Robust Fault Tolerant Control for Descriptor  thus due to the coprime factorization only proper filters are

Systems implemented, which is the major interest of this approach.
The paper is organized as follows. Section Il recalls some
B. MARX D. KOENIG D. GEORGES basics about descriptor systems and coprime factorization

Fault tolerant control is tackled in section 3. Before conel

. ) ing, an example is provided.
Abstract— A new architecture for fault tolerant controllers is 9 P P

proposed for the generic class of descriptor systems. It isased
on coprime factorization of non proper systems and on the Yola Il. PRELIMINARIES

parameterization of stabilizing controllers. Noticing that the . . . .
Youla controllers include a so called residual signal, fadltolerant In this section, some basics about descriptor systems are

control is achieved. Nominal control and robust fault tolemnce reminded, mainly taken from [3], a particular attention &dp
are addressed separately. Moreover fault tolerant controkan be to the coprime factorization which is the core of our apphoac

improved with a scheme integrating fault diagnosis. The dégn | et consider a linear time-invariant descriptor system-sub
of the diagnosis and fault tolerant control filters reduce toa ject to fault and disturbance given by

standard H- control problem of usual state-space system.

Index Terms— Robust fault tolerant control, descriptor sys- Ei(t) = Az(t) + Bu(t) + R1f(t) + E1d(t) @
tems, coprime factorization, Youla parameterization. y(t) =Cxz(t) + Du(t) + Raf (t) + Eqd(t)

wherez € R" is the descriptor variabley € R™ is the
I. INTRODUCTION control input,y € R™ is the measured outpuf,€ R"< is the
disturbancef € R" is the fault andt, A, B, C, D, E1, E»,

Since systems are more and more complex, fault diagnoﬁs and R, are known real constant matrices with compatible
and fault tolerant control have become challenging problgm dimensions. As discussed in [5], the unknown veot6r)
the area of modern control theory, see the books [1] and [15). the equations (1) embraces model uncertainties, additiv
Recently, efforts have been provided to integrate diagniosi Perturbation, input and output multiplicative perturbatiand
the controller design, see [11], [13], [16]. the vector f(¢) stands for dysfunctions, actuator or sensor

In order to take into consideration physical constraints dults.
static relations and more generally impulsive behavioused ~ The matrix £ may be rank deficient rank(E) = r <
by an improper transfer matrix, the descriptor formulatiof- The system (1) has an unique solution, for any initial
(e Ei = Az + ... appears in many fields of systemcondition, if it is regular (e. det (sE — A) # 0). Let note
design and control, see [3] and [8]. Concerning the fault = degdet (sE— A). (1) hasgq finite dynamic modes,
diagnosis problems, few results have been generalizedeto th — 7) static modes ang- — ) impulsive modes. The finite
descriptor case. In Chap. 5 of [12] fault detection is basdgodes correspond to the finite eigenvalues of the pencilixnatr
on observers, and unknown input observers are studied (fa 4). The system is called stable if and only if the finite
[4]. In [7], fault detection and isolation is considered et Modes are stable,e. the finite eigenvalues ofE, A) lie in
H .-filtering framework and in [9], diagnosis is performed vidhe open left half-plane. The impulsive modes may cause
coprime factorization of the nominal plant. But none of tnhedMmpulse terms in the response and thus are highly undesirabl
contributions envisaged fault tolerant control. A system has no impulsive mode and is said to be impulse free

This paper aims at generalizing fault tolerant control prétand only if deg(det(sE—A)) = rank(E). Since the transfer
posed by [13] to descriptor systems. Using the Youla paranfgatrix of any impulse free descriptor system is (non st)ct|
terization, it is possible to address the fault diagnosi3)(fhe ~Proper it can be realized by an usual state-space représenta
control and the fault tolerant control (FTC) in distinctsse (4, B,C,D).
but in an unified approach. In the Youla parameterization of A descriptor system is impulse observableesf. R-
the stabilizing controllers [15], an inner signal appearbe a detectable) if and only if it satisfies (2)ep. (3))

residual and can be filtered to perform robust fault diagosi ET 0 0

Moreover, the residual signal can be exploited for FTC by rank [AT ET CT] =n+rankE (2)
minimizing the output deviation caused by the fault andugtist

bance signals. To improve the performance of the FTC system, rank [ SEC: A] =n,Vs € C, with R(s) >0 (3)

filters devoted to each fault (or combination of faults), ko
be synthesized and the appropriate filter is selected @n-li (2) is verified, there exists a matrix gaih such that the
according to the direction of the residual signal. It is intpat  pencil matrix(E, A+ LC') is impulse free. If (3) is verified, the
to note that, although descriptor systems may be impropenstable finite eigenvalues 6F, A + LC) can be arbitrarily
the design of the diagnosis and fault tolerant filters reduoe placed by the matrix gait. If (3) is verifiedfor all s, all the
standardH .. -control for usual systems. Moreover, contrary tdinite eigenvalues of £, A+ LC) can be arbitrarily placed, and
most residual generation or internal model methods, theixnatthe system is calleB-observable. Dual notions are defined for
transfer of the process is not duplicated in the controllehe controllability [3]. If (E, A) is stable and impulse free, it

. . . is called admissible.
The authors are with Laboratoire d’Automatique de Grenof®R In th . fth h |
CNRS-INPG-UJF), BP 46, 38402 Saint Martin d’Héres, Ced@eance (e- n the remaining of the paper the only necessary assump-
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(A1) (E,A,C) is impulse observable and detectable

(A2) (E, A, B) is impulse controllable and stabilizable
(A3) (E,A) is regular

The LTI descriptor system (1) can also be described
y(s) = Gu(s).u(s)+Gy(s).f(s)+Gal(s).d(s) whereG,(s) =
C(SE — A)ilB + D, Gd(s) = C(SE — A)ilEl + FE, and
G¢(s) = C(sE — A)"'Ry + R,. A coprime factorization of
the system (1) and of a stabilizing controll&f(s) is given
by

Gu = N,M;' =M N, (4)
Gr=NyM;' = M;'Ny (5)
Gaq= NyM;' = M;* Ny (6)
Ko=UV~t=v~lU (7)

where the transfer matrices in (4) and (6) should satisfy t

following double Bezout equation

1ol [V -U][M, U

07|  |-=N, My || NuV

M, U vV o -U
v h ®)

Let Ky(s) be an observer-based feedback controller defined

by
Ei.=A%.+ Bu+ L(CZ.+ Du—y)
u=Fz,.

{

€)
or equivalently
A+ LC+ BF+ LDF|—-L
Kol = {p, [AFECEPELEDESL L o)

where the matricess and F' ensure the admissibility of

1. FAULT TOLERANT CONTROL

In this section an architecture of fault tolerant contnalle
is proposed for descriptor systems. On the one hand, nhominal
yntrol performance, such as admissibility and pole plaggm
of the nominal closed-loop system, are targeted. On ther othe
hand, the deviation from the nominal response caused by the
exogenous inputd(s) and f(s) is minimized to achieve fault
tolerant control. The proposed controller structure isictep
on Fig. 1. One should recognize the Youla parameterized
controller.

This structure is interesting since, from (13), the intérna
signal,r, appears to be a residual signal.

r(s) = M(s)(s)y(s) — Nu(s)u(s)
= Np(s)f(s) + Na()d(s)

l1‘?1us fault tolerance (FT) aspects can easily be taken into
consideration. Moreover, the reference signalf, does not
impact on the residual generation. The response of theatlose
loop system is given by (13), wheteis defined by

uw =V (UerQC (Mnyuu)) +ref
7 (Oy+ Qe (Nad + Ny f)) +ref  (26)
combining (13) and (16), the response of the closed-loop
system is given byy = (M — N, V'U) ' (Nyref + (I +
N.V~'Qc)(Nad 4+ Nyf)). From (8) and matrix inversion

formulae, one can derive that = (M — N, V'U)~! and
V(I + N, V7'Q.) =V + N,Q., and then finally obtain

(14)

(15)
uw =V

y=VNuref +(V + NuQo) (Ndd + Ny f) 17)

from (17), it is clear that, on the one hand, the nominal cantr

(E,A+ LC) and (E, A + BF) respectively. The matrices performances are set ByN,,, thus by L and F, and, on the

in (4) and (6)can be defined by [9]

v g A+LC|—(B+LD) L
T “ C —-D I
A+ BF|B —L
H\{ g] e |7 F 10 (12)
“ C+DF|\D 1

The transfer matriced’;, Ny, My, Mg, Ng, N4, My and M,
in (5-6-7) are easily deduced from (11) and (12). Moreov
a key point is thatM, = M; = M, = M holds. Since
the matricesL and F' are chosen such théf, A + LC) and
(E, A+ BF) are admissible, all the transfer matrides, Ny,
M;, and N}, are proper fotk € {u,d, f}. The impulsive terms
in G..(s), Gy(s) andGy(s) are caused by their inverse, !

other hand, the fault tolerance is obtained by the apprtgpria
choice ofQ.(s). When no exogenous signal enter the system,
the inner-loop is inactive since(s) = 0. Consequently the
choice ofQ.(s) does not affect the nominal performance of
the controller. Thus, nominal control and fault tolerance a
addressed separately.

The controller is not necessary implemented as shown on
Fig.1 since it involves high order controller. Neverthslgbis
formalism is appealing, not only for the sake of clarity, but
eaI\,Iso in the case of on-line reconfiguration of the controller
when (). is monitored accordingly to a fault diagnosis filter
(see section 11I-C).

A. Nominal Control
It is readily verified that the nominal response corresponds

or M, !, which may be strictly improper. System (1) can thug an observer based controller since

be written as

y= N1 (Nuu + Nyd + Ny f) (13)
The set of all stabilizing controllers is given in [14].

Lemma 1: The set of all stabilizing controllers fo&, (s)
is given by K (s) = (M,Q+U)(N,Q+V)~! or equivalently
K(s) = (V+ QN,) (U 4+ QM), whereQ is an arbitrary
proper stable transfer matrix.

A+ BF+LC+ LDF
F

—L
0

7= {E [

and the closed-loop response is given by

) o

) 5o A+BF —LC | —LD
VN, = [0 E} 0 A+LC|B+LD
C+DF C D

(19)



where the well-known separation principle holds. The admi§T; + 7>Q. T3], whereT:, T> and T3 are given by
sibility of the closed-loop system is secured by (A1) and)A2

moreover the finite dynamics of the closed-loop system can T = HE 0 } ,

be arbitrarily chosen, provide@®, A, B) and (E, A, C) are 0 E

R-controllable andR-observable respectively. The temporal A+ BF -LC ‘ —LE, —LR,
characteristics of the response can be fixed by selediing 0 A+LC|Ei+LE; Ri+ LRy (25)
and L to ensure pole clustering of the closed-loop system. As C+DF C | E Ry

introduced in [2], the concept of LMI region is an efficienbto

to describe every convex region of the complex plane, which Ty = {E, [ﬂ’ﬁ] } (26)
is symmetric with respect to the real axis, by two matriaes C+DF|D

andg (eg. the left half-plane is defined hy = 0 andg = 1).

The LMI characterization of pole-clustering in LMI regioorf T3 = {E, [ A +CLC I By EQLEQ L EQLRQ } } (27)

descriptor systems is treated in [10], and as a reSudtnd L

can be determined by solving strict LMI in order to ensur8ince7:, T, and 75 are impulse free, these transfer matri-

the pole clustering of the closed-loop system. ces can be realized by usual state-space systems, let note
Theorem 1. for a given LMI region D, of the left half- (A4;, B;, C;, D;) a minimal realization off;, for i € {1, 2, 3}.

plane defined by and 3, there existL and F' such that The minimization ofJ. can be formulated in the standard

the closed-loop system (19) iB-admissible i(e. is impulse H,, framework as finding the controll€y. that minimizes the

free and has its finite pole i), if and only if there exist H..-norm of the closed-loop system depicted on Fig 2, where

symmetric positive definite matriceBr and P, € R"*", the system(A., Bic, Bac, Cics Cac, Di1c, D12¢s Da1c, D22c),

and matricesSy and Sy, € R(=—7)x(n=r) [, ¢ Rux(n=7) s defined by

Hp € Rm*(=n), Ly € R™*(=") and L, € R™*" such
that AC :diag(Al,Ag,A3), Blc = [Bg1 0 Bg]T,

_ T 017 _
[ox EPr ET + Bkl (APpET + BLpET) + BHpUT Bye=[0 By 0], Cie=[C1 G2 0],
+AVSFUT+ﬂ”f(EPFAT+EL£BT) 020:[0 0 03]7 DllC:Dla Dch:D27
FUSEVTAT L UHEBT] < 0(20) Daie = Dy and Daze =0 (28)

[OéklETPLE + Bkl (ATPLE + CTLLE) +cTHEVT TAhe jIB;MICbase_d StOIll)J'tIi'oanOf [6]d cgmt b(ta l:z)alppliedc,j provi%e(?j
¢, Bac, Coc) is stabilizable and detectable, and provide
+ATUSLY" + Blk (ETPLA+ETLEC) t(he dirQéct 2trzzmsfer from the control input to the n?easured
+VSTUTA+VHLC] ., <0(21) output is null. These necessary conditions are verifiedesinc
where the notatiol/ = [My],—, .. means that\/ is an (E,A_+ BF) and (E, A + L_C) are admissible, thus stable,
m x m block matrix with generic block/,;. U andV are of @nd sinceDay. = 0, respectively. , ,
full column rank and are composed of basesiafr(E) and Remark 1: A weighting function can be added in the crite-

Ker(ET) respectively. Therf” and L are given by rion to enhgnce the rob_ustness at high frequen_cy or to put
an emphasis on a particular frequency range if the power

F = (LpE" + HpUT) (PrET +VSpUT) ™' (22)  spectrum of the fault and disturbance is known.
I = (PLE + USLVT)*T (LLE + HLvT)T (23) Remark 2: The design of reduced order controller is highly
Proof: This result is easily deduced from theorem 1 i§ncouraged sincel. is a (4r x 4r) matrix. The following
[10] m algorithm summarizes the fault tolerant control process.
Algorithm 1: to implement fault tolerant controller :
B. Fault Tolerance 1. Solve (20-21), to findL and F' such that the nominal
' closed-loop system i®-admissible.

In the absence of any fault and disturbance the reconfigéj— Find Q. by solving the equivalent standafd., control
ration loop is inactive and does not affect the performarfce .roblem fOI’C(28) >

the nominal closed-loop system. In the presence of exogengu
signal,Q.(s) provides a corrective term in order to compen- )
sate the effects of the exogenous signals. Indeed, it can b _ (v o\ 5 - >

seen as an internal model based controller, with the major%(s) N <V+QCN“) <<U+QM) y(s) + me(s))
difference thatV/(s) and N, (s) are always impulse free, even

for impulsive nominal plants. From (17) a natural solution tC. Improving the FTC Robustness

FTC problem is to synthesize the paramefe(s) in order to
minimize the H..-norm of the transfer matrix from and f
to y, thus to minimize the criterion (24).

Je = ||(V+NuQc) [Nd Nf}

All the factors in (24) are proper and minimizing the criteri o
J. reduces to the model matching problem of minimizing Jei = ||(V + NuQei) [ Na Ny; |

Implement the optimally robust fault tolerant controller

In the previous scheme, the control filt®. was designed
to obtain optimal tolerance faced to all the possible faults
Assuming that several faults do not occur at the same time,
(24) dedicated controllers can be designad. control filters Q.
are synthesized by minimizing the criterion

||c>o

(29)

Hoo



whereNy; is thei*” column of N;. Another filter, dedicated to V. CONCLUSION
the fault free case, is determined by minimizing the follogyi

criterion In this note, fault tolerant feedback control is extended to

Jeo = H(VJrNuQci)NdHOO (30) ' descriptor systems. The coprime factorization of deseript

Remark 3: If simultaneous faults may appear, combinatioﬁ_yStems permits t_o build a pre residual signal. Then differe
of fault should be considered, but the methodology remaindltérs are synthesized, by standaid, -techniques, to perform
This structure, depicted on Fig.3, permits to significantlgﬁ‘“" tolerant control. The fault tolerant controll_er !sm
reduce the conservatism introduced by tHe, design of ON the well known Youla controller parameterization. The
Q.. The selection of the appropriate control filter is done b%arameterizing filter is designed to minimiz_e the deviatixbn_
a simple logic, exploiting the residual given by a diagnosf§€ output caused by the fault and the disturbance. A high
filter, Q4, synthesized by standatd.. techniques, presentedperformance FTC architecture includes a fault diagnogs fil
in [9]. Q. is determined in order to shape the response of tHe adapt on-line the controller parameter and thus improve

filter to the faults, while minimizing its sensitivity to tde the fault tolerance by selecting a controller dedicatedht t
disturbance. This is achieved by minimizing the criterion
Jo=|[QaNa QaN; =T]] (31)

whereT'(s) is the desired frequency response to the faults.
This model matching problem reduces to standdsd control [y

appearing fault, and limit the conservatism introducedhia t
He

design of the FTC filter.
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Fig. 2.

Fig. 3.

Scheme of fault tolerant control.
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