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Robust Fault Tolerant Control for Descriptor
Systems

B. MARX D. KOENIG D. GEORGES

Abstract— A new architecture for fault tolerant controllers is
proposed for the generic class of descriptor systems. It is based
on coprime factorization of non proper systems and on the Youla
parameterization of stabilizing controllers. Noticing that the
Youla controllers include a so called residual signal, fault tolerant
control is achieved. Nominal control and robust fault tolerance
are addressed separately. Moreover fault tolerant controlcan be
improved with a scheme integrating fault diagnosis. The design
of the diagnosis and fault tolerant control filters reduce to a
standard H∞- control problem of usual state-space system.

Index Terms— Robust fault tolerant control, descriptor sys-
tems, coprime factorization, Youla parameterization.

I. I NTRODUCTION

Since systems are more and more complex, fault diagnosis
and fault tolerant control have become challenging problems in
the area of modern control theory, see the books [1] and [12].
Recently, efforts have been provided to integrate diagnosis in
the controller design, see [11], [13], [16].

In order to take into consideration physical constraints or
static relations and more generally impulsive behaviors caused
by an improper transfer matrix, the descriptor formulation
(i.e. Eẋ = Ax + . . .) appears in many fields of system
design and control, see [3] and [8]. Concerning the fault
diagnosis problems, few results have been generalized to the
descriptor case. In Chap. 5 of [12] fault detection is based
on observers, and unknown input observers are studied in
[4]. In [7], fault detection and isolation is considered in the
H∞-filtering framework and in [9], diagnosis is performed via
coprime factorization of the nominal plant. But none of these
contributions envisaged fault tolerant control.

This paper aims at generalizing fault tolerant control pro-
posed by [13] to descriptor systems. Using the Youla parame-
terization, it is possible to address the fault diagnosis (FD), the
control and the fault tolerant control (FTC) in distinct steps
but in an unified approach. In the Youla parameterization of
the stabilizing controllers [15], an inner signal appears to be a
residual and can be filtered to perform robust fault diagnosis.
Moreover, the residual signal can be exploited for FTC by
minimizing the output deviation caused by the fault and distur-
bance signals. To improve the performance of the FTC system,
filters devoted to each fault (or combination of faults), should
be synthesized and the appropriate filter is selected on-line
according to the direction of the residual signal. It is important
to note that, although descriptor systems may be improper,
the design of the diagnosis and fault tolerant filters reduces to
standardH∞-control for usual systems. Moreover, contrary to
most residual generation or internal model methods, the matrix
transfer of the process is not duplicated in the controller,
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thus due to the coprime factorization only proper filters are
implemented, which is the major interest of this approach.

The paper is organized as follows. Section II recalls some
basics about descriptor systems and coprime factorization.
Fault tolerant control is tackled in section 3. Before conclud-
ing, an example is provided.

II. PRELIMINARIES

In this section, some basics about descriptor systems are
reminded, mainly taken from [3], a particular attention is paid
to the coprime factorization which is the core of our approach.

Let consider a linear time-invariant descriptor system sub-
ject to fault and disturbance given by

{

Eẋ(t)=Ax(t) + Bu(t) + R1f(t) + E1d(t)
y(t)=Cx(t) + Du(t) + R2f(t) + E2d(t)

(1)

where x ∈ Rn is the descriptor variable,u ∈ Rnu is the
control input,y ∈ Rm is the measured output,d ∈ Rnd is the
disturbance,f ∈ Rnf is the fault andE, A, B, C, D, E1, E2,
R1 andR2 are known real constant matrices with compatible
dimensions. As discussed in [5], the unknown vectord(t)
in the equations (1) embraces model uncertainties, additive
perturbation, input and output multiplicative perturbation and
the vectorf(t) stands for dysfunctions, actuator or sensor
faults.

The matrix E may be rank deficient :rank(E) = r ≤
n. The system (1) has an unique solution, for any initial
condition, if it is regular (i.e. det (sE − A) 6= 0). Let note
q = deg det (sE − A). (1) has q finite dynamic modes,
(n− r) static modes and(r − q) impulsive modes. The finite
modes correspond to the finite eigenvalues of the pencil matrix
(E, A). The system is called stable if and only if the finite
modes are stable,i.e. the finite eigenvalues of(E, A) lie in
the open left half-plane. The impulsive modes may cause
impulse terms in the response and thus are highly undesirable.
A system has no impulsive mode and is said to be impulse free
if and only if deg(det(sE−A)) = rank(E). Since the transfer
matrix of any impulse free descriptor system is (non strictly)
proper it can be realized by an usual state-space representation
(A, B, C, D).

A descriptor system is impulse observable (resp. R-
detectable) if and only if it satisfies (2) (resp. (3))

rank

[

ET 0 0
AT ET CT

]

= n + rankE (2)

rank

[

sE − A

C

]

= n, ∀s ∈ C, with ℜ(s) ≥ 0 (3)

If (2) is verified, there exists a matrix gainL such that the
pencil matrix(E, A+LC) is impulse free. If (3) is verified, the
unstable finite eigenvalues of(E, A + LC) can be arbitrarily
placed by the matrix gainL. If (3) is verified for all s, all the
finite eigenvalues of(E, A+LC) can be arbitrarily placed, and
the system is calledR-observable. Dual notions are defined for
the controllability [3]. If (E, A) is stable and impulse free, it
is called admissible.

In the remaining of the paper the only necessary assump-
tions are the following.
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(A1) (E, A, C) is impulse observable and detectable
(A2) (E, A, B) is impulse controllable and stabilizable
(A3) (E, A) is regular

The LTI descriptor system (1) can also be described by
y(s) = Gu(s).u(s)+Gf(s).f(s)+Gd(s).d(s) whereGu(s) =
C(sE − A)−1B + D, Gd(s) = C(sE − A)−1E1 + E2 and
Gf (s) = C(sE − A)−1R1 + R2. A coprime factorization of
the system (1) and of a stabilizing controllerK0(s) is given
by

Gu = NuM−1
u = M̃−1

u Ñu (4)

Gf = NfM−1
f = M̃−1

f Ñf (5)

Gd = NdM
−1
d = M̃−1

d Ñd (6)

K0 = UV −1 = Ṽ −1Ũ (7)

where the transfer matrices in (4) and (6) should satisfy the
following double Bezout equation

[

I 0
0 I

]

=

[

Ṽ −Ũ

−Ñu M̃u

] [

Mu U

Nu V

]

=

[

Mu U

Nu V

] [

Ṽ −Ũ

−Ñu M̃u

]

(8)

Let K0(s) be an observer-based feedback controller defined
by

{

E ˙̂xc =Ax̂c + Bu + L (Cx̂c + Du − y)
u =F x̂c

(9)

or equivalently

K0(s) =

{

E,

[

A + LC + BF + LDF −L

F 0

]}

(10)

where the matricesL and F ensure the admissibility of
(E, A + LC) and (E, A + BF ) respectively. The matrices
in (4) and (6)can be defined by [9]

[

Ṽ −Ũ

−Ñu M̃u

]

=







E,





A + LC −(B + LD) L

F I 0
C −D I











(11)

[

Mu U

Nu V

]

=







E,





A + BF B −L

F I 0
C + DF D I











(12)

The transfer matricesNf , Ñf , Mf , M̃f , Nd, Ñd, Md andM̃d

in (5-6-7) are easily deduced from (11) and (12). Moreover,
a key point is thatM̃d = M̃f = M̃u = M̃ holds. Since
the matricesL andF are chosen such that(E, A + LC) and
(E, A + BF ) are admissible, all the transfer matricesMk, Nk,
M̃k andÑk are proper fork ∈ {u, d, f}. The impulsive terms
in Gu(s), Gf (s) andGd(s) are caused by their inverseM−1

k

or M̃−1
k , which may be strictly improper. System (1) can thus

be written as

y = M̃−1
(

Ñuu + Ñdd + Ñff
)

(13)

The set of all stabilizing controllers is given in [14].
Lemma 1: The set of all stabilizing controllers forGu(s)

is given byK(s) = (MuQ+U)(NuQ+V )−1 or equivalently
K(s) = (Ṽ + QÑu)−1(Ũ + QM̃), whereQ is an arbitrary
proper stable transfer matrix.

III. FAULT TOLERANT CONTROL

In this section an architecture of fault tolerant controllers
is proposed for descriptor systems. On the one hand, nominal
control performance, such as admissibility and pole placement
of the nominal closed-loop system, are targeted. On the other
hand, the deviation from the nominal response caused by the
exogenous inputsd(s) andf(s) is minimized to achieve fault
tolerant control. The proposed controller structure is depicted
on Fig. 1. One should recognize the Youla parameterized
controller.

This structure is interesting since, from (13), the internal
signal,r, appears to be a residual signal.

r(s) = M̃(s)(s)y(s) − Ñu(s)u(s)

= Ñf (s)f(s) + Ñd(s)d(s) (14)

Thus fault tolerance (FT) aspects can easily be taken into
consideration. Moreover, the reference signal,ref , does not
impact on the residual generation. The response of the closed-
loop system is given by (13), whereu is defined by

u = Ṽ −1
(

Ũy + Qc

(

M̃y − Ñuu
))

+ ref (15)

u = Ṽ −1
(

Ũy + Qc

(

Ñdd + Ñff
))

+ ref (16)

combining (13) and (16), the response of the closed-loop
system is given byy = (M̃ − ÑuṼ 1Ũ)−1(Ñuref + (I +
ÑuṼ −1Qc)(Ñdd + Ñff)). From (8) and matrix inversion
formulae, one can derive thatV = (M̃ − ÑuṼ 1Ũ)−1 and
V (I + ÑuṼ −1Qc) = V + NuQc, and then finally obtain

y = V Ñuref + (V + NuQc)
(

Ñdd + Ñff
)

(17)

from (17), it is clear that, on the one hand, the nominal control
performances are set byV Ñu, thus byL andF , and, on the
other hand, the fault tolerance is obtained by the appropriate
choice ofQc(s). When no exogenous signal enter the system,
the inner-loop is inactive sincer(s) = 0. Consequently the
choice ofQc(s) does not affect the nominal performance of
the controller. Thus, nominal control and fault tolerance are
addressed separately.

The controller is not necessary implemented as shown on
Fig.1 since it involves high order controller. Nevertheless, this
formalism is appealing, not only for the sake of clarity, but
also in the case of on-line reconfiguration of the controller,
when Qc is monitored accordingly to a fault diagnosis filter
(see section III-C).

A. Nominal Control

It is readily verified that the nominal response corresponds
to an observer based controller since

Ṽ −1Ũ =

{

E,

[

A + BF + LC + LDF −L

F 0

]}

(18)

and the closed-loop response is given by

V Ñu =







[

E 0
0 E

]

,





A + BF −LC −LD

0 A + LC B + LD

C + DF C D











(19)
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where the well-known separation principle holds. The admis-
sibility of the closed-loop system is secured by (A1) and (A2),
moreover the finite dynamics of the closed-loop system can
be arbitrarily chosen, provided(E, A, B) and (E, A, C) are
R-controllable andR-observable respectively. The temporal
characteristics of the response can be fixed by selectingF

andL to ensure pole clustering of the closed-loop system. As
introduced in [2], the concept of LMI region is an efficient tool
to describe every convex region of the complex plane, which
is symmetric with respect to the real axis, by two matricesα

andβ (e.g. the left half-plane is defined byα = 0 andβ = 1).
The LMI characterization of pole-clustering in LMI region for
descriptor systems is treated in [10], and as a resultF andL

can be determined by solving strict LMI in order to ensure
the pole clustering of the closed-loop system.

Theorem 1: for a given LMI regionD, of the left half-
plane defined byα and β, there existL and F such that
the closed-loop system (19) isD-admissible (i.e. is impulse
free and has its finite pole inD), if and only if there exist
symmetric positive definite matricesPF and PL ∈ Rn×n,
and matricesSF andSL ∈ R

(n−r)×(n−r), HF ∈ R
nu×(n−r),

HL ∈ Rm×(n−r), LF ∈ Rnu×(n−r) and LL ∈ Rm×n such
that

[

αklEPF ET + βkl
(

APF ET + BLF ET
)

+ BHF UT

+AV SF UT + βlk
(

EPF AT + ELT
F BT

)

+UST
F V T AT + UHT

F BT
]

1≤k,l≤p
< 0(20)

[

αklE
T PLE + βkl

(

AT PLE + CT LLE
)

+ CT HT
L V T

+AT USLV T + βlk
(

ET PLA + ET LT
LC

)

+V ST
LUT A + V HLC

]

1≤k,l≤p
< 0(21)

where the notationM = [Mkl]1≤k,l≤m means thatM is an
m×m block matrix with generic blockMkl. U andV are of
full column rank and are composed of bases ofKer(E) and
Ker(ET ) respectively. ThenF andL are given by

F =
(

LF ET + HF UT
) (

PF ET + V SF UT
)−1

(22)

L =
(

PLE + USLV T
)−T (

LLE + HLV T
)T

(23)
Proof: This result is easily deduced from theorem 1 in

[10]

B. Fault Tolerance

In the absence of any fault and disturbance the reconfigu-
ration loop is inactive and does not affect the performance of
the nominal closed-loop system. In the presence of exogenous
signal,Qc(s) provides a corrective term in order to compen-
sate the effects of the exogenous signals. Indeed, it can be
seen as an internal model based controller, with the major
difference thatM̃(s) andÑu(s) are always impulse free, even
for impulsive nominal plants. From (17) a natural solution to
FTC problem is to synthesize the parameterQc(s) in order to
minimize theH∞-norm of the transfer matrix fromd and f

to y, thus to minimize the criterion (24).

Jc =
∥

∥(V + NuQc)
[

Ñd Ñf

]
∥

∥

∞
(24)

All the factors in (24) are proper and minimizing the criterion
Jc reduces to the model matching problem of minimizing

‖T1 + T2QcT3‖∞, whereT1, T2 andT3 are given by

T1 =

{[

E 0
0 E

]

,





A + BF −LC −LE2 −LR2

0 A + LC E1 + LE2 R1 + LR2

C + DF C E2 R2











(25)

T2 =

{

E,

[

A + BF B

C + DF D

]}

(26)

T3 =

{

E,

[

A + LC E1 + LE2 R1 + LR2

C E2 R2

]}

(27)

Since T1, T2 and T3 are impulse free, these transfer matri-
ces can be realized by usual state-space systems, let note
(Ai, Bi, Ci, Di) a minimal realization ofTi, for i ∈ {1, 2, 3}.
The minimization ofJc can be formulated in the standard
H∞ framework as finding the controllerQc that minimizes the
H∞-norm of the closed-loop system depicted on Fig 2, where
the system(Ac, B1c, B2c, C1c, C2c, D11c, D12c, D21c, D22c),
is defined by

Ac = diag(A1, A2, A3), B1c =
[

BT
1 0 BT

3

]T
,

B2c =
[

0 BT
2 0

]T
, C1c =

[

C1 C2 0
]

,

C2c =
[

0 0 C3

]

, D11c = D1, D12c = D2,

D21c = D3 and D22c = 0 (28)

The LMI based solution of [6] can be applied, provided
(Ac, B2c, C2c) is stabilizable and detectable, and provided
the direct transfer from the control input to the measured
output is null. These necessary conditions are verified since
(E, A + BF ) and (E, A + LC) are admissible, thus stable,
and sinceD22c = 0, respectively.

Remark 1: A weighting function can be added in the crite-
rion to enhance the robustness at high frequency or to put
an emphasis on a particular frequency range if the power
spectrum of the fault and disturbance is known.

Remark 2: The design of reduced order controller is highly
encouraged sinceAc is a (4r × 4r) matrix. The following
algorithm summarizes the fault tolerant control process.

Algorithm 1: to implement fault tolerant controller :
1. Solve (20-21), to findL and F such that the nominal
closed-loop system isD-admissible.
2. Find Qc by solving the equivalent standardH∞ control
problem for (28).
3. Implement the optimally robust fault tolerant controller

u(s) =
(

Ṽ + QcÑu

)−1 ((

Ũ + QM̃
)

y(s) + Ṽ ref(s)
)

C. Improving the FTC Robustness

In the previous scheme, the control filterQc was designed
to obtain optimal tolerance faced to all the possible faults.
Assuming that several faults do not occur at the same time,
dedicated controllers can be designed.nf control filtersQci

are synthesized by minimizing the criterion

Jci =
∥

∥(V + NuQci)
[

Ñd Ñfi

]
∥

∥

∞
(29)
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whereÑfi is theith column ofÑf . Another filter, dedicated to
the fault free case, is determined by minimizing the following
criterion

Jc0 =
∥

∥

∥
(V + NuQci) Ñd

∥

∥

∥

∞
(30)

Remark 3: If simultaneous faults may appear, combination
of fault should be considered, but the methodology remains.

This structure, depicted on Fig.3, permits to significantly
reduce the conservatism introduced by theH∞ design of
Qc. The selection of the appropriate control filter is done by
a simple logic, exploiting the residual given by a diagnosis
filter, Qd, synthesized by standardH∞ techniques, presented
in [9]. Qd is determined in order to shape the response of the
filter to the faults, while minimizing its sensitivity to to the
disturbance. This is achieved by minimizing the criterion

Jd =
∥

∥

[

QdÑd QdÑf − T
]∥

∥

∞
(31)

where T (s) is the desired frequency response to the faults.
This model matching problem reduces to standardH∞ control
problem for usual systems and can be addressed by LMI-based
solution of [6], as proposed in [9]. Each component of the
signalr is compared with a fixed threshold. A natural threshold
is the optimalJd obtained when synthesizing the diagnosis
filter Qd.

IV. A N UMERICAL EXAMPLE

Let consider a system (1), affected by an actuator biais
f1(t), a sensor biaisf2(t) and an unknown inputd(t). The
exogenous signals are defined byf1(t) = {2, for 1 ≤ t ≤
2, 0 else}, f2(t) = {2, for 3.5 ≤ t ≤ 4.5, 0 else} andd(t) is
a random number uniformly distributed in[−1, 1].

E =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0









, A=









−15 1 0 0
5 −10 0 0
0 0 1 0
0 0 0 1









, B=









1 0
0 0
0 0
0 1









,

E1 =
[

0, 01 0 0 0
]T

, R1 =

[

−1 0 0 0
0 0 0 0

]T

,

C =

[

0 1 0 0
0 0 1 0

]

D =

[

0 0
0 0

]

E2 =

[

0
0

]

and R2 =

[

0 0
0 1

]

One can check that the necessary assumptions are verified.
Following the proposed methodology, we chose the nominal
controller such that the real part of the closed-loop polesλi

verify −10 < ℜ(λi) < −1. The obtained results are displayed
on figures 4, 5 and 6. The estimation of the faults is shown
on Fig. 4. Fig.5 and Fig.6 give the outputsy1(t) and y2(t)
respectively in different cases. The disturbance and faultfree,
nominal response is represented with circles. The observer-
based control affected by disturbance and fault is represented
by the dashed lines. The FT control is represented by the
crossed lines and the improved FT control is represented by
the solid lines. It is clearly seen, on both Fig. 5 and 6 that
the observer-based controller does not match the fault and
disturbance free case, whereas the proposed FT does. The
improvement of the FTC obtained with adaptive controller
appears on Fig.5.

V. CONCLUSION

In this note, fault tolerant feedback control is extended to
descriptor systems. The coprime factorization of descriptor
systems permits to build a pre residual signal. Then different
filters are synthesized, by standardH∞-techniques, to perform
fault tolerant control. The fault tolerant controller is based
on the well known Youla controller parameterization. The
parameterizing filter is designed to minimize the deviationof
the output caused by the fault and the disturbance. A high
performance FTC architecture includes a fault diagnosis filter
to adapt on-line the controller parameter and thus improve
the fault tolerance by selecting a controller dedicated to the
appearing fault, and limit the conservatism introduced in the
H∞ design of the FTC filter.
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Fig. 1. Scheme of fault tolerant control.
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Fig. 3. Scheme of adaptative fault tolerant control.
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Fig. 5. Fault tolerant control,y1(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 6. Fault tolerant control,y2(t).


