YX+Yi) − P

Proof: Proof is similar to the continuous-time case, apart from thecondition for the stability of the state

estimation error. In the discrete-time case,ek tends to zeros if there exists a symmetric positive definite matrix P

such thatNT
i PNi − P < 0 for i = 1, . . . , r. With PZ = Z, the LMI (33) follows.

Theorem 1:There exists a continuous-time (resp. discrete-time) UIO (5-6) for (1-2) (resp. (7-8) for (3-4)) if

the condition (9) is satisfied and if there exists a symmetricpositive definite matrixP ∈ R
n×n and a matrix

Z ∈ R
n×(n+m(r+1)) verifying (31) (resp. (33)), fori = 1, . . . , r.

Finally, the design of UIO for continuous-time (resp. discrete-time) TSDS is reduced to the following procedure.

Step 1.Verify the existence condition (9).

Step 2.Solve the LMI (31) (resp. (33)) inP andZ.

Step 3.ComputeZ with Z = P−1Z. For a givenZ, Θ is deduced from (32), the matricesNi, Mi and Li are

derived from (19), (23) and (24) respectively.

This result unifies the results obtained, on the one hand, in the field of the descriptor systems with UI [6],[9],

[10] and, on the other hand, in the field of the TS systems with UI [1]. It is useful because a TSDS cannot be

reduced, either to a single singular system (it would not handle the nonlinearities due to the weighting functions

hi), or to a regular TS system (it would not handle the algebraicrelation between the state variables). The existence

condition (9) can be linked to previous works concerning single descriptor systems [9], [10]. Considering (9) for a

single descriptor system, would lead to the condition

rank











E D1 0

C 0 G

0 G 0











= rank





D1

G



 + n + rank G (34)

One can note that (34) is equivalent to the condition (21) or (31) of [9], and is also equivalent to the condition

(A3a) in [10]. Moreover, the present paper gives only sufficient conditions, whereas [9] gave necessary and sufficient

conditions. This difference appears because the present paper is basically written for TS systems, thus the weighting

functions cause conservatism since the matrix
∑r

i=1 hi(w(t))Ai can take all the possible values in the polytope

defined by its verticesAi.



IV. D ESIGN OF UNKNOWN INPUT ATTENUATING OBSERVERS

In this section, the aim is to design an observer for TSDS in order to minimise the influence of the UI on the state

estimation when the perfect decoupling is not possible. Thechosen criterion to minimise is theL2-gain between

the unknown input and the state estimation error. This approach is less restrictive than the design of an UIO since

the structural condition (9) is partially relaxed.

As pointed out in the section of UIO design, the estimation error e is governed by a non singular TS system

(12), thus in order to bound theL2-gain from the UI toe, and establish the sufficient conditions of the so-called

L2 observer, the following lemma concerningL2-gain of TS-systems is needed.

Lemma 3: [2] Consider the continuous-time TS-system defined by

ẋ(t) =
r

∑

i=1

hi(w(t))(Aix(t) + Biu(t)) (35)

y(t) =
r

∑

i=1

hi(w(t))Cix(t) (36)

and the discrete-time TS-system defined by

xk+1 =

r
∑

i=1

hi(wk)(Aixk + Biuk) (37)

yk =

r
∑

i=1

hi(wk)Cixk (38)

The system (35-36) (resp. (37-38)) is stable and verifies||y||2 < γ||u||2 if there exists a symmetric positive definite

matrix P ∈ R
n×n such that (39) (resp. (40)) is satisfied fori = 1, . . . , r.





AT
i P + PAi + CT

i Ci PBi

BT
i P −γ2I



 < 0 (39)





AT
i PAi + CT

i Ci − P AT
i PBi

BT
i PAi BT

i PBi − γ2I



 < 0 (40)

For a given real positiveγ, an observer is said to be an unknown input attenuating observer (UIAO) of L2-gain

γ, if the state estimation error,e, and the unknown input,d, satisfy ||e||2 < γ||d||2.

Theorem 2:There exists an UIAO (5-6), with anL2-gain lower thanγ, for the system (1-2), if the condition

(41) is satisfied, and if there exist a symmetric positive definite matrixP ∈ R
n×n and matricesZ ∈ R

n×(n+m) and

Ki ∈ R
n×m, verifying the LMI (42) for i = 1, . . . , r.

rank





E 0

C G



 = n + rank G (41)





Ψi,1 Ψi,2

Ψ
T
i,2 −γ2Iq



 < 0 (42)



where the matricesΨi,1, andΨi,2 are given by

Ψi,1 =PYX+
1 Ai + ZX⊥

1 Ai + KiC

+ (PYX+
1 Ai + ZX⊥

1 Ai + KiC)T + In

Ψi,2 =PYX+
1 Di + ZX⊥

1 Di + KiG

whereX+
1 ∈ R

(n+q)×n, X+
2 ∈ R

(n+q)×m, X⊥
1 ∈ R

(n+m)×n andX⊥
2 ∈ R

(n+m)×m are defined by




E 0

C G





+

=
[

X+
1 X+

2

]





E 0

C G









E 0

C G





+

− In+m =
[

X⊥
1 X⊥

2

]

Proof: If (41) is satisfied, then there existT1 andT2 such that
[

T1 T2

]

X = Y

whereX andY are given by

X =





E 0

C G



 Y =
[

In 0n×m

]

and, for any arbitrary matrixZ, T1 andT2 are given by

T1 =YX+
1 + ZX⊥

1 (43)

T2 =YX+
2 + ZX⊥

2 (44)

Following the proof of Theorem 1, if (19), (23) and (24) hold,the state estimation errore(t) = x(t) − x̂(t) is

governed by

ė(t)=
r

∑

i=1

hi(w(t))((T1Ai + KiC)e(t) + (T1Di + KiG)d(t)) (45)

According to Lemma 3,||e(t)||2 < γ||d(t)||2 if there exists a symmetric positive definite matrixP such that the

following LMI hold for i = 1, . . . , r




Ψi + In PT1Di + PKiG

DT
i TT

1 P + GT KT
i P −γ2Iq



 < 0

whereΨi is given by

Ψi = (T1Ai + KiC)T P + P(T1Ai + KiC)

With Ki = PKi andZ = PZ, the LMI (42) follows, which completes the proof.

Remark 1:Obviously, the condition (41) is less restrictive than (9).

Remark 2:γ2 can be considered as a variable to be minimised during the LMIoptimisation, to obtain an optimal

UI attenuation.



Corollary 2: There exists an UIAO (7-8) with anL2-gain lower than a given real positiveγ for the system (3-4),

if the condition (41) is satisfied, and if there exist a symmetric positive definite matrixP ∈ R
n×n, and matrices

Z ∈ R
n×(n+m) andKi ∈ R

n×m, verifying the following LMI for i = 1, . . . , r










In − P 0 Φ
T
i,1

0 −γ2In Φ
T
i,2

Φi,1 Φi,2 −P











< 0 (46)

whereΦi,1 andΦi,2 are defined by

Φi,1 =PYX+
1 Ai + ZX⊥

1 Ai + KiC

Φi,2 =PYX+
1 Di + ZX⊥

1 Di + KiG

Proof: The proof follows the lines of the proof of Theorem 2 with a Schur complement and is therefore

omitted.

Finally the design of UIAO for continuous-time (resp. discrete-time) TSDS is reduced to the following procedure.

Step 1.Verify the existence condition (41).

Step 2.Solve the LMI (42) (resp. (46)) inP, Z andKi.

Step 3.ComputeZ andKi with Z = P−1Z andKi = P−1Ki respectively. The matricesT1 andT2 are obtained

by (43) and (44). The matricesNi, Mi andLi are derived from (19), (23) and (24) respectively.

V. DESIGN OF UNKNOWN INPUT DECOUPLING AND ATTENUATING OBSERVER

If the unknown inputs are too numerous or if their distribution structure makes the perfect unknown input

decoupling of the estimation impossible (i.e. if the structural condition (9) is not satisfied), a compromise can

be made in order to design an observer ensuring two complementary objectives with less restrictive existence

conditions. Firstly, the state estimation is perfectly decoupled to a subset of the UI denotedd(t). Secondly, the

L2-gain between the other UI, denotedd̄(t), to the state estimation error is minimised, thus the state estimation is

made maximally robust to these UI. Partitioning the UI intod(t) and d̄(t) the system (1-2) can be written as

Eẋ(t)=

r
∑

i=1

hi(w(t))
(

Aix(t)+ Biu(t)+ Did(t)+ Did(t)
)

(47)

y(t)=Cx(t) + Gd(t) + G d(t) (48)

where d(t) ∈ R
q and d(t) ∈ R

q. The partition of the UI intod(t) and d̄(t) is such that the perfect decoupling

condition is satisfied for(E, C, G, D1, . . . , Dr), then theL2-gain fromd̄(t) to the state estimation error is minimised.

The designs of UIDO and UIAO are combined to derive the designof an unknown input decoupling/attenuating

observer (UIDAO). The sufficient existence conditions are given in the following theorem.

Theorem 3:There exists an observer (5-6) ensuring perfect decouplingto d(t) and maximally robust tod(t)

if the condition (49) is satisfied and if there exist a symmetric positive definite matrixP ∈ R
n×n and a matrix



Z ∈ R
n×(n+(r+1)m) solution of the minimisation ofγ under the LMI constraint (50) fori = 1, . . . , r.

rank X=n+rank
[

G G
]

+rank





D1 . . . Dr

Ir ⊗ G



 (49)





Ψi,1 Ψi,2

Ψ
T

i,2 −γ2I



 < 0 (50)

whereΨi,1 andΨi,2 are given by

Ψi,1 =PYX
+

Yi + ZX
⊥

Yi

+ (YX
+

Yi)
T P + (X

⊥
Yi)

T Z
T

+ In

Ψi,2 =PYX
+

Yi + ZX
⊥

Yi

whereX, Y, Yi andYi are given by

X =











E 0n×q 0n×q̄ D1 . . . Dr

C G G 0m×q . . . 0m×q

0rm×n 0rm×q 0rm×q̄ Ir ⊗ G











(51)

Y =
[

In 0n×q+q 0n×rq

]

Yi =











Ai

0m×n

ei ⊗ C











Yi =











Di

0m×q

ei ⊗ G











Proof: The state estimation errore(t) is governed by the following system

ė(t) =
r

∑

i=1

hi(w(t))(Nie(t) + (T1Ai − NiT1E − LiC)x(t)

+ (T1Bi − Mi)u(t) + (T1Di − LiG)d(t)

+ (T1Di − LiG)d(t) + T2Gḋ(t) + T2G ḋ(t)) (52)

Following a similar argument to that in the proof of Theorem 1, if the observer parameters satisfy the constraints

(19-24) andT2G = 0, e(t) is governed by

ė(t) =

r
∑

i=1

hi(w(t))(Nie(t) + (T1Di + KiG)d(t)) (53)

These constraints can be written asΘX = Y, with Θ defined by (27). This equation can be solved if and only if

rank
[

X
T

Y
T
]T

= rank X which is equivalent to the condition (49). If condition (49)is satisfied, then, for any

arbitrary matrixZ, Θ is given by

Θ = YX
+

+ ZX
⊥

(54)



Then, the only parameter to be found is the matrixZ. Since the matricesNi and (T1Di − LiG) can be written as

Ni = ΘYi = YX
+

Yi + ZX
⊥

Yi

T1Di + KiG = ΘYi = YX
+

Yi + ZX
⊥

Yi

the stability condition of (53) follows the same lines as in the proof of Theorem 2. Rewriting the stability condition

(39) for the triplet(Ni, (T1Di − KiG), In), and settingPZ = Z, the LMI condition (50) follows.

Remark 3:Obviously, the condition (49) is less restrictive than (9).To obtain perfect decoupling to all the UI

of (47-48),Di and G should be replaced by
[

Di Di

]

and
[

G G
]

respectively in (49) and (51), which would lead

to a more restrictive existence condition.

A similar result can be given for discrete-time systems defined by

Exk+1 =

r
∑

i=1

hi(wk)
(

Aixk+Biuk+Didk+Didk

)

(55)

yk =Cxk + Gdk + G dk (56)

Corollary 3: There exists an observer (7-8) ensuring perfect decouplingto dk and maximally robust todk if

the condition (49) is satisfied and if there exist a symmetricpositive definite matrixP ∈ R
n×n and a matrix

Z ∈ R
n×(n+(r+1)m) solution to the minimisation ofγ under the following LMI constraint fori = 1, . . . , r.











In − P 0 Φ
T
i,1

0 −γ2I Φ
T
i,2

Φi,1 Φi,2 −P











< 0 (57)

whereΦi,1 andΦi,2 are given by

Φi,1 = PYX
+

Yi + ZX
⊥

Yi

Φi,2 = PYX
+

Yi + ZX
⊥

Yi

Proof: The proof follows the lines of the proof of Corollary 2 and Theorem 3 and is therefore omitted.

Finally the design of the observer for continuous-time (resp. discrete-time) TSDS is reduced to the following

procedure.

Step 1.Verify the existence condition (49).

Step 2.Solve the LMI (50) (resp. (57)) inP andZ.

Step 3.ComputeZ with Z = P−1Z. For a givenZ, Θ is given by (54), then the matricesT1, T2 and Ki are

obtained. The matricesNi, Mi andLi are derived from (19), (23) and (24) respectively.



VI. A PPLICATION TO FAULT DIAGNOSIS

In this section the UI decoupling and attenuating observersare used to perform fault diagnosis. Consider a

continuous-time TSDS affected by faultsf(t) ∈ R
q and disturbancesw(t) ∈ R

q defined by

Eẋ(t)=
r

∑

i=1

hi(w(t))(Aix(t)+Biu(t)+Dfif(t)+Dwiw(t))

y(t)=Cx(t) + Gf f(t) + Gww(t)

In the discrete-time case, the TSDS affected by faultsfk ∈ R
q and disturbanceswk ∈ R

q is defined by

Exk+1 =
r

∑

i=1

hi(wk) (Aixk+Biuk+Dfifk+Dwiwk)

yk =Cxk + Gf fk + Gwwk

It is assumed that each component of the disturbance vector is bounded, and that the value of this bound is known

: |wi(t)| < νi (resp. |wik| < νi in the discrete-time case) fori = 1, . . . , q) for all t (resp. for allk). The well

known generalised observer scheme [13] can be applied to propose a method for the fault diagnosis of TSDS. In

this approach,q UIDAO are designed. Theℓth UIDAO is designed by considering theℓth fault as an UI. A subset,

denotedΣℓ, of the disturbances can also be considered as UI provided the existence condition (49) is satisfied. In

other words, theℓth observer is designed for the system (47-48) (resp. (55-56)), with

Di =
[

Dℓ

fi Dj
wi, j ∈ Σℓ

]

Di =
[

Dj
wi, j ∈ Σℓ

]

G =
[

Gℓ
f Gj

w, j ∈ Σℓ

]

G =
[

Gj
w, j ∈ Σℓ

]

whereMℓ denotes theℓth column of the matrixM, andΣℓ denotes the complementary toΣℓ in {1, 2, . . . , q}.

As a consequence, the output estimation of theℓth observer will be sensitive to all the faults but theℓth, insensitive

to the ℓth fault and a to subset of the disturbances, denotedΣℓ, and maximally robust to the other disturbances

belonging to the subset̄Σℓ. The subsets of the UI are determined so that the decoupling condition (49) is satisfied

for all the disturbances inΣℓ and so that theL2-gain from the disturbances in̄Σℓ to the output estimation error is

minimised. In other words, the output estimation error is a residual signal. A classical method for observer-based

fault diagnosis is to suppose the occurrence of theℓth fault if all residual signals, except theℓth, are significantly

different from zero. The problem is then to quantify the termsignificantly. In order to discriminate between the

influence of the disturbances and theℓth fault, one can compute theL2-gain from the disturbances to each output

estimation error, as described in the following procedure.

For each faultfℓ(t) (resp.fℓk in the discrete-time case)

• design the UIDAO, sensitive to all faults exceptf ℓ(t) (resp. f ℓk), insensitive towi(t) (resp.wik) i ∈ Σℓ and

maximally robust towi(t) (resp.wik), i ∈ Σℓ.

• compute the norm-bound of the attenuated disturbances, denotedρℓ

ρℓ =

√

∑

i∈Σℓ

ν2
i



• for each component of the outputyj(t) (resp. yjk), compute theL2-gain, denotedgℓj , from the attenuated

disturbances{wi(t) | i ∈ Σℓ} (resp.{wik | i ∈ Σℓ}) to the jth output estimation error and compute the boolean

vectorbℓ(t) =
[

bℓ1(t) bℓ2(t) . . . bℓm(t)
]

(resp.bℓk =
[

bℓ1k bℓ2k . . . bℓmk

]

), wherebℓj(t) (resp.bℓjk) is defined

by

bℓj(t) =











1, if |ŷℓj(t) − yj(t)| > αgℓjρℓ

0, else

bℓjk =











1, if |ŷℓjk − yjk| > αgℓjρℓ

0, else

where ŷℓj(t) (resp. ŷℓjk) is the jth component of the estimated output given by theℓth observer. The positive

scalarα allows the designer to handle the compromise between non detection and false alarm (e.g. considering the

accuracy of the model).

• compute the alarmaℓ(t) (resp.aℓk), affected tof ℓ(t) (resp.f ℓk), defined in the continuous-time case by

aℓ(t) =























1, if (bi(t)b
T
i (t) ≥ 1, ∀i 6= ℓ)

& (bℓ(t)b
T
ℓ (t) = 0)

0, else

or in the discrete-time case by

aℓk =











1, if (bikbT
ik ≥ 1, ∀i 6= ℓ) & (bℓkbT

ℓk = 0)

0, else

This approach can be conservative, since the only availableinformation about the disturbances is their amplitude

bound and theL2-gain of their influence onto the output estimation error, thus it may imply non detection. This

effect can be limited by the use of the parameterα which can be adjusted according to measurements of the system

under healthy operation. Nevertheless, comparing each component of the estimation error with a threshold makes

it possible to avoid distributing a significant error affecting a component on all the various components, and then

reduces the non detection.

One should note that the generalised observer scheme is an efficient structure of diagnosis in order to detect

and isolate single faults. In the case of simultaneous faults, two faults may cause non zero residue responses in

all observers. In this case, the dedicated observer scheme can be considered as an alternative, but the decoupling

conditions become much more restrictive since all the faultinputs but theℓth have to be decoupled from theℓth

residue. This scheme is not detailed here, but can be readilyapplied since it suffices to change the definition of the



matricesDi, Di, G andG : the ℓth observer should be designed for the system (47-48) (resp. (55-56)), with

Di =
[

D1
fi . . . Dℓ−1

fi Dℓ+1
fi . . . Dq

fi Dj
wi, j ∈ Σℓ

]

G =
[

G1
fi . . . Gℓ−1

fi Gℓ+1
fi . . . Gq

fi Gj
w, j ∈ Σℓ

]

Di =
[

Dj
wi, j ∈ Σℓ

]

, G =
[

Gj
w, j ∈ Σℓ

]

VII. D ESIGN EXAMPLE

In this section, the proposed approach for fault diagnosis is illustrated. Consider a discrete-time TSDS defined

by

Exk+1 =
2

∑

i=1

hi(wk) (Aixk+Biuk+Dfifk+Dwiwk)

yk =Cxk

with E = diag
(

1 1 1 0
)

and

A1 =

















−0.5 −0.5 0.2 0.2

−0.9 0.1 0.4 0.7

−0.2 −0.7 0 0

−0.2 −0.4 0.4 0

















, B1 = Df1 =

















5 0

0 0

0 4

0 0

















,

A2 =

















0.1 −0.2 0.4 0.9

−0.2 0.6 −0.2 −0.7

0.5 −0.7 −0.7 0.6

−0.7 0.4 0.4 3.6

















, B2 =Df2 =

















6 0

0 0

0 3

0 0

















,

Dw1 =

















0 0

0.8 0

0 0

1 0

















, Dw2 =

















0 0

1 0

0 0.1

1 0

















,

C =





1 1 −1 0

0 1 0 1





One can notice that the subsystem(E, A1) is impulsive. The finite spectrum of the two subsystems are significantly

different since we haveσf (E, A1) = {−0.080,−0.564} andσf (E, A2) = {−0.935, 0.126, 0.996}, thus the global

system is not close to a linear system. The sampling time ists = 0.03 s. The activating functionshi(wk) are

defined byh1k = (1 + tanh(u1k/10)/2 and h2k = 1 − h1k. The disturbancesw1k and w2k are bounded centred

white noise, with norm boundν1 = ν2 = 1. The fault signals represent control input dysfunctions and they are



defined by

f1k =











−0.8 u1k if 35 ≤ tk ≤ 40

0 else

(58)

f2k =











−0.8 u2k if 40 ≤ tk ≤ 45

0 else

(59)

The first UIADO is designed with the first control input as UI, theL2-gain fromw to the first and second output

estimation error areg11 = 0.098 and g12 = 0.050 respectively. The second UIADO is designed with the second

control input and the second disturbance as UI, theL2-gain fromw1 to the first and second output estimation error

areg21 = 0.052 andg22 = 0.009 respectively.

On figure 1, the inputs and the activating functions are displayed. Figures 2 and 3 display the comparison of

the state variables and their estimates supplied by the UIDAO insensitive to the first fault. The faultf1k appearing

betweentk = 35 s andtk = 40 s does not affect the estimation, whereas the estimation is sensitive to the faultf2k

present betweentk = 40 s andtk = 45 s. Figures 4 and 5 display the comparison of the state variables and their

estimates supplied by the UIDAO insensitive to the faultf2k and affected byf1k. The residual signal and their

corresponding threshold, forα = 1, are displayed on figures 6 and 7.

The residual signals computed with the output estimation error of the first observer are sensitive tof2k and

insensitive tof1k whereas the residual signals computed with second UIADO aresensitive tof1 and insensitive

to f2. TheL2-gainsg11, g12, g21 and g22 are good thresholds for fault isolation, withα = 1, since the faultf2k

(occurring for40 ≤ tk ≤ 45) is isolated att = 41.5 s, and the faultf1k (occurring for35 ≤ tk ≤ 40) is isolated

at t = 35.1 s. The sudden appearance or disappearance of a fault may cause abrupt changes of the state variables

that the estimate cannot follow instantaneously. Thus evenif the estimation is decoupled from the occurring fault, a

residual signal may be transiently higher than the threshold. This phenomenon appears on figure 7 att = 45 when

f2k disappears and causes a brief overshot of the output estimation error.

VIII. C ONCLUSION

In this paper a simple method is proposed to design unknown input observers for Takagi-Sugeno descriptor

systems. Sufficient existence conditions were given, and the determination of the observer parameters is based on

solving a system of strict LMI. If the unknown input decoupling condition is not satisfied, it has been proposed to

design anL2-observer in order to minimise theL2-gain from the UI to the estimated state. A compromise between

perfect unknown input decoupling and unknown input attenuation can be made to design observer ensuring perfect

decoupling face to a subset of the unknown inputs, and robustness face to the other unknown inputs. The three

observer designs are treated in both continuous and discrete-time cases. The proposed observers are used to perform

fault diagnosis. Designing a bank of observers, where each observer considers a fault as an unknown input, the

generalised observer scheme can be extended to Takagi-Sugeno descriptor systems.
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Fig. 1. Inputs and activating functions of the simulated system
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Fig. 2. Original and estimatedx1k andx2k obtained with an observer decoupling the first input
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Fig. 3. Original and estimatedx3k andx4k obtained with an observer decoupling the first input

0 5 10 15 20 25 30 35 40 45 50
−200

−150

−100

−50

0

50

time / s

or
ig

in
al

 a
nd

 e
st

im
at

ed
 x

1

original x
1

estimated x
1

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

100

150

200

time / s

or
ig

in
al

 a
nd

 e
st

im
at

ed
 x

2

original x
2

estimated x
2

Fig. 4. Original and estimatedx1k andx2k obtained with an observer decoupling the second input
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Fig. 5. Original and estimatedx3k andx4k obtained with an observer decoupling the second input
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Fig. 6. Output estimation errors obtained with an observer decoupling the first input
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Fig. 7. Output estimation errors obtained with an observer decoupling the second input


