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Abstract : In this paper the factorization approach to robust residual generation is 
extended to descriptor systems. The design of the optimal residual generator for non 
causal systems is performed via two steps. First, the coprime factorization permits to 
use proper filters to perform the robust fault diagnosis. Secondly, the residual 
generation is considered as a special case of H∞-filtering. An LMI-based design of 
an optimal residual generator is proposed and ill ustrated. Copyright © 2003 IFAC. 
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1. INTRODUCTION 

 
The descriptor form (i.e. E.dx/dt = Ax+…) is much 
more general than the usual state-space 
representation for linear dynamic systems (i.e. dx/dt 
= Ax+…). This representation enables to take into 
account physical constraints, static relations and 
impulsive behaviors due to an improper part of the 
system. Thus descriptor systems appear in many 
fields of system design and control and an important 
literature is devoted to descriptor systems since 
(Lewis, 1986; Dai, 1989). Many topics of control 
have been extended to singular systems, such as LQ 
regulation (Cobb, 1983), H2-control (Takaba and 
Katayama, 1996), H∞-control (Takaba et al., 1994) or 
LMI-based controllers (Masubuchi et al., 1997). 
 
Since two decades one of the most challenging 
problem is to ensure a safe and reliable control for 
dynamic systems faced to failures and despite of 
exogenous signals (Chen and Patton, 1999; Patton et 
al., 2000). Concerning the descriptor systems few 
efforts have been made in fault detection and 
isolation (FDI), mainly developing fault detection 
based on observers (Chap.5 of Patton et al., 2000) 
and unknown input observers (Duan et al., 1999).  
 
In this paper the coprime factorization is used to 
parameterize all proper residual generators for 

descriptor plants affected by faults and disturbances. 
An optimal residual generator is synthesised to 
maximize the sensitivity to the faults while 
minimizing the sensitivity to the disturbances.  
 
The paper is organized as follows. Section 2 recalls 
some useful concepts concerning the descriptor 
systems. In section 3 states some results on 
factorization for descriptor systems, ensuring the 
properness of the factors. Robust residual generation 
is tackled in section 4.  An LMI-based design of the 
optimal proper residual generator is proposed. 
Section 5 presents an example of fault diagnosis. 
 
 

2. PROBLEM STATEMENT 
 
Let consider a stable linear time-invariant descriptor 
system subject to failures and disturbances given by  
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where x ∈Rn is the descriptor variable, u ∈Rnu is the 
control input, y ∈Rm is the measured output, d ∈Rnd 
is the disturbance, f ∈Rnf is the failure and E, A, B, C, 
D, E1, E2, R1 and R2 are known real constant matrices 
with compatible dimensions. As discussed in (Frank 
and Ding, 1994), the unknown vector d(t) in the 
equations (1) embraces model uncertainties, additive 



perturbation, input and output multiplicative 
perturbation and the vector f(t) stands for 
dysfunctions, actuator or sensor failures. 
 
The matrix E may be rank deficient : rank(E) = r ≤ n. 
The system (1) has a unique solution, for any initial 
condition, if it is regular (i.e. det(sE-A)≠0). Let 
q=deg(det(sE-A)), (1) has q finite dynamic modes, 
(n-r) static modes and (r-q) impulsive modes. The 
finite modes correspond to the finite eigenvalues of 
the pencil matrix (E, A). The system is called stable if 
the finite modes are stable, i.e. if the finite 
eigenvalues of (E,A) lie in the open left half-plane. 
The impulsive modes may cause impulse terms in the 
response ansd thus are highly undesirable. A system 
has no impulsive mode and is said to be impulse free 
if and only if  

 ErankA))deg(det(sE =−  (2) 

Since the transfer matrix of any impulse free 
descriptor system is (non strictly) proper it can be 
realized by an usual state-space representation (A, B, 
C, D). 
A descriptor system is impulse observable (resp. R-
observable) if and only if it satisfies (3) (resp. (4)) 
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If (3) is verified, there exists a matrix gain L such 
that the pencil matrix (E, A+LC) is impulse free. If 
(4) is verified the finite eigenvalues of (E, A+LC) can 
be arbitrarily placed by the matrix gain L. Dual 
notions are defined for the controllabilit y (Dai, 
1989). If (E, A) is stable and impulse free, it is called 
admissible. 
 
Assumption 1. (E, A, C) is impulse observable. 
 
It is frequently claimed that considering both 
descriptor case and disturbance is redundant since the 
state can be augmented with d, but this approach 
gives rise to a more restrictive condition to verify the 
impulse observabilit y of the augmented system. 
 
  

3. COPRIME FACTORIZATION OF 
DESCRIPTOR SYSTEMS 

 
Factorization techniques have been extensively 
treated not only for usual dynamic systems, using 
polynomial approach (Gao and Antsaklis, 1989) or 
state space approach (Clements, 1993), but also for 
descriptor systems (Liu et al., 1997). This section 
presents a factorization for singular plants ensuring  
proper and stable factors by solving a strict LMI. 
 
A double coprime factorization of a transfer function 
G(s) is defined by 

 (s)N(s)M(s)M(s)NG(s) 11 −− ==  (5) 

where N(s), M(s), M(s) and N(s) are right and left 
coprime matrices of G(s) respectlively. Since the LTI 
descriptor system (1) can also be described by 
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thus it can be factorized using the following theorem.  
 
Theorem 1. Suppose G(s) is a (non necessarily 
proper) real-rational matrix and 
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is a regular, impulse observable and impulse 
controllable realization. Let L and F be such that (E, 
A+LC) and (E, A+BF)  are impulse free, then N(s), 
M(s), N(s) and M(s) are given by 
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Proof.  The proof is achieved by verifying (5)   � 
      
The factorization parameters F and L must be 
determined such that the left and right coprime 
matrices of G(s) are admissible. It is important to 
note that in that case N(s),M(s), M(s) and N(s) are 
stable and proper transfer matrices. Only M-1(s) and 
M-1(s) may present impulsive terms.  
 
Lemma 1 (Uezato and Ikeda, 1999) gives a method 
to compute L (and F by duality) by solving an LMI. 
 
Lemma 1. The matrix pencil (E, A+LC) is admissible 
if and only if there exist a positive definite matrix 
P∈Rn×n and matrices S∈R(n-r)×(n-r), T∈Rm×n and 
H∈Rm×(n-r) satisfying the LMI (11). L is given by (12) 
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where U and V are full column-rank matrices 
spanning the null spaces of E and ET respectively. 
 
In the remaining L denotes a solution of (11)-(12) 
 
 

4. ROBUST FAULT DIAGNOSIS 
 
The objective of the fault diagnosis process is to 
build a signal, called residual, which highlights the 
appearance of a faulty behaviour. The mathematical 
definition of a residual signal is   
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4.1 Residual generation 
 
Following the procedure of (Frank and Ding, 1994), 
the left coprime factorization of Gu(s) is used to 
generate a primary residual r(s) only affected by the 
failures f(s) and the disturbances d(s). A second step 
consists in filtering the primary residual to minimize 
the transfer from d(s) to the residual. 
 
Since (E, A, C) is impulse observable, the transfer 
matrices Gu(s), Gd(s) and Gf(s) are factored by 

 

(s)(s)NM(s)G

(s)(s)NM(s)G

(s)(s)NM(s)G

f
1

f

d
1

d

u
1

u

−

−

−

=
=
=

 (14) 

where m)(mIC
LLCAE,M(s) ×







 


 +=  

 nu)(mDC
LDBLCAE,(s)Nu ×







 


 ++=   

 nd)(m
EC

LEELCA
E,(s)N

2

21
d ×














 ++=  

 nf)(m
RC

LRRLCA
E,(s)N

2

21
f ×














 ++=  (15) 

where L is computed by solving the LMI (11). The 
residual generator is deduced from (14) and (15) 
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where Q(s) is a stable and proper filter of order nq 
defined by 
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Since (E, A+LC) is admissible, the finite modes of 
Nf(s) decay exponentially and thus, according to (13), 
r(s) is a residual signal. Applying standard H∞ 
techniques, a post filter Q(s) is synthesized to 
enhance the robustness faced to the unknown inputs 
d(s) and to shape the response of the residual 
generator.  
 
4.2 Parameterization of all the residual generators 
 
According to (15) and (16) the residual generator is 
parameterized by L and the post-filter Q(s). Theorem 
2 proves that the residual generator is independent of 
the factorization parameter L (this can be considered 
as a generalization of the result established by Ding 
and Guo (1997)) 
 
Theorem 2. Given two factorizations of a real-
rational transfer matrix G(s) 
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where Li ensures that Mi(s) and Ni(s) are admissible 
for i=1,2, there exists a stable Q0(s) which satisfies 

 (s)M(s)(s)MQ 210 =  (19a) 

 (s)N(s)(s)NQ 210 =  (19b) 

and furthermore Q0(s) is given by 
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Proof.  The proof is achieved by verifying (18)   � 
 
As a result of theorem 1, the performance of the 
residual generation is independent of the choice of L. 
Any possible performance can be achieved by 
designing Q(s) for a given L0. 
 
Corollary 1. Assuming that the matrix L0 ensures the 
admissibilit y of (E, A+L0C), then all the residual 
generators can be parameterized by 
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4.3 Synthesis of the optimal residual generator 
 
Since perfect FDI –where each component of the 
residual vector is non null if and only if the 
corresponding fault has occurred- is a very restrictive 
case, residual generators need to be optimal 
regarding to a criterion to define. Roughly speaking 
the objective is to make the residual sensitive to f(s) 
while insensitive to d(s). A natural approach is to 
maximize the following criterion 
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where ||.|| denotes a matrix norm. Choosing the L2 
norm, this problem can be solved via a generalized 
eigenvalue / eigenvector problem (Frank and Ding, 
1997). Choosing the L∞ norm is a more generic 
approach since no assumption need to be made on the 
power spectrum of f(s) and d(s) excepted their finite 
energy. This optimization problem have been treated 
by Frank and Ding (1994, 1997) for usual systems.  
This contribution is based on the standard H∞ filtering 
approach to robust residual generation, treated by 
Edelmayer et al. (1994) for the usual systems. 
 
The objective is to find the Q(s) which minimizes the 
following performance index 
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Fig 1. Scheme of robust residual generation. 
 
where Grw is the transfer from w(s)=[dT(s) fT(s)] T to 
r(s). T(s) is a filtering parameter which allows to take 
advantage of the available knowledge concerning the 
faults, for instance by ampli fying a frequency range 
where the faults are expected or filtering by a 
diagonal of low-pass filter when the estimated faults 
are used for reconfiguration. The objective is to 
minimize the transfer from w(s) to e(s)=r(s)-T(s)f(s) 
by choosing the appropriate post filter Q(s) as shown 
on figure 1. 
 
Since Nd(s) and Nf(s) are admissible, by a singular 
value decomposition of E,  they can be realized using 
stable usual state-space systems of order r=rank E 
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The following theorems give a method to design the 
post-filter Q(s) for a given stable T(s), of order nt 
defined by 
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The objective (24) can be re-formulate as finding the 
controller Q(s) that minimizes the H∞ norm of the 
transfer from w(s) to e(s), in other words finding the 
controller Q(s) that satisfies (27) for a given real 
positive γ chosen as small as possible 

 [ ] γ<−= ∞∞ T(s)0(s)G(s)T rwew  (27) 

Tew(s) is given by the interconnection of a plant (28) 
and a controller (29). In the standard H∞ framework, 
e(s) is the controlled output, r(s) is the measured 
output, w(s) gathers the exogenous signals and r(s) is 
the control input 

 
( ) ( )

































=







r(s)
w(s)

0D
DD

C
C

BBA

(s)r
e(s)

21d

12d11d

2d

1d

2d1dd
 (28) 

 (s)r
DC
BA

r(s)
QQ

QQ






=  (29) 

 
( ) ( ),C0C,0CC

,0
0B,RE

B0
B,

A0
0A

Awhere

2dT1d

2d
11

T
1d

T
d

=−=




=




=





=  

 ( ) ( )2221d12dT11d REDandID,D0D ==−=  

The design of Q(s) follows the LMI-based controller 
synthesis presented by Gahinet and Apkarian (1994). 
The conditions to be verified are the detectabilit y and 
stabili zabilit y of (Ad, B2d, C2d), and a null direct 
transfer from r(s) to r(s). The former is secured since 
A and AT are stable. And the latter is verified in (28). 
The optimal achievable γ is determined by theorem 3 
and theorem 4 gives the computation of the post-
filterQ(s). 
 
Theorem 3. For a given positive number γ, a post 
filter Q(s) satisfying (27) exists if and only if there 
exist R and S real symmetric (nt+r)×(nt+r) matrices 
such that the LMIs (30) hold 

 0
I�B

BRARA
T
1d

1d
T
dd <











−
+  (30a) 

 0
I0
0N

IDC
DISB

CSBSASA

I0
0N S

11d1d

T
11d

T
1d

T
1d1dd

T
dT

S <






















γ−
γ−

+







 (30b) 

 0SI
IR ≥


  (30c) 

where NS is an orthonormal basis of the null space of 
[C2d D21d] . 
 
In addition, γ is achievable by a Q(s) of order k < 
nt+r if and only if the LMIs (30) hold for some R, S 
which also satisfy 

 kRS)Rank(I ≤+  (31) 

 
The optimal achievable γopt can be determined by a 
simple minimization of the LMI variable γ, under the 
constraint (30). 
 
Theorem 4. Let (R,S) satisfy (30) for γopt. An 
optimally robust residual generator, satisfying (27), 
is determined by the post filter Q(s) defined by 
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where Θ satisfies the LMI (33) 
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where M and N are full column rank matrices ∈ 
R(r+nt)×nq such that  MNT=I-RS 



Proof. Derived from (Gahinet and Apkarian, 1994). �
 
The design of a reduced order Q(s) follows the same 
method with (R, S) also satisfying (31). 
 
Algorithm of fault detection 
Step1.  Solve the LMI (11) to determine L such that 

the factorisation (14) is admissible. 
Step2.  Determine γopt by minimizing γ under the LMI 

constraint (30). 
Step3.  Compute the post-filter Q(s) by solving the 

LMI (33). 
 
From the classical H∞-control theory it is known that 
the order of Q(s) is bounded by nq ≤ r+nt. For 
implementation it is of interest to minimize nq by 
checking (31) for a decreasing k. If no satisfactory γ 
can be achieved for a reduced order Q(s), the order of 
T(s) can be decreased. The extreme case is fault 
estimation, where T(s) has no dynamic. 
 
 
4.4 Robust fault estimation. 
 
The aim of the robust fault estimation is to find Q(s) 
such that that the residual signal r(s) converges 
toward a linear combination of the faults. Q(s) is 
chosen to satisfy (34) for a given real positive γ 
chosen as small as possible 
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It can be considered as a special case of filtering, 
with T(s)=DT, and can be addressed with the same 
machinery. Following theorems 3 and 4 respectively, 
theorem 5 gives the existence condition of Q(s) and 
theorem 6 gives its computation. 
 
Theorem 5. For a given positive number γ, a post 
filter Q(s) satisfying (34) exists if and only if there 
exist R and S real symmetric (r×r) matrices such that 
the LMIs (35) hold 
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where B01=[E1 R1] and NS is an orthonormal basis of 
the null space of [C E2  R2] . 
 
The optimal achievable γopt can be determined by a 
simple minimization of the LMI variable γ, under the 
constraint (35). 
 
Theorem 6. Let (R,S) satisfy (35) for γopt. An 
optimally robust fault estimator is determined by the 
post filter Q(s) satisfying (34), defined by 
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where Θ satisfies the LMI (37) 
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where M and N are full column rank matrices ∈ Rr×nq 
such that  MNT=I-RS. (38) 
 
Remark. A post filter of reduced order k < r can be 
synthesized by adding the constraint (31) to (35). 
 
Algorithm of fault estimation 
Step1.  Solve the LMI (11) to determine L such that 

the factorisation (14) is admissible. 
Step2.  Determine γopt by minimizing γ under the LMI 

constraint (35). 
Step3.  Compute the post-filter Q(s) by solving the 

LMI (37). 
 

5. NUMERICAL EXAMPLE 
 
In this section the algorithm of robust fault diagnosis 
is ill ustrated. Let consider the descriptor system (1) 
defined by 
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where d(t) and f(t) are defined by (40) and (41) 
respectively. f1(t) is an actuator failure and f2(t) is a 
sensor offset 

 d1(t)=0.01*sin(300.t)  

 d2(t)=0.01*sin(200.t) (40) 
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2
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(E,A,C) is impulse observable but (E,A) is not 
impulse free. 
 
First, L is determined such that (E, A+LC) is 
admissible (impulse free and stable). Solving (11), 
(E,A+LC) is impulse free and the finite eigenvalues 
are {-4.50 +/- 1.01i, -0.83}.  
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Fig. 2. Comparison of the faults (dashed lines) and 
residual signals (solid lines). 

 
T(s) is chosen to be a diagonal of first order low-pass 
filters. The minimization of γ results in γopt=0.99. An 
optimally robust post-filter Q(s) of order nq=5 is 
determined by solving (31). The original and 
estimated faults are displayed on figure 2. 
 
 

6. CONCLUSION 
 
In this paper the design of an optimal residual 
generator for descriptor systems, formulated in the 
H∞ control framework, was proposed and il lustrated. 
The residual generator is synthesized by a two step 
procedure. Firstly, the residual generation is based on 
the coprime factorization of the plant. Since the 
resulting factors are not improper the residual 
generator can be realized by an usual state-space 
realization. Secondly, a post-filter is added to ensure 
the robustness of the fault diagnosis. The synthesis is 
based on the H∞ -filtering approach. 
As pointed in (Chen and Patton, 1999) it is not 
obvious to introduce model uncertainties in this 
formulation since Q(s) is a post-filter and has no 
influence on the dynamics of the plant. Further works 
of interest should be to generalize the integrated 
control and fault detection investigated by Niemann 
and Stoustrup (1997). 
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