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Abstract— This paper presents two methods for optimal Unfortunatly, to the best of the authors’ knowledge,
sensor and actuator location for linear time-invariant de<rip- ~ SAL has not been treated in the descriptor case, beside
tor systems. The objective is the improvement of the state , 5] in which the approach of of [3] is generalized to
controllability and state observability. Since these two ntions . - .
are quantified by the corresponding Gramians, the optimal descriptor systems. In this pa_lper_we consider the class
location is based on the maximization of the generalized Of LTI descriptor systems which is known to be more
Gramians. Firstly, a method aims at maximizing the energy generic than the usual state-space systems. Since it axlud
provided by the inputs to the system and the energy collected static relations, the descriptor formalism can model ptajsi

by the outputs. Secondly, state controllability and state b- — nsiraints, impulse behaviors or non causality, see [2] fo
servability are jointly improved by considering a balanced let ’ tudv of the d int t '
realization of descriptor systems. Finally, sensor locatin is a compiete study of the descriptor systems.

exploited for disturbance decoupling. A numerical example Here, SAL for descriptor systems is envisaged from
illustrates the efficiency of the proposed methods. the energetical point of view. A first method consists in

selecting the actuators (resp. the sensors) that maxiiméze t
energy transmitted from the controller to the system (resp.
This paper deals with the problem of optimal sensor anfifom the system to the controller or observer). This will be
actuator location (SAL) for the generic class of linear timeshown to be equivalent to maximize the generalized Grami-
invariant (LTI) descriptor systemsi = Az +...). Once ans. Maximization of the Gramians may lead to efficiently
the control objectives, and the model had been defined, onentrol some state variables and efficiently measure athers

has to chose the control structure and design the controllén other words, the maximization of the controllability
before verifying the results with simulation and finally(resp. observability) Gramian is an efficient tool to contol
implement the solution. While defining the control struetur (resp. estimate) the state variables, but if the goal is to
one of the key points is SAL, in other words, what arecontrol the outputs with the inputs, another method need
the suitable variables to be controlled (actuator locatiorto be developped. Input/output performance is improved by
and what are the suitable variables to be provided to thmaximizing both controllability and observability, thuset
controller (sensor location) in order to efficiently sugeev SAL is done by maximizing the Gramians of a balanced
the plant. Thus, SAL is one of the main issues in contralealization. Moreover, the latter method is exploited fems
system design. Actuator or sensor selecting is useful, eveor locating with respect to disturbance decoupling. In, fac
if all the variables can be manipulated or measured, in orddisturbance decoupling can be considered as minimizing
to lower the cost of operation and maintenance. the energetical transfer from unknown input to output while
For usual state-space systenmis<{ Az+...), many tech- maximizing the one from the command input.
nigues have arisen to tackle the SAL problem with different Since the possible location for sensor and/or actuator
objectives such as accessibility, input/output contbility, are finite, these problems can be considered as integer
robust stability face to uncertainties or minimization bét programming problems. Thus, for large scale systems, it is
computational cost. .. possible to use integer optimization tools in order to avoid
According to the survey made in [8], one of the two mosto test all the possible locations.
reliable techniques is the improvement of state controlla- The paper is organized as follows. The second section
bility and observability. In [3], optimal SAL is addressedgives some backgrounds on descriptor systems. The third
by maximizing the Gramians of LTI usual systems. In [4]section is devoted to the definition and the computation of
SAL is addressed for flexible structures, and a numeric#the generalized Gramians. The two proposed solutions to
criterion is proposed to avoid having both very high andhe SAL problem and a method for disturbance attenuation
very small eigenvalues of the Gramian while maximizingzia sensor location are developped in the fourth section. A
the energetical transfers. In [7] SAL is performed in ordenumerical example illustrates the efficiency of the contrib
to maximize the singular values of the balanced Gramiangon in the last section.

I. INTRODUCTION



[l. BACKGROUNDS subsystems are controllable (resp. observable). Any aegul

In this section, some basics about descriptor systerf§Scriptor system can be uniquely defined by its series
(taken from [2]) are reminded. We consider the LTI descrip€XPansion using the Laurent parametéjs

tor system, described by a generalized state-space system (sBE— Al = Z B k1 @)
{ Ex(t) = Az(t) + Bu(t) ) k>—h
y(t) = Ca(t) o) {Jk 0} P, for k>0
Ex(k+1) = Az(k) + Bu(k) 5 where @), = 0 0 ®)
(k) = Ca(k) (2) 0 0
Y Q {O (—N)kl} P, fork<0

wherez € R”, v € R™ andy € R™ are respectively the
state variable, the control input and the measured outpthich is valid in some seb < [s| < R, for someR > 0
and E, A, B andC are real known constant matrix with [1]. It is interesting to note thatoE and —®_; A are
appropriate dimensions with = rank(E) < n. without the projection onH. along H,. and on H,. along H,.
loss of generalityE and A are assumed to be squarerespectively. Others properties of the Laurent parameters
matrices. are given in [1] and [10].

The system (1) (respectively (2)) has a unique solution,
for any initial condition, if it is regulai.e. det(sE — A)) #
0. Let ¢ = deg(det(sE — A)), a descriptor system hag
finite dynamics mode(n — r) static modes andr — q)
impulsive modes. The finite modes correspond to the fini
eigenvalues of the matrix pencilE, A). The system is

Ill. GENERALIZED GRAMIANS

In the framework of SAL, we need to quantify the
controllability and the observability of a descriptor syst
{gor usual state-space system, it is well-known that these
notions are related to the Gramians. The generalization of
calledstable if and only if the finite modes are stableg. if € Gramians to descriptor systems, has been established
and only if the finite eigenvalues ¢, A) lie in the open [N [1] and [9]. The generalized Gramians are computed by
left half-plane (respectively in the open unitary disk).eTh Solving Lyapunov-like equations established in [5] in the
impulsive modes may cause impulse terms or non causal ntinuous-time case, and in [10] in the discrete-time .case

in the response and thus are highly undesirable. A systeffPhtinuous-time case - _
has no impulsive mode and is calléaipulse free if and The controllability (resp. observability) Gramian of syt

only if deg(det(sE — A)) = r holds. A stable and impulse (1) are decomposed in a causal Gramian (provided that the
free descriptor system is calleimissible. integral exists) and a non causal Gramian defined by (9)

Let introduce the Weierstrass-Kronecker decompositioff€SP- (10))

of the matrix pencil(E, A) [2]. Provided(E, A) is regular, oo o k=—1
there exist two nonsingular matricésand @ such that Ri=[ ®oe*'BBT ™A '@ldt, R = Z 9, BBT®}
0 k=—h
o In1 0 _ J 0 c __ c C
PEQ = [ 0 N] and PAQ = [0 InJ 3 Ge = R+ Ry )
0o k=—1
whereN is nilpotent (its nilpotency index is denotég, and OC:/ @geAT¢gtCTOe¢“At¢0dt, 0¢ — Z T CTC,
n14ns = n. The eigenvalues of are the finite eigenvalues  *~ Jo e,
of (E,A). The system (1) (resp. (2)) is equivalent to (4) G — O° 1 O° (10)
(resp. (5)) oo

The generalized controllability Gramian is determined by

- ixl()t) + Bu(t) solving the Lyapunov-like equations for descriptor system

a1 (t)
{ Nia(t) = a(t) + Baul(t) ) established by the lemma 1 [5]
y(t) = Crn(t) + Coma(t) Lenma 1: (i) If RS, RS, and G¢ exist they satisfy
z1(k+1) = Jai(k) + Byu(k) respectively
NZCQ(]{I—F 1) = IQ(k) +B2U(k) (5) . e AT =T T AT
y(k) = Cra1 (k) + Coxs (k) 0 = QyAR;+ RA" @y + PoBB" ¥ (11)
with 0 = ® ER° ET®T, —R° +® BBT®T, (12)
B, o 0 = & ,FEGE"®”, +3,BBT®] + ®_BBTOL,
PB:[B],CQ:[Cl OQ] andx:Q[x} (6) o, o, T
? : - ((I)o + T_) AGHGEAT ((I)O + T_) (13)

The subsystem$l,,,, J, B;,C1) and (N, I,,,, B2, C5) are

calledcausal andnoncausal respectively, the corresponding (i¢) If (1) is stable,RS is the unique projection ofif, of

subspaces are denotéf] and H.,.. the solutions of (11)R¢. and G¢ are the unique solutions
A descriptor system is stable if and only if its causabf (12) and (13) respectively.

subsystem is stable. A descriptor system is controllabigii) If (1) is stable, (1) is controllable if and only &¢ is

(resp. observable) if and only if both causal and noncaustile unique positive definite solution of (13).



The generalized observability Gramian for continuousetimfree systemi(e. u(k) = 0) generated by a given initial state
descriptor system is derived from a dual result, estaldisheX is given by (22)

in [5]. , .
Discrete-time case Eu(X) = u,m(O)g(;L:Lz’r%oo):Xgu(k) u(k)
The controllability (resp. observability) Gramian of syst 1 k=0
(2) are decomposed in a causal Gramian provided that the = xX'(@H) X (21)
serie converges) and a non causal Gramian defined by (15) E,(X) = Z y(k) Ty (k)
(resp. (17) ‘ k>0
-1 = X"(QP)TGLQP)'X (22)
R = Z ®xBBT O, Ry = Z ®xBBT O, (14) moreover, the matrice® and @ are not uniquely defined,
k20 h==h but the producQ P is unique (see [2]).
Gl =R{+ R, (15) Proof: Omitted due to space limitation. [
-1 In the continuous-time case, such an interpretation is not
ol = Z‘be*TC‘I)k, O;.= Z ®,CTCPy, (16) rigorously feasible since eventual impulse behavior cause
k>0 k=—h infinite energy, but the Gramians still quantify the con-
Gl =044 04, (17) trollability and the observability. One should note thag th

causal Gramians are defined like Gramians of usual systems

The generalized controllability Gramian is determined bwnd that the noncausal Gramians are defined like in the
solving the Lyapunov-like equations for descriptor systemdiscrete-time case. For both usual systems and discrete tim

established by the lemma 2 [10].
Lemma 2: (i) If RY, RI. and G¢ exist they satisfy

respectively
0 = ®AR!AT®! + &,BBT®L — R? (18)
0 = & ,ER!ET®T, + & BBT®T, — RZ, (19)
0 = (PpA—3 1E)GL(@A—d E) -G

+®_,BBToT, +®,BBT 0] (20)

(ii) If (2) is stable,R¢ is the unique projection o, of

the solutions of (18)R%, andG¢ are the unique solutions

of (19) and (20) respectively.
(ii7) If (2) is stable, (2) is controllable if and only &¢ is
the unique positive definite solution of (20).

descriptor systems the energetical meaning of the Gramians
is valid. Based on the previous interpretation of the gen-

eralized Gramians, two complementary methodologies of

optimal SAL are proposed.

A. Optimization of the state controllability or/and observ-
ability

The actuators are chosen in order to minimize the energy
that must be provided to the system. The sensors are
chosen in order to maximize the energy collected by the
measured output. Thus optimal SAL is equivalent to the
maximization of the trace of the Gramians. Actuator (resp.
sensor) selection sets the matrix (resp. C) and thus
determines the controllability (resp. observability) @ran.
Optimal SAL methodology (continuous-time case)

The generalized observability Gramian for discrete-tim®©ptimal placement,, actuators is equivalent to finding
descriptor system is derived from a dual result, estaldishehat maximizes/. under the constraint (24).

in [10].

IV. OPTIMAL SENSOR AND ACTUATOR LOCATION

In this section, the optimal SAL problem is treated. First
the energetic interpretation of the Gramians is extended

to descriptor case. In the usual state-space case,
established that [6]

e the output energy, of an input free system, generated

by an arbitrary initial stateXy, is given byE, (X) =
X{;FGOXO, whereG, is the observability Gramian;

JS = Trace(GS)

bzy S {0,1}, Zb” = 17 ]: 11"'7”@
icC

(23)
(24)

whereC denotes the subset of state variables that can be
Mmanipulated. Optimal placement of ns sensors is equivalent

it IS

to finding C' that maximizesJ, under the constraint (26)
Js = Trace((QP)""G5(QP)™") (25)
cije{(),l},Zcijzlizl,...,ns (26)

JjeO

e the minimal input energy needed to reach a given Sta(fr?here(’) denotes the subset of state variables that can be

X, from null initial condition, is given byE, (X) =
XTGng, whereG. is the controllability Gramian.

measured. The entries d® (resp.C) are set to0 or 1
whether the corresponding input (resp. output) is selected

In the case of discrete-time descriptor systems, this i not. It is not restrictive to assuntg; € {0,1} andc;; €

generalized by the following theorem.

{0, 1} since the system can always be normalized.

Theorem 1. Consider the discrete-time descriptor system The discrete-time casels adressed similarily, by select-

(2). The minimal energy input to reach a given statérom

ing B that maximizes/¢ = Trace(GY) and/or selecting”

z(0) = 0 is given by (21). The output energy of the inputthat maximizes/¢ = Trace((QP)~"TG4(QP)™1).



This method improves state controllability and state ob€ombine (21)-(22) with (32), then (27)-(28) follows. =

servability separately. This is of particular interest ftbe
control or the estimation of the state variablesy.( for

The objective of SAL is to jointly maximize control-
lability and observability. In other words sensors and/or

actuators should be chosen to maximize the ratio of the
input energy collected by the outputs, thus a natural daiter
is to maximizeJ¢ defined by

observer-based diagnosis).

B. Joint optimization of the state controllability and observ-
ability

The previous method may lead to efficiently control a
subset of the state variables and efficiently observe anothe
subset and then result in a poor controllability of the otitpu
by the input. If the objective is to control the outputComputation of ¥¢ and x¢
variables, then one should ensure that the input energy fést determine/, N, By, Bz, C1 andCy, then¥; and,
optimally collected by the measurements. Thus, the SAare the Gramians of the balanced realization§/of3;, C1)
is based on the maximization of the generalized Gramiaand (IV, B2, C3) respectively.
of a balanced realization. First we give a realization of & the continuous-time case® is defined by
discrete-time descriptor system which is termed balanced

J = Trace(Ey(In)(Eu(In))il)

TTace(QfT (Zd) 2 QT)

(33)
(34)

in the sense that the minimal input energy (21) and the Y= [201 EOC} (35)
maximal output energy (22) are linked to a common matrix. . 2

Theorem2: Let 7; and T, be non singular X = CLyap(TlJTlfﬂ;lBl) g (36)
matrices, such that (TyJT; ', T1B;,CiTyY)  and = cLyap((TWJTy )", (CiTy )")
(TeNTy ', TyBy, CoT, ') are balanced with diagonal Y5 = dLyap(ToNTy ', Ty B) 37
GramianX; andX, respectively (see computation in chap. = dLyap((ToJTy )T, (CoTy H)T) (37)

3.9 of [11] or [6]). In the discrete-time case, the minimal

energy input to reach a given sta? from xz(0) = 0 is
given by (27). The output energy of the input free syste
generated by a given staf€ is given by (28)

= min w(k) u
EU(X) o u,m(O):O,w(oo):X]é% (k) (k)
= XTQT (=Y QX (27)
Ey(X) = > ylk)"y(k)
k>0
= XTQ TxiQ~'Xx. (28)

whereX? is a diagonal positive definite matrix.
Proof: From (20) and by duality, it is easy to derive

d _  |dLyap(J, By) 0 T
Ge _Q[ 0 dLyap(N, Ba) @
4 pr |[dLyap(JT,CT) 0
Go=P [ 0 dLyap(NT, )| F - 29)

where dLyap(M, M>) denotes the positive definite solu-
tion of the discrete Lyapunov equatia; X M{ — X +
MoMT 0. Let us define the following Weierstrass-
Kronecker decomposition of (2)

-1 =

a=ally g 2= [0 afnpaesfp ]
(30)

PEQ = [g ]ﬂ PB = [gj, 0G=[0r ] @Y

where (J, By, C) and (N, B,,C) are balanced realiza-
tions thusdLyap(J, B,) = dLyap(J",C{) = X{ and
dLyap(J, Bz) = dLyap(J*,CT) = ¥4 thus (29) becomes

x4 0

GY=QxQT, GL= PTYP, with © = [0 zg] (32)

where cLyap(M;, M>) denotes the positive definite solu-
tion of the Lyapunov equation/; X +X M{ + My M] = 0.

n]h the discrete-time casg? is defined by

¢ 0

d __ 1

[y e

E(il = dLyap(TIJTl_lleBl) (39)
= dLyap((TyJT )", (G T D7)

¥4 = dLyap(ToNTy ', T2 B) (40)

= dLyap(ToJ Ty )T, (Co Ty HT)

Optimal SAL methodology (continuous-time case)
Optimal placement ofq, actuators and/on, sensors is
equivalent to findingB and/orC that maximizeJ¢ under
the constraint (24) and/or (26).

J¢ =Trace(Q~T (2% QT) (41)

The discrete-time caseis adressed similarily, by se-
lecting B and/or C' that maximize the criteria/¢ =
Trace(Q~T (Ed)QQT) under the constraints (24) and/or
(26).

The criteria used for the two proposed methods are based
on theTrace of the Gramians to reflect the total energy
transmitted from the inputs to the outputs. Nevertheless,
one may penalize location where both very high and very
low eigenvalues appear, even for the first method (like [4]
suggested, for usual systems). One may prefer to avoid
poorly controllable (or observable) modes by maximizing
the lowest singular value (see [3], for usual systems case).
The choice of the criteria closely depends on the control
objectives.

Since the possible location for the actuators (resp. sen-
sors) are finite, the possible values 8&f (resp. C) are
finite, thus the two methodologies are integer programming



problems. The basic solution is enumeration and numeric8ensor location is performed in order to maximize
checking of all the candidates. For large scale systentse collected output energy. Thus, according to sec-
integer optimization is a very efficient method to signifi-tion IV.B the sensors are chosen to maximizé =
cantly reduce the computational cost. A review of Brancirace(Q~7 (2¢)> Q7). No positive definite solution to the
and Bound methods for integer programming in the SAlcomputation of the Gramian exists for the location of a
framework is proposed in [3]. unigue actuator. Positioning 2 sensors, there exists ayosi
definite solutionX¢ for 4 combinations of sensors. The

C. Disturbance decoupling via optimal sensor location . . ; .
_ . i . comparison of the obtained results are displayed in the
Let consider a LTI descriptor system with unknown 'npurfollowing table

w € R"w»

{ Ei(t)=Ax(t) + Bu(t) + Byw(t) (42) | Measurements || z1, 25 | @2,35 | @3,25 | 24,75 |

y(t)=Cu(t) [ JS=Trace(GS) || 247 | 259 | 253 | 2.44 |

{ Ex(k +1)=Ax(k) + Bu(k) + Buw(k)  4qy | J° [ 769 | 11.17] 111 | 041 |
y(k)=Cu(k)

The previous SAL method can be exploited for disturbance APPlying the first methodology, the 4 solutions are almost
decoupling by selecting the sensors such that the trareghitt€quivalent for the state observability since the criterigns
energy from the unknown to the output is minimized whileOt significantly _dlfferent in the four cases. Considerihg t
the energy transmitted from the command input to th@alanced Gramla_n an optimal solutlo_n for the energetical
output is maximized. According to previous discussion thifansfer from the inputs to the ouputs is to measuyend
measurement matri€’ should be chosen to minimiZg¢, s, OF in other words to set

(or ¢ in the discrete-time case) the balanced Gramian of 01 0000
(E, A, B,,, C) while maximizing3*. ¢= [0 00010 (46)

Optimal sensor locaion methodology (continuous-time Simulati d. for the finit inout control
case) Optimal placement ofrs sensors is equivalent to imuiations are runned, for the inite energy input contro

finding C' that maximizesJ$ under the constraint (26). defined by
B B B N1 _ 3, forl<t<b
Ji = Trace(Q" (2% Q") (Trace(Qy (%5,)° Q1)) ul®) = { 0, else (41
(44) in(3t t<2<
The discrete-time caseis addressed similarily by chosing uz(t) = { gm( ) flc;re " (48)

C that maximizesJ¢ under the constraint (26). ) i
. The following table displays the energy collected by the

J4 =Trace(Q™T (Ed)2 Q") (Tmce(@;l (Ejjj)2 QT outputs and the value of the criteri&. One should verify
45) that the optimal solutioni . z» andz;) corresponds to the

maximal energy.
V. NUMERICAL EXAMPLE

Let us consider the continuous-time LTI descriptor sys- [ Measurementd] z1,z5 | @2, 25 | 3,25 | 4,25 |
tem defined by the matrix pencil | Je [ 769 [ 11.17] 1.11 | 0.41 |

3 3 7 3 0 1 | Output energy] 322 | 380 | 261 | 253 |
1 -4 5 7 0 1
B 4 6 -3 0 0 1 Figure 1 displays the measurements when the sensors
133 3 -2 0 4 are optimally located x5 and x5 are measured. Figure 2
7T 4 7 6 0 -2 displays the measurements when a non optimal solution is
6 6 7 0 O chosen : sensors positioned of andzs. The comparison

of the collected output energies obtained with the optimal
placement (solid line) and a non optimal placement (dashed
line) is shown on Figure 3.

1
—21 42 -126.7 287 1
23 79 -2849 323 1
—40 14 3.4 =270 1
-21 -8 773 92 4
-31 91 -246.3 264 -2
—42 24 —64 230 1 -1

A =
VI. CONCLUSION
In this paper, the problem of optimal sensor and actuator
location is addressed. Considering an energetical approac
45 0 the sensors and actuators are located in order to maximize

W w ot o

—10 5 the energy provided to the system via the actuators and the
and B — 03 output energy collected by the sensors. Two complementary
38 ?7) guantitative methodologies of SAL have been proposed and

illustrated. In the first one, state controllability andtstab-
9 -1 servability are considered and optimized separately vasere



the second one ensures that the outputs optimally collect

the input energy since the balanced realization is used for e e A ———
optimization. The latter method can be extended to perform
disturbance decoupling. Both methods are equivalent to
integer programming problems, thus the computational cost

can be significantly reduced by integer programming.
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Fig. 1. Measurement ofz(¢) and z5(t).

Fig. 2. Measurement of3(¢) and z5(t).
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Fig. 3.  Comparison of the collected output energy of the noaki
placement (solid line) and non optimal placement (dasheg).li



