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Abstrad : In this paper the fadorization approach to robust residual generation is
extended to descriptor systems. The design of the optimal residual generator for non
causal systemsis performed viatwo steps. First, the cprime fadorization permits to
use proper filters to perform the robust fault diagnosis. Seoondly, the residual
generation is considered as a spedal case of H..-filtering. An LMI-based design of
an optimal residual generator is proposed and ill ustrated. Copyright © 2003IFAC.
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1. INTRODUCTION

The descriptor form (i.e. E.dx/dt = Ax+...) is much
more genera than the usua dState-space
representation for linea dynamic systems (i.e. dx/dt
= Ax+...). This representation enables to take into
acount physicd constraints, static relations and
impulsive behaviors due to an improper part of the
system. Thus descriptor systems appea in many
fields of system design and control and an important
literature is devoted to descriptor systems dnce
(Lewis, 1986 Dai, 1989. Many topics of control
have been extended to singuar systems, such as LQ
regulation (Cobb, 1983, H,-control (Takaba ad
Katayama, 1996, H,-control (Takabaet al., 1994 or
LMI-based controllers (Masubuchi et al., 1997).

Since two decales one of the most chalenging
problem is to ensure asafe and reliable cntrol for
dynamic systems faceal to failures and despite of
exogenous sgnals (Chen and Patton, 1999 Patton et
al., 2000. Concerning the descriptor systems few
efforts have been made in fault detedion and
isolation (FDI), mainly developing fault detedion
based on observers (Chap.5 of Patton et al., 2000
and unkrnown input observers (Duan et al., 1999.

In this paper the @prime fadorizetion is used to
parameterize d proper residual generators for

descriptor plants affeded by faults and disturbances.
An optimal residual generator is g/nthesised to
maximize the sendtivity to the faults while
minimizing the sensiti vity to the disturbances.

The paper is organized as follows. Sedion 2 recdls
some useful concepts concerning the descriptor
systems. In sedion 3 states me results on
fadorizaion for descriptor systems, ensuring the
properness of the fadors. Robust residual generation
istakkled in sedion 4. An LMI-based design of the
optimal proper residual generator is propcsed.
Sedion 5 presents an example of fault diagnosis.

2. PROBLEM STATEMENT

Let consider a stable linea time-invariant descriptor
system subjed to failures and dsturbances given by

X(t) = Ax(t)+ Bu(t)+ Ry f(t) + E;d(t) 1)
y(t) =Cx(t)+ Du(t) + Ry f(t) + Eod(t)

where x OR" is the descriptor variable, u OR™ is the
control input, y OR™ is the measured output, d OR™
is the disturbance, f OR™ is the failure and E, A, B, C,
D, E;, E;, R; and R, are known red constant matrices
with compatible dimensions. As discussd in (Frank
and Ding, 1994, the unkrmown vedor d(t) in the
equations (1) embraces model uncertainties, additive



perturbation, input and output muiltiplicaive
perturbation and the vedor f(t) stands for
dysfunctions, aduator or sensor fail ures.

The matrix E may be rank deficient : rank(E) = r <n.
The system (1) has a unique solution, for any initial
condition, if it is regular (i.e. det(sE-A)Z0). Let
g=deg(det(sE-A)), (1) has g finite dynamic modes,
(n-r) static modes and (r-g) impulsive modes. The
finite modes correspond to the finite @genvalues of
the pencil matrix (E, A). The system is cdled stable if
the finite modes are stable, i.e. if the finite
eigenvalues of (E,A) lie in the open left half-plane.
The impulsive modes may cause impulse terms in the
response ansd thus are highly undesirable. A system
has no impulsive mode and is said to be impulse free
if and only if

deg(det(s& A))=rankE 2

Since the transfer matrix of any impulse free
descriptor system is (non strictly) proper it can be
redized by an usual state-spacerepresentation (A, B,
C, D).

A descriptor system is impulse observable (resp. R-
observable) if and only if it satisfies (3) (resp. (4))

T
ranké‘i OT C?T E= n+rankE 3
ranké“;EC AE— n,0scomple» 4

If (3) is verified, there eists a matrix gain L such
that the pencil matrix (E, A+LC) is impulse free If
(4) is verified the finite agenvalues of (E, A+LC) can
be ahitrarily placed by the matrix gain L. Dual
notions are defined for the cntrollability (Dai,
1989. If (E, A) is gable and impulse free it is cdled
admissble.

Assumption 1. (E, A, C) isimpulse observable.

It is frequently claimed that considering both
descriptor case and disturbanceis redundant sincethe
state can be augmented with d, but this approac
gives rise to a more restrictive condition to verify the
impulse observahility of the aigmented system.

3. COPRIME FACTORIZATION OF
DESCRIPTOR SYSTEMS

Fadorizetion techniques have been extensively
treged not only for usual dynamic systems, using
polynomia approach (Gao and Antsaklis, 1989 or
state space pproach (Clements, 1993, but aso for
descriptor systems (Liu et al., 1997). This sdion
presents a fadorizaion for singuar plants ensuring
proper and stable fadors by solvingastrict LMI.

A double coprime fadorization of a transfer function
G(s) isdefined by

G(s)=N(Es)M (5)=M (s)N(s) (5)

where N(s), M(s), M(s) and N(s) are right and left
coprime matrices of G(s) respedlively. Sincethe LTI
descriptor system (1) can also be described by

y(s) = Gy(s)u(s) +G¢ (s) f (s) + Gy (s)d(s) (6)
with G,(s)= @E% B %Gd (s)= EE% E;%
)
andG; (s)= EE @ %

thusit can be fadorized using the foll owing theorem.

Theorem 1. Suppee G(s) is a (hon recessrily
proper) real-rationd matrix and

cs)=F £ Bt ®

is a regular, impulse observable and impulse
controllable realization. Let L and F be such that (E,
A+LC) and (E, A+BF) are impulse freg then N(s),
M(s), N(s) andM(s) are given by

N(s)= BE%AH_C B+LD%M(S) BE%AH_ClI_
Ne)=ERTBE BHME=EH T PO

Proof. The proof isachieved by verifying (5) [ |

The fadorizetion parameters F and L must be
determined such that the left and right coprime
matrices of G(s) are admissble. It is important to
note that in that case N(s),M(s), M(s) and N(s) are
stable and proper transfer matrices. Only M*(s) and
M™(s) may present impulsive terms.

Lemma 1 (Uezdo and Ikeda, 1999 gives a method
to compute L (and F by duality) by solving an LMI.

Lemma 1. The matrix pencil (E, A+LC) isadmissble
if and ony if there exst a pative definite matrix
POR™ and matrices SCR™ ™) TOR™™  and
HOR™™) satisfying the LMI (11). L isgiven by (12)
AT(PE+VSU" ) +(PE+VSU™ )T A+ (11)
T T TN\T
..C (TE+HU " )+(TE+HU ) C<0
L=(PE+VSU" ) T(TE+HUT)T (12

where U and V are full column-rank matrices
spanring the null spaces of E andE" respedivdly.

In the remaining L denotes a solution of (11)-(12)

4. ROBUST FAULT DIAGNOSIS

The objedive of the fault diagnosis process is to
build a signal, cdled residual, which highlights the
appeaance of a faulty behaviour. The mathematicd
definition of aresidual signal is

I|m rt) =0 for f(t)=0,d(t)=0

13
r(t) 20 for f(t)#0



4.1 Residual generation

Foll owing the procedure of (Frank and Ding, 1994,
the left coprime fadorization of Gy(s) is used to
generate aprimary residua r(s) only affeded by the
failures f(s) and the disturbances d(s). A second step
consists in filtering the primary residual to minimize
the transfer from d(s) to the residual.

Since (E, A, C) is impulse observable, the transfer
matrices Gy(s), Gy(s) and G(s) are facored by

Gy(s)=M "H(s)N,(s)
Gy(s)=M "H(s)Ny(s) (14
G (s)=M " (s)N; ()

M(s)= BEﬁ(HCLC I[%(mx m)
Ny (s) = BEﬁAJrch B +DLD%(mxnu)

+LC E;+LE, [
Ng(s)= BA 1 2E mx nd
o= EH S B2 o)

LC R +LR,[[J
N;(s)= ,Er“ 1 2E mx nf 15
(=T B ()

where

where L is computed by solving the LMI (11). The
residua generator is deduced from (14) and (15)

r(s)= M(S)y(S)- Nu(S)u(s)
= Ny (S)f(s)*Ng(s)d(s). (169)
r(s) = Q(SX(S) (L6

= Q(s)(Ng (s)f(s)+Ng(s)d(s))
where Q(s) is a stable and proper filter of order nq

defined by
Q=2 2 Horxm) 17
Q ~Q

Since (E, A+LC) is admissble, the finite modes of
Ni(s) decey exponentially and thus, acording to (13),
r(s) is a residua signa. Applying standard H.
techniques, a post filter Q(s) is g/nthesized to
enhance the robustness facal to the unknown inputs
d(s) and to shape the response of the residua
generator.

4.2 Parameterization of all the residual generators

According to (15) and (16) the residual generator is
parameterized by L and the post-filter Q(s). Theorem
2 proves that the residual generator is independent of
the fadorizaion parameter L (this can be considered
as a generalizaion of the result established by Ding
and Guo (1997))

Theorem 2. Given two factorizations of a real-
rationd transfer matrix G(s)

G(s)= M1 (S)Ny(s)= M3 (s)Ny(S) (18)

where M;(s)= A HC LifHand
oo ¢ g

e +1,C B+L;D o
N.(S)—ELE.QA c D % fori=1,2.

where L; ensures that M;(s) and N;(s) are admissble
for i=1,2, there exsts a stable Qq(s) which satisfies

Qo(s)My(s)= M(s) (19)
Qo(s)Ny(s) = N(s) (19bH
andfurthermore Qy(s) is given by

Qo= @

Proof. The proof isacdieved by verifying (18) [ |

As a result of theorem 1, the performance of the
residual generation is independent of the doiceof L.
Any posdble performance can be adieved by
designing Q(s) for agiven L.

Corollary 1. Asauming that the matrix Lo ensures the
admisghility of (E, A+L,C), then dl the residud
generators can ke parameterized by

r(s)=Q(s)(Mo(s)y(s)- No(s)u(s)) 21
1(8)= Q(S)Mo(S)(Gy(8)d(s)+ G (9)f(s)) (22

- +LoC Lo
where Mo(s)—élz,gb‘ c | %

~ +1L,C B+ LoD
and Ny(s)= ék,éf o : %

4.3 Synthesisof the optimal residual generator

Since perfed FDI —where eab component of the
residual vedor is non ndl if and only if the
corresponding fault has occurred- is a very restrictive
case, residual generators need to be optima
regarding to a aiterion to define. Roughy speeking
the objedive is to make the residua sensitive to f(s)
while insensitive to d(s). A natural approac is to
maximize the foll owing criterion

,_leemie] 23

[Ny (s

where ||| denotes a matrix norm. Choasing the L,
norm, this problem can be solved via agenerdized
eigenvalue / eigenvedor problem (Frank and Ding,
1997. Choosing the L., norm is a more generic
approach since no assumption need to be made on the
power spedrum of f(s) and d(s) excepted their finite
energy. This optimizaion problem have been treaed
by Frank and Ding (1994 1997 for usual systems.
This contribution is based on the standard H., filtering
approach to robust residual generation, treaed by
Edelmayer et al. (1994 for the usual systems.

The objedive is to find the Q(s) which minimizes the
following performanceindex

J=|Gwe)-[0 T6), (24)



Fig 1. Scheme of robust residual generation.

where G, is the transfer from w(s)=[d'(s) f'(5)] " to
r(s). T(s) is afiltering parameter which all ows to take
advantage of the avail able knowledge concerning the
faults, for instance by amplifying a frequency range
where the faults are expeded o filtering by a
diagonal of low-passfilter when the estimated faults
are used for reconfiguration. The objedive is to
minimize the transfer from w(s) to e(s)=r(s)-T(s)f(s)
by choosing the gpropriate post filter Q(s) as own
onfigure 1.

Since Ny4(s) and Ni(s) are almisshble, by a singuar
value decompasition of E, they can be redized using
stable usual state-spacesystems of order r=rank E

Gru(8)= Q(sINg (s) N (s)]
%Q By % B%E (29)
o Do E; R,
The foll owing theorems give amethod to design the
post-filter Q(s) for a given stable T(s), of order nt

defined by
T(s):@ STTQ (26)

The objedive (24) can be re-formulate & finding the
controller Q(s) that minimizes the H,, norm of the
transfer from w(s) to &(s), in other words finding the
controller Q(s) that satisfies (27) for a given red
positive y chosen as snall as possble

[Tewts)., =[[Gw(®)-[0 TG)|| <v (27)

Ta(S) is given by the interconnedion of a plant (28)
and a ontroller (29). In the standard H., framework,
e(s) is the ontrolled output, r(s) is the measured
output, w(s) gathers the exogenous sgnals and r(s) is
the control input

g(s)m % 11d D12d (S)E (28)
2d D 21d
r(s):%g S(';%(s) (29)

_ 0 _[0 Br _
wheres =I5 B0 = [, 2 o Baa = [ff
Cig =(-Cr 0).Cq =0 C).

Di1g = (0 - Dr) Digg =1 and Dyyq =(E, R,)

The design of Q(s) follows the LMI-based controller
synthesis presented by Gahinet and Apkarian (1994).
The mnditions to be verified are the detedability and
stabili zability of (Aq, Bog Cog), and a null dired
transfer from r(s) to r(s). The former is ared since
A and A; are stable. And the latter is verified in (28).
The optimal adhievable yis determined by theorem 3
and theorem 4 gives the mmputation of the post-

filterQ(s).

Theorem 3. For a gven pasitive number y, a post
filter Q(s) satisfying (27) exsts if and ory if there
exst R and Sreal symmetric (nt+r)x(nt+r) matrices
such that the LMIs (30) hold

PuR+RA E‘1dB<o (300)
H Bla -»0
. HAls+sa sBy cld [Hg“
H“s Bl4S -y Dlld s 0 0(30b)
0 c
1d

D11g - ﬁjo
ﬁf 'SEEO (30c)

where Nsis an athonamal basis of the null space of
[C2a D21 -

In addition, y is achievable by a Q(s) of order k <
nt+r if and ory if the LMIs (30) hald for some R, S
which also satisfy

Rank(l+ RSk k (3D

The optimal achievable y,; can be determined by a
simple minimizaion of the LMI variable y, under the
constraint (30).

Theorem 4. Let (RS satisfy (30) for yon. AN
optimally robust residud generator, satisfying (27),
is determined by the post filter Q(s) defined by

By e

where O satisfies the LMI (33)
Ho X + XAy XBy Cg H

O BIX -yl DJ3+PTeQ+Q'@'P<0 (33)
H G D -vf
00 0 Br
where =B%T AOHBO %&E

Eo ooﬁ 0 OE

Co=(-Cr 00), Dy = (0 -Dr)

i

0

0o
o—

o/

_Os
X = %@ - NRM(MTM)'1E

where M and N are full column rank matrices [J
R guchthat  MN'=1-RS



Proof. Derived from (Gahinet and Apkarian, 1994).m

The design of areduced order Q(s) foll ows the same
method with (R, S) also satisfying (31).

Algorithm of fault detection

Sepl Solve the LMI (11) to determine L such that
the fadorisation (14) is admissble.

Step2. Determine Yo by minimizing y under the LMI
constraint (30).

Sep3. Compute the post-filter Q(s) by solving the
LMI (33).

From the dasscd H..-control theory it is known that
the order of Q(s) is bounded by ngq < r+nt. For
implementation it is of interest to minimize nq by
chedking (31) for a deaeasing k If no satisfadory y
can be adieved for areduced order Q(s), the order of
T(s) can be deadeased. The extreme cae is fault
estimation, where T(s) has no dynamic.

4.4 Robust fault estimation.

The dm of the robust fault estimation is to find Q(s)
such that that the residual signal r(s) converges
toward a linea combination of the faults. Q(s) is
chosen to satisfy (34) for a given red positive y
chosen as snall asposshle

lesina@ Nl or]_ <y (39

It can be cmnsidered as a spedal case of filtering,
with T(s)=Dr, and can be aldressed with the same
madhinery. Following theorems 3 and 4 respedively,
theorem 5 gives the eistence ondition of Q(s) and
theorem 6 gives its computation.

Theorem 5. For a gven paitive number y, a post
filter Q(s) satisfying (34) exsts if and ory if there
exXst Rand Sreal symnetric (rxr) matrices auch that
the LMIs (35) hald

AR RAT B g 353
S o
TS+SASE51d 0
S S 0o (35h)
Diyg =¥ .

ﬁf 'S%o (35¢c)

where By:=[E; Ri] andNsisan orthonamal basis of
the null spaceof [CE, Ry].

The optimal achievable y,; can be determined by a
simple minimizaion of the LMI variable y, under the
constraint (35).

Theorem 6. Let (RS satisfy (35) for ypn. An
optimally robust fault estimator is determined by the
post filter Q(s) satisfying (34), defined by

By e

where O satisfies the LMI (37)
Hag X + XAy XBy 0 [
0 BIX -yl Dj +PTeQ+Q'e'P<0 (37)
@ 0 Do —ylﬁ

where Ay = %OHBO R HD0=(0‘DT)

P:@ 0§< 8 ?Q Q:% Oﬁ(EzOBz)gQ
X =%wST -NRM?IMTM)'lE

where M andN are full column rank matrices [JR™™
such that MN'=1-RS (39)

Remark. A post filter of reduced order k < r can be
synthesized by adding the cnstraint (31) to (35).

Algorithm of fault estimation

Sepl Solve the LMI (11) to determine L such that
the fadorisation (14) is admissble.

Step2. Determine Yo by minimizing y under the LMI
constraint (35).

Sep3. Compute the post-filter Q(s) by solving the
LMI (37).

5. NUMERICAL EXAMPLE

In this sdion the dgorithm of robust fault diagnosis
is illustrated. Let consider the descriptor system (1)

defined by
B—lS_ OOH OE
090
01

] B

1
1
0
0

0
eBE o

where d(t) and f(t) are defined by (40) and (41)
respedively. fi(t) is an aduator failure and fy(t) is a
sensor off set

dy(t)=0.01*sin(3001)

d,(t)=0.01*sin(200.t) (40)
f(t) = @u(t): eflt?sreB<t <5
_M, for 7<t<9 (49
f2(t) = @ else

(E,AC) is impulse observable but (E,A) is not
impulse free

First, L is determined such that (E, A+LC) is
admissble (impulse free ad stable). Solving (11),
(E,A+LC) is impulse free ad the finite @genvalues
are{-4.50+/- 1.01i, -0.83}.
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Fig. 2. Comparison of the faults (dashed lines) and
residua signals (solid lines).

T(s) is chosen to be adiagonal of first order low-pass
filters. The minimization of y resultsin y,;=0.99. An
optimaly robust post-filter Q(s) of order ng=5 is
determined by solving (31). The originad and
estimated faults are displayed on figure 2.

6. CONCLUSION

In this paper the design of an optima residua
generator for descriptor systems, formulated in the
H. control framework, was proposed and il lustrated.
The residua generator is g/nthesized by a two step
procedure. Firstly, the residual generation is based on
the oprime fadorizetion of the plant. Since the
resulting fadors are not improper the residua
generator can be redized by an usual state-space
redization. Seaondly, a post-filter is added to ensure
the robustnessof the fault diagnosis. The synthesisis
based on the H., -filtering approach.

As pointed in (Chen and Patton, 1999 it is not
obvious to introduce model uncertainties in this
formulation since Q(s) is a post-filter and has no
influence on the dynamics of the plant. Further works
of interest should be to generalize the integrated
control and fault detedion investigated by Niemann
and Stoustrup (1997).
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