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Abstract – This paper presents the design of a proportional-
integral observer for descriptor systems subject to faults and 
unknown inputs. The observer is synthesized to minimize the 
influence of unknown inputs on the estimation. Weighting 
transfer is introduced to shape the sensitivity of the 
estimation to the unknown inputs. Particular attention is paid 
to fault diagnosis objective. The proposed method is based on 
the solution of LMI and guarantees the estimation of the 
states and faults to be robust face to unknown inputs. A 
numerical example is included. 
 

I. INTRODUCTION 
 Since dynamical systems are becoming more and more 
complex, control engineering requires safety and 
reliability. In other words, the plant modelling should 
include disturbance (or unknown inputs) and possible 
component failures or malfunctions. Thus diagnosis, and 
especially model-based fault diagnosis [1], [14], had 
become a key point in modern control. One of the most 
popular technique is to generate residual signals which 
highlight the appearance of an abnormal behaviour of the 
plant (actuator failure, sensor failure, varying parameters, 
…). The so-called residual generation problem can be 
addressed with different approaches such as parity spaces, 
factorisation approaches, eigenstructure assignment and 
observer-based methods. Then the design of observers for 
dynamical systems has received a considerable amount of 
attention in the field on robust fault diagnosis, in particular 
observers for systems with unknown inputs (UI) [3], [10]. 
 In this paper the generic class of linear descriptor 
systems (i.e. E.dx/dt=Ax+…) is considered. This 
formulation includes both dynamic and static linear 
relations. Consequently this formalism is much more 
general than the usual one and can model physical 
constraints or impulsive behaviour due to an improper part 
of the system. Descriptor systems appear in many fields of 
system design and control such as constrained robots, 
power systems, hydraulic or electrical networks…[5]. 
 Many control issues have been extended to the 
descriptor case, in particular the observer design for 
descriptor systems has been intensively addressed see e.g. 
[4], a linear fractional transformation parametrization of 
linear observers is done in [9] and [11] introduces the 
proportional integral (PI) observer.  
 Unfortunately fault diagnosis is rarely tackled in the 
descriptor case. In [6] robust fault detection is performed 
with the use of generalized unknown input observers and 
in [12] the coprime factorisation approach of robust fault 
diagnosis is extended to the linear descriptor systems, via 
strict LMI based solution. 

 In this paper a simple method is proposed to design a PI 
observer for descriptor systems subject to failures and 
disturbances. The proposed approach is proved to be less 
restrictive since no assumption is made on the matrix 
distribution of the failures. The presented PI observer gives 
an asymptotic estimation of both states and failures and 
bounds the influence of the UI. Moreover a weighting 
function can be introduced to ensure performance of the 
estimation in a particular frequency range. For instance the 
weighting function can take into consideration the power 
spectrum of the disturbances or the frequency contents of 
the actuators noise. The design is reduced to the solution of 
a set of strict LMIs and then is reliably solvable with LMI 
toolboxes [7], [8]. The PI observer approach is applied to 
fault diagnosis for descriptor systems. Since the design 
procedure aims to bound the H∞-norm of the transfer 
function from the disturbance to the estimation error, then 
a threshold for robust failure detection is easily available. 
Robust fault diagnosis is performed by synthesising a bank 
of dedicated PI observers. Both full and reduced order 
observers for UI descriptor systems are studied. 
 The paper is organized as follows. Section 2 presents the 
general problem statement the assumptions and the 
motivation of this note. In section 3 the design of PI 
observer is studied, weighting functions are included and 
the reduced order PI observer is treated. Section 4 is 
dedicated to the use of PI observers for fault diagnosis and 
section 5 is devoted to a numerical example. 

II. PRELIMINARIES 
 This section recalls some basic knowledge about 
descriptor systems (taken from [5]) and details the 
assumptions made and the motivations of this contribution. 
A. Backgrounds 
 We consider a class of linear time invariant (LTI) 
descriptor systems described by 
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where x(t) ∈Rn is the descriptor variable, u(t) ∈Rnu is the 
control input, y(t) ∈Rm is the measured output, f(t) ∈Rnf is 
the fault vector and d(t) ∈Rnd is the unknown input. E*, 
A*, B*, C*, D*, N1*, N2* and M* are real known constant 
matrices with compatible dimensions. E* is not assumed to 
be square and may be rank deficient, let note r = rank(E*). 
 The system (1) has a unique solution, for any initial 
conditions, if it is regular (i.e. E* and A* square and 
det(sE*-A*)≠0, for all s). The finite modes of the system 
correspond to the finite eigenvalues of (E*, A*).  



 A descriptor system is said to be stable if all the finite 
eigenvalues of (E*, A*) lie in the left half complex plane. 
Even for a regular input, a descriptor may have impulsive 
behaviour, due to the non causal part of its transfer 
function. A matrix pencil (E*, A*) has no impulsive mode 
and is said to be impulse-free if and only if the following 
equality holds 
 deg(det(sE*-A*)=rank(E*), for all s complex (2) 
A descriptor system (E*, A*, C*) is impulse observable 
(resp. R-observable) if and only if (3) (resp. (4)) holds 
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Impulse observability (resp. R-observability) reflects the 
ability to reconstruct the non causal (resp. causal) part of 
the system. If (3) is satisfied, there exists a matrix L such 
that (E*, A*-LC*) is impulse free. If (4) is satisfied there 
exists a matrix L such that the finite pole of (E*, A*-LC*) 
are set to prescribed values. 
B. Assumptions and problem statement  
 The matrix pencil (E*, A*) is not assumed to be square 
and the regularity of the matrix pencil is not needed. 
 In the remaining the following assumptions are made 
 [ ] *** rankEMErank =  (A1) 
 (E*, A*, C*) is impulse observable (A2) 
  (A3) 0)t(f =&

 (A1) means that the disturbance d, affect the dynamic 
relations of the system. (A3) means that the bounded 
nonlinear failures are approximated by step functions. In 
the case of PI observer this assumption is reasonable since 
the approximate error can be minimised by increasing the 
observer bandwidth (see discussion in [11]). Moreover the 
compromise between bandwidth increasing and noise 
sensibility pointed in [11] need not to be treated a 
posteriori but is integrated in the design procedure since 
the transfer from the UI to the estimate errors is bounded 
while a decay ration of the estimate error can be imposed. 
The assumption (A3) is needed for theoretical proofs but 
our approach remains effective in practical cases where 
(A3) is not satisfied, as one can see in the example, in 
section 5. Note that if [E*/ C*] is full column rank, (A1) 
and (A2) are satisfied. 
 It is of interest to notice that since N2* is non null, the 
approach is more generic than for instance in [11]. 
Augmenting the state vector with the failure vector to 
apply [11] to the augmented system will give rise to more 
restrictive conditions to verify the impulse observability 
condition. 
 An analogous argument can be opposed to the common 
idea that including UI in descriptor systems is redundant 
since it suffices to augment the state with the UI. 
 Performing a singular value decomposition of E* and 
partitioning A*, C*, N1*and M* according to it, we obtain 
the following matrices 
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On the one hand, the impulse observability of the system 
augmented with the failure (resp. the UI) is verified if and 
only if Pf (resp, PUI) is full column rank with 
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On the other hand, the impulse observability of (1) is 
verified if and only if  [A22

T C2
T] is full row rank, which is 

less restrictive than the rank condition on Pf (or PUI). The 
example in section 5 provides an illustration of the above 
discussion. 
 The aim of this contribution is to design the following PI 
observer to robustly estimate the state x(t) and the failure 
f(t) of (1) 
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The above observer is termed proportional integral, 
because of the integral loop due to the second equation of 
(6). This structure of observer is particularly efficient for 
failures characterised by low frequency signals. The 
different matrices in (6) will be determined to ensure the 
convergence of the estimate errors. 

III.DESIGN OF THE PI OBSERVER 
 In this section the existence condition of the PI observer 
is established and its design is performed in order to bound 
the sensitivity of the estimate error to the UI. Full and 
reduced order PI observer are studied. 
A.  H∞ design of the full order PI observer 
 The design is based on the approach of [4] and [11]. 
Under assumption (A1) there exists a non singular matrix 
P such that system (1) is equivalent to the following 
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where E is full row rank and 
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Proposition 1. Using the P transformation, the three 
following propositions are equivalent. 
i (E*, A*, C*) is impulse observable 
ii (E,A,C) is impulse observable 
iii [E / C] is full column rank 
 
Proof. i⇔ ii is obvious since P is non singular and ii⇔ iii 
since E is full row rank.  ▄ 
 



Under assumption (A3) and with proposition 1 there exist 
two matrices T1 and T2 such that 
 . (8) n21 ICTET =+

Moreover, T1 and T2 are given by 
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and T1 is full column rank. Let us set 
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Let e and ef denote the state and fault estimation errors 
defined by e and  respectively. The 
estimate error 

x̂x −= f̂fe f −=

eT=[eT ef
T] is given by 
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 Obviously the PI observer exists if and only if there 
exists a matrix L such that the estimate errors 
asymptotically converges toward zero, in other words if 
and only if the pair (A, C) is detectable. The following 
theorem gives the existence condition of the PI observer. 
 
Theorem 1.  Under assumptions (A1-A3), the PI observer 
(6) for descriptor system (1) converges asymptotically if 
and only if the following condition holds 
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Proof. Since P is non singular, the following equality 
holds 
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since T1 is full column rank, for all s complex we have 

  


































 −−

















−=














 −−

2
2

nf
121

2
*

nf
1

NC
sNsC
sI0

NAsE

I000
sII00

00I0
0T0T

rank
NC
sI0

NAsE
rank

  














 −−
=

2

nf
11221n

NC
sI0

NTNsTATsI
rank

  














 −−
=

2

nf
111n

NC
sI0

NTATsI
rank

which is equivalent to the detectability of the pair (A,C). 
The last equality is obtained by separately considering the 
cases s=0 and s 0.  ▄ ≠
 
 The design parameter L is chosen to minimize the H∞-
norm of the transfer Ted(s) from d to e. the following 
theorem gives a computation of L to achieve the objective 
 || Ted(s)||∞<γ (12) 
for a prescribed real positive γ made as small as possible. 
 
Theorem 2. The optimally robust PI observer (6) for 
descriptor system (1) which satisfies (12), is determined by 
minimizing γ under the following LMI constraints in the 
variables X ∈Rn×n, Y ∈Rn×m and γ (real positive number)  
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and L is given by L=X-1Y 
where “>0” (resp. “<0”) stands for symmetric positive 
(resp. negative) definite 
 
Proof. Apply the well-known bounded real lemma (BRL) 
[16] to the system (10), there exists a matrix L such that 
(12) is verified if and only if there exists a symmetric 
positive definite X solution of 
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Let us set Y=XL, (13) follows. ▄ 
 
Remark 1. The minimisation of γ may result in slow 
dynamics of the estimation error (10). The LMI constraint 
(14) can be added to (13) to impose a minimal decay ratio 
λ by shifting the spectrum of A-LC (i.e. the poles of (10) 
lie in the left half complex plane defined by {z | Re(z)< -
λ})  
 ( ) ( ) 0YCCYXIAIAX TTT <−−+++ λλ  (14) 
(13) and (14) guaranty a robust and effective estimation of 
the state and failures. Indeed it can be seen as an LMI 
formulation of a basic pole placement. More precise pole 
clustering could be perform in the LMI formulation [2] but 
would result in conservatism in the robustness objective. 
B. H∞ design of the PI observer using weighting function 
 The previous design method secures an unique norm 
bound of the sensitivity of the estimation to all the UIs and 
on the whole frequency range. This may cause some 
conservatism, as pointed in [15]. Introducing a stable 
weighting function on the UI allows to reflect the expected 
frequency content of d, for example a pass band filter will 
give a relative importance to a prescribed frequency range 
in which d is likely to be significant. 



 Let W1(s) be a stable weighting function with a state-
space realization (A1, B1, C1, D1) and let denote n1 its order. 
The objective is to design a PI observer such that  
 γ<

∞
)s(W)s(T 1de  (15) 

for a prescribed real positive γ, then it will ensure 
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Assuming the weighting function to be stable, the 
existence condition of the PI-observer remains the same. 
The following theorem establishes the computation of a PI 
observer satisfying (15). 
 
Theorem 3. Given a stable W1(s), the optimally robust PI 
observer (6) for descriptor system (1) is the solution of the 
minimization of γ under the following LMI constraint in 
the variables X1 ((n×n) real matrix), X2 ((n1×n1) real 
matrix) Y ((n×m) real matrix) and γ (real positive number)  
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Proof. The augmented system is defined by 
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applying the BRL to (17), a sufficient condition for (15) is 
that a symmetric positive definite block diagonal matrix 
X=blockdiag(X1, X2) satisfies 
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let Y=X1L and the proof is completed.  ▄ 
 
 As pointed in the previous section the minimization of γ 
may result in slow dynamics. The speed of convergence 
can be forced by adding the LMI (18) to the set (17) 
 ( ) ( ) 0YCCYXIAIAX TT
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C. Reduced order PI observer 
 For the sake of simplicity of implementation, it may be 
of interest to reduce the order of the PI observer. Here, 
following [11], the PI observer of order r+nf is studied. 
Since E is full row rank, computing a column compression, 
there exists a non singular matrix P1=[E+WE] , where WE 
is an orthonormal basis of the null space of E, such that 
EP1=[Ir 0]. Then system (7) is equivalent to 
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where AP1=[A1 A2] and CP1=[C1 C2]  (19) 
and it is easy to verify that (A3) implies that C2 is full 
column rank, then computing a row compression there 
exists a non singular matrix P2=[WC / C2

+], where WC
T is 

an orthonormal basis of C2
T, such that P2C2=[0 In-r]T and 
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 Let synthesise the PI observer to estimate x1(t) and f(t) 
and reconstruct x2(t) by 
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)t(f̂NC)t(x̂CC)t(yC)t(x̂

)t(ŷ)t(yPL)t(f̂
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Since P1
-1=[ET WE]T, the estimate errors are given by the 

following dynamic system, where e1(t) denotes the 
estimate error of x1(t) 
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 Similarly to the full order case, the existence condition 
of such an observer is the detectability of the pair (A, C). 
An optimally robust reduced order PI observer satisfying 
(12) is obtained with theorem 2 and the weighting function 
can be introduced by applying theorem 3. 

IV. ROBUST FAULT DIAGNOSIS 
 In this section the PI observers are specifically designed 
for fault diagnosis. In the framework of robust fault 
detection, we are looking forward to generating alarm 
signals indicating whether a given fault occurs or not. 
Alarms are usually generated by a decision making based 
on residual signals. The estimation of the faults and the 
value of γ can be interpreted as residual signals and 
threshold respectively since 

 0)t(f)t(f̂ ii ≠⇒≥γ  (23) 

where (*)I denotes the ith component of the vector (*), then 
a very simple decision making (fixed threshold) generates 
failure alarms without any false alarm due to the UI. 



 If the objective is failure diagnosis rather than state 
estimation, the robustness of the fault estimation can be 
improved by minimizing the transfer from d to ef instead of 
e (set D=[0 Inf] in (13) or (17)). A bank of nf dedicated PI 
observer –an observer is designed for each fault– can be 
synthesised for more accurate fault estimation. Each PI 
observer is designed to minimize the transfer from d to efi . 
 
Algorithm of robust fault diagnosis For each failure fi 
synthesise a PI observer (6) by minimizing γ1 under the 
LMI constraint in the variables Xi ((n×n) real matrix), Yi 
((n×m) real matrix) and γi (real positive number) 
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where A, B, C are defined in (10) and Di is the (n+i)th 
column of D in (10),then Li is given by 
 Li=Xi

-1Yi 
and an alarm ai(t) associated to fi is defined by 
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Remark 2. Weighting function and/or reduced order PI 
observer can obviously be used in the previous algorithm, 
applying theorem 3 with Di and/or using A, B, C, D 
defined in (22). 

V. NUMERICAL EXAMPLE 
In this section an illustrative example is examined. Let 
consider the LTI descriptor (1) subject to actuator and 
sensor failures and disturbances, defined by 
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First it is easy to check that (25) verifies (A1), (A2) and 
(A3). According to the discussion of section 2.2 one can 
see that neither ([E* 0], [A* N1*],[C* N2*]) nor ([E* 0], 
[A* M*], [C* 0]) are impulse observable which proves the 
efficiency of the above contribution. 
 The unknown inputs d are random signals uniformly 
distributed in [-O.5 0.5]. f1(t) is an actuator failure and f2(t) 
is a sensor offset defined by (26) 
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 Firstly the design of a PI observer is illustrated, 
introducing a weighting function and secondly, application 
to fault diagnosis is illustrated.  
A. Design of a PI observer with weighting function 
 The PI observer is synthesised to satisfy (15) with 
W1(s)=2*(1+0.01s)/(1+0.0002s). Solving the LMI (17) the 
PI observer (6) is designed. Figure 1 displays the minimal 
and maximal singular values of Ted(s) and the magnitude of 
W1(s). The design objective (16) is fulfilled and we have 
||Ted(s)||∞=0.23. The observer provides a correct estimation 
of the states, as seen on figure 2, and of the failures, see 
figure 3. On figure 3, one can see that the estimation of f2 
is perturbed by the variation of  f1 (t=3 and t=5) this can be 
significantly improved by the use of dedicated observers 
instead of a global one. 
B. Fault diagnosis with dedicated PI observers 
 In this section fault diagnosis is the principal objective, 
thus following the algorithm of section 4 we design two 
dedicated PI observers to minimize the transfer of the 
perturbation to each estimate error separately. Figure 4 
displays the obtained estimation of f2(t). The H∞ norms of 
Tef1d(s) and Tef2d(s) are γ1=0.14 and γ2=0.1 respectively. 

 
Fig 1. Singular values of Ted(s) and W1(s). 

Fig 2.  State estimation of x1 and x3. 
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Fig 3. Fault estimation of f1 and f2. 
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Fig 4. Comparison of fault estimations of f2 with a 
dedicated PI observer (solid line) and with a general PI 

observer (dashed line). 
 

VI. CONCLUSION 
The design of robust PI observer for descriptor systems has 
been studied. The existence condition and an LMI-based 
computation have been established. PI observers provide 
the estimation of the state variables and of the failures. 
They are optimally robust since they are synthesised in 
order to minimise the sensitivity of the estimate errors to 
the UI. The introduction of weighting function ensures the 
performance of the estimation in a prescribed frequency 
range.  The H∞-norm bound of the sensitivity to 
perturbations can be interpreted as a threshold for fault 
diagnosis. An algorithm for robust fault diagnosis is 
derived. For ease of implementation, reduced order PI 
observers have also been studied. 
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