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Abstract

This paper presents a method for state-estimation of Takagi-Sugewrdptias systems (TSDS) affected by
unknown inputs (Ul). For ease of implementation’s sake, the propobsdrvers are not in descriptor form but
in usual form. Sufficient existence conditions of the unknown inputenless are given and strict linear matrix
inequalities (LMI) are solved to determine the gain of the observers. Ipéntect unknown input decoupling is not
possible, the Ul observer is designed in order to minimisedh®ain from the Ul to the state estimation error. The
two previous objectives can be mixed in order to decouple the estimationubsatsof the Ul, while attenuating the
L2 gain from the other Ul to the estimation. The proposed Ul observerssae for robust fault diagnosis. Fault
diagnosis for TSDS is performed by designing a bank of observesmfile decision logic and thresholds setting
allow to determine the occurring fault. The results are established for bettotitinuous and the discrete time cases.
The proposed method is illustrated by a numerical example.

Index Terms
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I. INTRODUCTION

The Takagi-Sugeno (TS) model proposed by [14] is a well-km@ivucture to represent nonlinear systems into
several linear fuzzy models. In the last two decades, théraoand the observation of TS systems have become

challenging problems that received a considerable amofattention. In [19], stability analysis and controller
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design are addressed, solutions are derived in the line&ixmiaequality (LMI) formalism. Relaxed sufficient
conditions for fuzzy controllers and fuzzy observers areppsed in [15], and in [16] via a multiple Lyapunov
function approach.

The descriptor formalism is very attractive for system nilialg as pointed out in [4], since it describes a
wider class of systems including physical systems with ngmachic constraints (e.g. algebraic relations induced
in interconnected systems such as power transfer networkater distribution networks) or jump behaviour. The
enhancement of the modelling ability is due to the structifrthe dynamic equation which encompasses not only
dynamic equations, but also algebraic relations.

Since both TS and descriptor formalisms are attractive énfigld of modelling, the TS representation has been
generalised to descriptor systems. The stability and thigdef state-feedback controllers for TS descriptor syiste
(TSDS) are characterised via LMI in [17],[18], in particyléhe problem of nonlinear model following is treated
in [18]. Robust output feedback, arid,,-control are considered for TSDS in [12] and [21] respetyivEhe study
of TSDS is envisaged with interval methods in [20], in ordertdke into account the different operating points.
Unfortunately, the problem of observer design, and espgdlae design of unknown input observers, has resulted
in very few works.

The design of unknown input observer (UIO) is a crucial peablsince, in many practical cases, all input signals
cannot be known. Moreover, this class of observers is widsld in the area of fault diagnosis, even if all the
inputs are known (see chap. 3 in [13]). The design of UIO hasived considerable attention in the case of usual
(in opposition to descriptor) linear systems [5], desaniptystems [7], [8], [11] or TS systems [1]. Unfortunately,
to the authors’ knowledge, the design of UIO has not beerteitletn the generic case of TSDS. The aim of this
paper is not only to generalise the existing works on UlOglesd TSDS, but also to apply this new observer in
the field of fault diagnosis of TSDS which has not been treatedar.

This paper gives a simple extension to TSDS of the design eémvers for the state estimation in the presence of
unknown inputs (Ul). Under some sufficient conditions, tlesign of the observer is reduced to the determination
of a matrix. The choice of this parameter is performed by isghstrict LMIs. If the estimation error cannot be
decoupled from the Ul, al; observer is proposed to minimise the influence of the Ul orstate estimation. The
two design objectives can be mixed by decoupling the stabmason from a subset of the Ul, and minimising the
Lo-gain between the other Ul and the state estimation err@r.dBsigned observers are used for fault diagnosis, since
the Ul can encompass the faults and the disturbances affettte system. Designing several observers attenuating
the disturbance effect, and decoupling the estimation fatinfaults but one lead to the well-known Generalised
Observer Scheme (GOS) for fault diagnosis [13]. The desfgobeervers is detailed both in the continuous time
case, and in the discrete time case.

The paper is organised as follows: the class of studied mgsie defined in section Il and the main results
about UIO design are detailed in section lll. Firstly, thdinidon of the UIO and the sufficient existence condition
are established. Secondly, the computation of the gaineeobbserver is established. The designCefobservers

is treated in section IV. Section V deals with the design o$esteers for both Ul decoupling and disturbance



attenuation. The application to fault diagnosis is studiedection VI. Section VIl is devoted to a numerical
example.

Notation 1: In the paper,® denotes the Kronecker product. For a given makixX” is the transpose oX,
X > 0 (resp.X < 0) means thaX is positive (resp. negative) definit&;” denotes the pseudo-inverse of the matrix
X, and whereX= is defined byX*+ =1 — XX* .

Il. TAKAGI-SUGENO DESCRIPTOR SYSTEMS

To begin with, the class of systems considered in the prgsamer is described. In the continuous time case, a
TSDS is defined by

Ex(t) = ZT: hi(w(t)) (A;x(t) + B;u(t) + D;d(¢)) Q)
y(t) =Cx(t) + Gd(¢) @)

In the discrete time case, a TSDS is defined by
EXkt1 = Z hi(Wi) (AiXi + Buy + D;dy) 3
i=1

Y =CXi + Gdy, (4)

wherex € R” is the state variabley € R™= is the control inputd € RY is the unknown input (disturbance,

actuator noise, or hidden message in the recovering frankgwandy € R™ is the measured output. The matrices
E, A;, B;, D;, C andG are supposed to be real, known, constant and with apprepdiatensions according to the

definition of the signals. The matri may be singular. The activating functions, denake@v(¢)), fori =1,...,r,

are normalised, and satisfy the following constraints

0< hl(W(t)) <1, ihl(W(t)) =1, Vt

0<hi(we) <1, Y hi(wi) =1, Vk

=1

The decision variablev(t) (or wy) is supposed to be real-time accessible, depending on thteotanput, or on
the measured output. Assuming that the same mé&rappears in all the different sub-models is not restrictive i
we consider that the structure of the differential or algébrelations is imposed by the physical structure of the
system, which generally does not change with time. This &ism still encompasses the varying parameters or
the nonlinearities since the matricAs are different one from another, and since the activatingtfans introduce
the nonlinear dynamics. An analogous argument justifiessthgle nature of the output matri@. The available
measurements are determined by the location and the natuhe @ensors which generally do not change (the

sensors are not removed during the operating time).



IIl. DESIGN OF UNKNOWN INPUT DECOUPLING OBSERVERS

In this section, our aim is to design a multiple unknown inpbserver. The UIO are widely used in the field
of fault detection and isolation for dynamic systems, beeathe fault signals are generally unknown. Moreover, a
measured signal can be considered as unknown in order tgsthle default corrupting this particular signal (see
chapter 3 in [3]).

In this study, the proposed observers are not in descriptar,fin order to reduce the implementation complexity.

In the continuous-time case, the proposed multiple UIO findd by

2(t) = Z hi(w(t)) (Niz(t) +M;u(t) + Lay(t)) ®)
X(t) =2(t) + T2y(t) (6)

In the discrete-time case, the proposed multiple UIO is defiby
Zern =y ha(Wy) (Niz, + Mg + Ly, ()
i=1

X =2 + Tay,, (8)

The problem of unknown input decoupling observer (UIDO)igless to find the gains of the UIDO (5-6) (resp.
(7-8)), namelyN;, M, L; and T,, so that the estimated stateasymptotically tends to the state of (1-2) (resp.
(3-4)). In other words, the objective is that the estimatoror defined bye(t) = x(t) — X(t) (resp.ex = X — Xx)
tends to zero when — oo (resp. whenk — oo), regardless of the unknown input, the control input, araitfitial
state.

Firstly, a sufficient rank condition for Ul decoupling is givin Lemma 1. Secondly, a sufficient LMI condition
for the convergence of the continuous-time UIO is given imbma 2 (it is extended to the discrete-time case in
Corollary 1). Finally, the results are gathered in Theoreand a design algorithm is given.

Lemma 1:There exists a continuous-time (resp. discrete-time) awkninput decoupling observer (5-6) for (1-2)

(resp. (7-8) for (3-4)) if the following condition holds

D; ... D,
rank X = rank + n +rank G 9)
I, G
Proof: The estimation erroe(t) = x(t) — X(¢) is given by

= X(t) — z(t) — T2Cx(t) — ToGd(?)
Assume that there exidt; and T, such that, the following equations hold
T,E+T.C=l, (10)

T5G =0 (11)



With (10) and (11), the estimation error beconeé) = T1EX(t) — z(1). Its time derivative is given by :
&(t) =T EX(t) — 2(t)
= Z ha(W(t)) [T1(AiX(t) + Byu(t) + Dyd())
Z—Nizu) — M,u(t) - Ly(0)
= Z ha(W(t)) [N;i€(t)+ (T1A;— N;T1E— L,C)X(t)
+(T1B; — My)u(t) + (T1D; — L;G)d(1)] 12)

The time derivative of the estimation error is given by :

e(t) = D hi(W(t))Nig(t) (13)
i=1
if the following constraints hold foi = 1,...,r
l,=T:E4+T.C (14)
0=TyG (15)
0=TA; —N,T{E—-L;C (16)
0=T:B; — M; a7
0=T.D;-L,G (18)

In order to find the gains of the UIDO, according to the corstsa(14-18), new parameteks; = N, T, — L, are

introduced in (16). Then, the UIDO exists if, for= 1, ..., r, the following statements are true
N; = T1A; + K,C (19)
I, =T{E+T,C (20)
0="T,G (21)
0=T,D; +K;G (22)
M, = T,B; (23)
Li =N;T2 —K; (24)

Verifying the constraints (19-22) reduces to findi@ge R™*(»+m("+1)) sych that
X =Y (25)
N; = @Y; (26)

where®, is given by

©=[T, Ta|Ki Ko ... K, | @7)



Once® is known,M; andL; are deduced from (23) and (24) respectively. The equatiéh i€solvable in the

variable ® if the following condition holds

X
rank =rank X (28)
Y

where the matriceX € R(»tm(r+h))x(n+a(r+1) gndy e R**(n+a(r+1)) gre defined by

E  Ouwg| Di...D,

X = C G Om><q Oqu (29)
Ormxn Orqu Ir®G
Y = |: In On><q Onxrq :| (30)
Obviously, with (30) and (29), the condition (28) becomes
X D; ... D,
rank = n + rank G + rank
Y I,®G
E 0|D;...D,

rank X=rank | C G| 0 ... 0

Then (28) is equivalent to (9). In the discrete-time case,ftoof is very similar, thus it is omitted. [ ]
Lemma 2:The estimation error of the UIO (5-6) for (1-2) tends to zefrdhiere exists a symmetric positive

definite matrixP € R™*" and a matrixZ € R™**(»+m(+1)) verifying the following LMl fori =1,...,r
(YXTY)TPHPYXTY, + (XY ) 72T +ZX 1Y, <0 (31)

where ® is the Kronecker product. The matricksand Y are defined by (29) and (30) respectively, and e
R +m(r+1)xn gre defined by
A;
Yi= 1 Onxn
e®C

wheree; € R™*! is the column vector with all its components equabltaexcept thei'” equal tol.

Proof: Suppose that (9) is satisfied, then (25) is solvable and theigos ® are given by
© =YX +zx* (32)

whereZ € R**(»+m(r+1)) is an arbitrary matrix.

With (26) and (32), the matricds; are defined byN; = YXY,;+ZX"1Y,. The state estimation error tends to zero
if the polytopic system (13) is stable. A well known stalyildondition for polytopic system (see [2]) is the existence
of a symmetric positive definite matriR verifying N;frP +PN; <0fori=1,...,r. Then the UIDO provides an
estimate of the system state if there exists a matrsuch thaP(YXTY; +ZXY,;) + (YXTY; +ZX1Y,)TP <0,
foralli=1,...,r. SettingZ = PZ then (31) is obtained, which completes the proof. [ ]



This result is extended to the discrete-time case.

Corollary 1: The estimation error of the UIO (7-8) for (3-4) tends to zdrthere exists a symmetric positive
definite matrixP € R™*" and a matrixZ € R™*(»+m(+1)) verifying the following LMl fori =1,...,r

GOl I (33)

Z(X1Yy) -P
where®; is defined by
&, = (XEY)TZT(YXTY,) 4+ (YXTYHTZ(XLY))
+ (YXTY)TP(YXTY,) — P
Proof: Proof is similar to the continuous-time case, apart from ¢badition for the stability of the state

estimation error. In the discrete-time casg,tends to zeros if there exists a symmetric positive definigtrim P
such thaﬂ\IiTPNi —P<0fori=1,...,r. With PZ = Z, the LMI (33) follows. |

Theorem 1:There exists a continuous-time (resp. discrete-time) WB)(for (1-2) (resp. (7-8) for (3-4)) if
the condition (9) is satisfied and if there exists a symmetdsitive definite matrixP € R™*"™ and a matrix
Z € Rx(ntm(r+1) yerifying (31) (resp. (33)), fob = 1,...,r.

Finally, the design of UIO for continuous-time (resp. detertime) TSDS is reduced to the following procedure.

Step 1.Verify the existence condition (9).

Step 2.Solve the LMI (31) (resp. (33)) i andZ.

Step 3.ComputeZ with Z = P~'Z. For a givenZ, © is deduced from (32), the matricd, M; andL; are
derived from (19), (23) and (24) respectively.

This result unifies the results obtained, on the one handhérfield of the descriptor systems with Ul [6],[9],
[10] and, on the other hand, in the field of the TS systems wit1{l It is useful because a TSDS cannot be
reduced, either to a single singular system (it would notdlethe nonlinearities due to the weighting functions
h;), or to a regular TS system (it would not handle the algelmelition between the state variables). The existence
condition (9) can be linked to previous works concerningyiErdescriptor systems [9], [10]. Considering (9) for a

single descriptor system, would lead to the condition

ED;, O b
rank |C 0 G| = rank ! +n +rank G (34)
G
0 GO

One can note that (34) is equivalent to the condition (21)3d) (of [9], and is also equivalent to the condition
(A3a) in [10]. Moreover, the present paper gives only sudfiticonditions, whereas [9] gave necessary and sufficient
conditions. This difference appears because the prespat basically written for TS systems, thus the weighting
functions cause conservatism since the ma}ix_, h;(w(¢))A; can take all the possible values in the polytope

defined by its verticesi;.



IV. DESIGN OF UNKNOWN INPUT ATTENUATING OBSERVERS

In this section, the aim is to design an observer for TSDS deioto minimise the influence of the Ul on the state
estimation when the perfect decoupling is not possible. dliesen criterion to minimise is thé,-gain between
the unknown input and the state estimation error. This aras less restrictive than the design of an UIO since
the structural condition (9) is partially relaxed.

As pointed out in the section of UIO design, the estimatiomree is governed by a non singular TS system
(12), thus in order to bound th&;-gain from the Ul toe, and establish the sufficient conditions of the so-called
Lo observer, the following lemma concernidig-gain of TS-systems is needed.

Lemma 3:[2] Consider the continuous-time TS-system defined by

(1) = hi(W(t)) (AX(t) + Bu(t)) (35)

=1
y(t) = > hi(W(t))Cix(t) (36)

=1

and the discrete-time TS-system defined by
Xyl = Z hi (Wi ) (AiX + Buy) (37)

=1

Ve = hi(Wi)Cixy, (38)

=1
The system (35-36) (resp. (37-38)) is stable and verjfige < v||u||2 if there exists a symmetric positive definite
matrix P € R™*™ such that (39) (resp. (40)) is satisfied foe= 1,...,r.

ATP 4 PA; +CTC; PB; |
! . L | <0 (39)
BI'P -2
AlPA;+C/C,—P  A!PB, 0 20
TpA TPpr. 2 < (40)
BTPA; BIPB; — 42

For a given real positive, an observer is said to be an unknown input attenuating ebs@dIAO) of L;-gain
~, if the state estimation erroe, and the unknown input, satisfy||e||2 < v||d||2.

Theorem 2:There exists an UIAO (5-6), with afi;-gain lower thany, for the system (1-2), if the condition
(41) is satisfied, and if there exist a symmetric positivertgfimatrixP ¢ R"*" and matriceZ € R"*("+t™) and
K, € R**™ verifying the LMI (42) fori =1,...,r.

EO
rank =n +rank G (42)
CG
W1 ¥,»

r <0 (42)
Vi, —?1q



where the matrice¥, ;, and ¥, » are given by
W, | =PYX{A; + ZX{A; +K,C
+ (PYXTA; + ZX{ A +K,C) + 1,
¥, , =PYX{D; + ZX{D; +K,G

whereX; € R(0xn, X3 ¢ Rin+a)xm xb ¢ Rimtm)xn and X4 e R+m)xm are defined by

r 1+
E O
=[xt x3]
CG
o] [e o]
E E
- |n+m = XL XL
caG||ca [ ' 2}
Proof: If (41) is satisfied, then there exi$t, and T, such that
{Tl Tg} X =Y
whereX andY are given by
E O
X = Y =1y O]
CG

and, for any arbitrary matri¥, T, and T, are given by

Ti =YX +ZXT (43)
Ty =YX3 +ZXy (44)

Following the proof of Theorem 1, if (19), (23) and (24) hotlle state estimation err@(t) = x(¢t) — X(¢) is
governed by

o) =3 he(W(t)) (1A + K,C)el) + (T1D, + K,G)d(1)) (45)

According to Lemma 3|le(t)||2 < ~||d(¢)]]2 if there exists a symmetric positive definite matRxsuch that the
following LMI hold for i =1,...,r

w41, PT,D; + PK,G
DITTP+ G KTP -2l
where ¥, is given by

¥, = (T1A; + K,C)TP+ P(T1A; +K;C)

With K, = PK; andZ = PZ, the LMI (42) follows, which completes the proof. [ ]
Remark 1:Obviously, the condition (41) is less restrictive than (9).

Remark 2:~2 can be considered as a variable to be minimised during thedgdinisation, to obtain an optimal
Ul attenuation.



Corollary 2: There exists an UIAO (7-8) with ay-gain lower than a given real positivefor the system (3-4),
if the condition (41) is satisfied, and if there exist a symmmepositive definite matrix € R™*", and matrices
Z € R™*(m+m) andK,; € R™*™, verifying the following LMI fori =1,...,r

l,—P 0 @&
0 -2, ®/,| <0 (46)
‘I’i,1 ‘I)i,2 -P

where®; ; and ®, , are defined by
®,, =PYXTA; + ZX{A; +K,C

®, 5, =PYX]D; +ZX{D; +K,G
Proof: The proof follows the lines of the proof of Theorem 2 with a Gcltomplement and is therefore

omitted. [ ]

Finally the design of UIAO for continuous-time (resp. dister-time) TSDS is reduced to the following procedure.

Step 1.Verify the existence condition (41).

Step 2.Solve the LMI (42) (resp. (46)) if?, Z andK,.

Step 3.ComputeZ andK; with Z = P~!Z andK; = P_lﬁi respectively. The matriceB; and T, are obtained
by (43) and (44). The matricas;, M; andL; are derived from (19), (23) and (24) respectively.

V. DESIGN OF UNKNOWN INPUT DECOUPLING AND ATTENUATING OBSERVER

If the unknown inputs are too numerous or if their distribatistructure makes the perfect unknown input
decoupling of the estimation impossible (i.e. if the stmsat condition (9) is not satisfied), a compromise can
be made in order to design an observer ensuring two complanyenbjectives with less restrictive existence
conditions. Firstly, the state estimation is perfectly algled to a subset of the Ul denoted:). Secondly, the
L--gain between the other Ul, denotd(¥), to the state estimation error is minimised, thus the ststienation is

made maximally robust to these Ul. Partitioning the Ul in{@) andd(¢) the system (1-2) can be written as

EX(t) = i hi(W(t)) (Aix(t)+ B;u(t)+ D;d(t)+ D;d(t)) 47)
y(t)=Cx(t) + Gd(t) + G d(¢t) (48)

whered(t) € R? andd(t) € R7. The partition of the Ul intod(t) and d(¢) is such that the perfect decoupling
condition is satisfied fo(E, C,G, Dy, ..., D,.), then the£,-gain fromd(¢) to the state estimation error is minimised.
The designs of UIDO and UIAO are combined to derive the desigan unknown input decoupling/attenuating
observer (UIDAO). The sufficient existence conditions akerg in the following theorem.
Theorem 3:There exists an observer (5-6) ensuring perfect decoupting(z) and maximally robust tai(t)

if the condition (49) is satisfied and if there exist a symigepositive definite matrixP € R™*"™ and a matrix



Z ¢ R (n+(r+1)m) golution of the minimisation ofy under the LMI constraint (50) foi = 1,.

- - D; ... D,
rank X =n-+rank [G G} +rank

I, ®G
U, ¥,
7711 21 <0
Vo A

where ¥, ; and ¥, » are given by
T, =PYX'Y; +ZXV;
+(YXY)TP+ (XY)TZ +1,
T, =PYX'Y, + ZXV,
whereX, Y, Y; andY; are given by

E  Ouxg Ouxg| Di...D,
X=| cC G G |Omxg - Omxg
I, ®G

Ormxn 0rm><q Orqu
7: |:|n 0n><q+§ 0n><7'q:|
Y= Omxn VZ = OmXE

e®C e®G
Proof: The state estimation err@&t) is governed by the following system

&t) = z’": hi(w(t))(N;e(t) + (T1A; — N; T, E — L;C)x(t)

+ (TlBi — Mi)U(t) =+ (Tlﬁl — LZG)a(t)

4 (T1D; — L,G)d(t) + ToGd(t) + T2G d(t))

3

(49)

(50)

(51)

(52)

Following a similar argument to that in the proof of Theoremflhe observer parameters satisfy the constraints

(19-24) andT,G = 0, e(t) is governed by

&t) = i: hi(w(t))(N;e(t) + (T1D; + K;G)d(t))

(53)

These constraints can be written @X = Y, with ® defined by (27). This equation can be solved if and only if

7 T _
rank [XT YT} = rank X which is equivalent to the condition (49). If condition (488)satisfied, then, for any

arbitrary matrixZ, © is given by
=YX +zX"

(54)



Then, the only parameter to be found is the ma#ixSince the matricebl; and (T;D; — L;G) can be written as
N; = OY; =YXy, + ZXV,
— — — —t — | —
TD;+K,G=0Y, =YX'Y,; +ZX"Y;

the stability condition of (53) follows the same lines ashe proof of Theorem 2. Rewriting the stability condition
(39) for the triplet(N;, (T,D; — K;G),1,,), and setting®Z = Z, the LMI condition (50) follows. [

Remark 3:Obviously, the condition (49) is less restrictive than (8. obtain perfect decoupling to all the Ul
of (47-48),D; and G should be replaced b{D; D;] and [G G| respectively in (49) and (51), which would lead
to a more restrictive existence condition.

A similar result can be given for discrete-time systems @efiby

EXir1 =3 hi(Wi) (AiX+B;u+Didg+D;dy) (55)
1=1
Y. =Cx;, + Gd;, + éak (56)

Corollary 3: There exists an observer (7-8) ensuring perfect decoupting,, and maximally robust tal, if
the condition (49) is satisfied and if there exist a symmepasitive definite matrixP € R™*™ and a matrix
Z € R (n+(r+1)m) golution to the minimisation of under the following LMI constraint foi = 1, ..., 7.

l,—P 0 &,
0 —2 ®/,| <0 (57)
®,, ®,», —P

where®; ; and ®, » are given by
B, =PYX'Y, +ZXY;
B, =PYX'Y, +ZXY,
Proof: The proof follows the lines of the proof of Corollary 2 and Bhem 3 and is therefore omitted. m

Finally the design of the observer for continuous-time frediscrete-time) TSDS is reduced to the following

procedure.

Step 1.Verify the existence condition (49).

Step 2.Solve the LMI (50) (resp. (57)) i andZ.

Step 3.ComputeZ with Z = P~'Z. For a givenZ, © is given by (54), then the matricés,, T, andK; are
obtained. The matriceN;, M, andL; are derived from (19), (23) and (24) respectively.



V1. APPLICATION TO FAULT DIAGNOSIS

In this section the Ul decoupling and attenuating obseragesused to perform fault diagnosis. Consider a

continuous-time TSDS affected by faufté) € R? and disturbance(t) € R? defined by
EX(t) = hi(W(t)) (AX(t)+Bu(t)+Dysif (£) + DoiW(t))
i=1

Y(t) =Cx(t) + G (t) + G,W(?)
In the discrete-time case, the TSDS affected by faylts R? and disturbancew;, € R? is defined by
EXi+1 = Z hi(Wk) (AiXk-‘v-BiUk-i-Dfifk-‘eriWk)
i=1

Y, =CXi + Gf ), + Guwy

It is assumed that each component of the disturbance vectmyunded, and that the value of this bound is known
D w; ()] < v (resp.|wik| < v; in the discrete-time case) far= 1,...,q) for all ¢ (resp. for allk). The well
known generalised observer scheme [13] can be applied wopeoa method for the fault diagnosis of TSDS. In
this approachg UIDAO are designed. Thé¢” UIDAO is designed by considering th&¢" fault as an Ul. A subset,
denoted.,, of the disturbances can also be considered as Ul provideéxistence condition (49) is satisfied. In

other words, the*" observer is designed for the system (47-48) (resp. (55-56i

D; = {DQ D’ ., jeze} D; = {D{”, jeig}

G= [G?‘G{U, jEZ@] G= [G{U, jeig]

whereM* denotes the*" column of the matrixM, andX, denotes the complementary ¥ in {1,2,...,q}.

As a consequence, the output estimation offtfieobserver will be sensitive to all the faults but tH&, insensitive
to the ¢t fault and a to subset of the disturbances, dendigdand maximally robust to the other disturbances
belonging to the subséi,. The subsets of the Ul are determined so that the decouptingition (49) is satisfied
for all the disturbances i, and so that the,-gain from the disturbances i, to the output estimation error is
minimised. In other words, the output estimation error i®sidual signal. A classical method for observer-based
fault diagnosis is to suppose the occurrence offiefault if all residual signals, except thé", are significantly
different from zero. The problem is then to quantify the tesignificantly In order to discriminate between the
influence of the disturbances and t#é fault, one can compute th&,-gain from the disturbances to each output
estimation error, as described in the following procedure.

For each faultf,(t) (resp. fu in the discrete-time case)
e design the UIDAO, sensitive to all faults excefpl(t) (resp.f,;), insensitive tow;(t) (resp.w;;) i € ¥, and
maximally robust tow;(¢) (resp.w;z), i € 3.

e compute the norm-bound of the attenuated disturbancestetp,

pe= | Z v?
€S,



e for each component of the outpyt(t) (resp.y;;), compute thel,-gain, denotedg,;, from the attenuated
disturbancegw;(t) | i € ¥,} (resp.{w;; | i € X;}) to the ji* output estimation error and compute the boolean
vectorby(t) = [b“(t) bea(t) ... bzm(t)] (resp.ber = |bpis beok ... bemi|), Whereby;(t) (resp.by;r) is defined
by

1, if |y, (¢) —y.(t)| > age;
e L1 B0 3,0 > e

0, else

Lo if Yok — Yirl > agejpe
bejr =
0, else

wherey,;(t) (resp.y,;;) is the 4" component of the estimated output given by #i& observer. The positive
scalara allows the designer to handle the compromise between nattitet and false alarm (e.g. considering the
accuracy of the model).

e compute the alarma,(t) (resp.ay), affected tof ,(¢) (resp.f,.), defined in the continuous-time case by
1, if (bi(t)bl (t) > 1, Vi #¢)
ae(t) = & (by(t)bf (t) = 0)
0, else

or in the discrete-time case by

1, if (bybh, > 1, Vi # 0) & (beb}, = 0)
ayl, =
0, else

This approach can be conservative, since the only availafdemation about the disturbances is their amplitude
bound and theC,-gain of their influence onto the output estimation errogstliit may imply non detection. This
effect can be limited by the use of the parameterhich can be adjusted according to measurements of thensyste
under healthy operation. Nevertheless, comparing eactpeoent of the estimation error with a threshold makes
it possible to avoid distributing a significant error afiagta component on all the various components, and then
reduces the non detection.

One should note that the generalised observer scheme idfiaiergfstructure of diagnosis in order to detect
and isolate single faults. In the case of simultaneous datito faults may cause non zero residue responses in
all observers. In this case, the dedicated observer schamée considered as an alternative, but the decoupling
conditions become much more restrictive since all the faugtits but the/® have to be decoupled from thé"

residue. This scheme is not detailed here, but can be reapiilfed since it suffices to change the definition of the



matricesD;, D,;, G andG : the ¢** observer should be designed for the system (47-48) (reSg5€D, with

Di:[D}i ... Dt DYt ... D%, | D, jezg}
G=|Gh ... Gii' G4 .. GGl e
52': [D{m-, jEie} 5 6: {qu, jEi@}

VII. DESIGN EXAMPLE
In this section, the proposed approach for fault diagnasidiustrated. Consider a discrete-time TSDS defined

by

2
EXk+1 = Z hl(Wk) (AiXk+BiUk+Df'ifk+DwiWk)

i=1

Vi =CXg

with E = diag (1 11 O) and

—0.5 —0.5 0.2 0.2 50
—-0.9 0.1 04 0.7 00
A= , Bi =Dy = ;
—-0.2 =07 0 O 04
—-0.2 —04 04 O 00
01 —-0.2 04 09 60
-0.2 0.6 -0.2 —0.7 00
Ay = , Bo=Djpy= )
0.5 —-0.7 —-0.7 0.6 03
-0.7 04 04 3.6 00
0 0 0 0
0.8 0 1 0
le = w2 —
0 0 0 0.1
1 0 1 0
11-10
C =
01 0 1

One can notice that the subsyst¢E A, ) is impulsive. The finite spectrum of the two subsystems ageifstantly
different since we haves(E,A;) = {—0.080,—0.564} andos(E,As) = {—0.935,0.126,0.996}, thus the global

system is not close to a linear system. The sampling timg is- 0.03 s. The activating function&;(w;) are

defined byh;; = (1 + tanh(u1/10)/2 and hor, = 1 — hyg. The disturbances;;, and wq are bounded centred

white noise, with norm bound; = v, =

1. The fault signals represent control input dysfunctiond #rey are



defined by

—0.8 uyp if 35 <t <40
fix = (58)

0 else

—0.8 ugp, if 40 <t <45
for = (59)

0 else

The first UIADO is designed with the first control input as WetCo-gain fromw to the first and second output
estimation error arg;; = 0.098 and g1 = 0.050 respectively. The second UIADO is designed with the second
control input and the second disturbance as Ul,4hegain fromw; to the first and second output estimation error
are go; = 0.052 and g2 = 0.009 respectively.

On figure 1, the inputs and the activating functions are disgd. Figures 2 and 3 display the comparison of
the state variables and their estimates supplied by the OlD&sensitive to the first fault. The fauft, appearing
betweent;, = 35 s andt;, = 40 s does not affect the estimation, whereas the estimatioanisits/e to the faultfa
present between, = 40 s andt, = 45 s. Figures 4 and 5 display the comparison of the state vadadohd their
estimates supplied by the UIDAO insensitive to the fafsit and affected byf,;. The residual signal and their
corresponding threshold, fer = 1, are displayed on figures 6 and 7.

The residual signals computed with the output estimationreof the first observer are sensitive fg;, and
insensitive tof1;, whereas the residual signals computed with second UIADGsansitive tof; and insensitive
to fo. The Lo-gainsgi1, g12, g21 and goo are good thresholds for fault isolation, with= 1, since the faultfs
(occurring for40 < ¢, < 45) is isolated at = 41.5 s, and the faultf,;, (occurring for35 < ¢, < 40) is isolated
att = 35.1 s. The sudden appearance or disappearance of a fault may @bugpt changes of the state variables
that the estimate cannot follow instantaneously. Thus @ estimation is decoupled from the occurring fault, a
residual signal may be transiently higher than the threshbhis phenomenon appears on figure 7 at45 when

for disappears and causes a brief overshot of the output estimetror.

VIII. CONCLUSION

In this paper a simple method is proposed to design unknowatiobservers for Takagi-Sugeno descriptor
systems. Sufficient existence conditions were given, apdddtermination of the observer parameters is based on
solving a system of strict LMI. If the unknown input decoungicondition is not satisfied, it has been proposed to
design anCs-observer in order to minimise th@&,-gain from the Ul to the estimated state. A compromise betwee
perfect unknown input decoupling and unknown input attépnacan be made to design observer ensuring perfect
decoupling face to a subset of the unknown inputs, and robastface to the other unknown inputs. The three
observer designs are treated in both continuous and distine¢ cases. The proposed observers are used to perform
fault diagnosis. Designing a bank of observers, where easlerger considers a fault as an unknown input, the

generalised observer scheme can be extended to Takagiksdgscriptor systems.
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