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Abstract — This paper presents the design of a proportional-
integral observer for descriptor systems subject to faults and
unknown inputs. The observer is synthesized to minimize the
influence of unknown inputs on the estimation. Weighting
transfer is introduced to shape the sensitivity of the
estimation to the unknown inputs. Particular attention is paid
to fault diagnosis objective. The proposed method is based on
the solution of LMI and guarantees the estimation of the
states and faults to be robust face to unknown inputs. A
numerical example is included.

I. INTRODUCTION

Since dynamical systems are becoming more and more
complex, control engineering requires safety and
reliability. In other words, the plant modelling should
include disturbance (or unknown inputs) and possible
component failures or malfunctions. Thus diagnosis, and
especially model-based fault diagnosis [1], [14], had
become a key point in modern control. One of the most
popular technique is to generate residual signals which
highlight the appearance of an abnormal behaviour of the
plant (actuator failure, sensor failure, varying parameters,
...). The so-called residual generation problem can be
addressed with different approaches such as parity spaces,
factorisation approaches, eigenstructure assignment and
observer-based methods. Then the design of observers for
dynamical systems has received a considerable amount of
attention in the field on robust fault diagnosis, in particular
observers for systems with unknown inputs (UI) [3], [10].

In this paper the generic class of linear descriptor
systems (i.e. E.dx/dt=Ax+...) is considered. This
formulation includes both dynamic and static linear
relations. Consequently this formalism is much more
general than the usual one and can model physical
constraints or impulsive behaviour due to an improper part
of the system. Descriptor systems appear in many fields of
system design and control such as constrained robots,
power systems, hydraulic or electrical networks...[5].

Many control issues have been extended to the
descriptor case, in particular the observer design for
descriptor systems has been intensively addressed see e.g.
[4], a linear fractional transformation parametrization of
linear observers is done in [9] and [11] introduces the
proportional integral (PI) observer.

Unfortunately fault diagnosis is rarely tackled in the
descriptor case. In [6] robust fault detection is performed
with the use of generalized unknown input observers and
in [12] the coprime factorisation approach of robust fault
diagnosis is extended to the linear descriptor systems, via
strict LMI based solution.

In this paper a simple method is proposed to design a PI
observer for descriptor systems subject to failures and
disturbances. The proposed approach is proved to be less
restrictive since no assumption is made on the matrix
distribution of the failures. The presented PI observer gives
an asymptotic estimation of both states and failures and
bounds the influence of the Ul. Moreover a weighting
function can be introduced to ensure performance of the
estimation in a particular frequency range. For instance the
weighting function can take into consideration the power
spectrum of the disturbances or the frequency contents of
the actuators noise. The design is reduced to the solution of
a set of strict LMIs and then is reliably solvable with LMI
toolboxes [7], [8]. The PI observer approach is applied to
fault diagnosis for descriptor systems. Since the design
procedure aims to bound the H,-norm of the transfer
function from the disturbance to the estimation error, then
a threshold for robust failure detection is easily available.
Robust fault diagnosis is performed by synthesising a bank
of dedicated PI observers. Both full and reduced order
observers for UI descriptor systems are studied.

The paper is organized as follows. Section 2 presents the
general problem statement the assumptions and the
motivation of this note. In section 3 the design of PI
observer is studied, weighting functions are included and
the reduced order PI observer is treated. Section 4 is
dedicated to the use of PI observers for fault diagnosis and
section 5 is devoted to a numerical example.

II. PRELIMINARIES

This section recalls some basic knowledge about
descriptor systems (taken from [5]) and details the
assumptions made and the motivations of this contribution.

A. Backgrounds

We consider a class of linear time invariant (LTI)
descriptor systems described by

E*x(t)=A"x(t)+ B u(t)+N; f(1)+ M d(t)
Yy (1)=Cx(t)+ D u(t)+ N f(t)

where x(¢) eR" is the descriptor variable, u(?) eR™ is the
control input, y(#) eR™ is the measured output, f{#) cR™ is
the fault vector and d(#) eR™ is the unknown input. E*,
A* B* C* D¥* N;* N,* and M* are real known constant
matrices with compatible dimensions. £* is not assumed to
be square and may be rank deficient, let note » = rank(E*).
The system (1) has a unique solution, for any initial
conditions, if it is regular (i.e. £* and A* square and
det(sE*-A*)#0, for all s). The finite modes of the system
correspond to the finite eigenvalues of (E*, 4%).
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A descriptor system is said to be stable if all the finite
eigenvalues of (E* A*) lie in the left half complex plane.
Even for a regular input, a descriptor may have impulsive
behaviour, due to the non causal part of its transfer
function. A matrix pencil (E* A4*) has no impulsive mode
and is said to be impulse-free if and only if the following
equality holds

deg(det(sE*-A*)=rank(E*), for all s complex 2)
A descriptor system (E* A% C*) is impulse observable
(resp. R-observable) if and only if (3) (resp. (4)) holds

*T «
mnk|:i*T EQT CQT} =n+rank(E ) 3)
mnk{SE C_* 4 } =n, for all s complex 4

Impulse observability (resp. R-observability) reflects the
ability to reconstruct the non causal (resp. causal) part of
the system. If (3) is satisfied, there exists a matrix L such
that (E* A*-LC*) is impulse free. If (4) is satisfied there
exists a matrix L such that the finite pole of (E* A*-LC*)
are set to prescribed values.

B. Assumptions and problem statement

The matrix pencil (E* A%*) is not assumed to be square
and the regularity of the matrix pencil is not needed.
In the remaining the following assumptions are made

ranklE* M*J:rankE* (A1)
(E*, A% C*) is impulse observable (A2)
f)=0 (A3)

(A1) means that the disturbance d, affect the dynamic
relations of the system. (A3) means that the bounded
nonlinear failures are approximated by step functions. In
the case of PI observer this assumption is reasonable since
the approximate error can be minimised by increasing the
observer bandwidth (see discussion in [11]). Moreover the
compromise between bandwidth increasing and noise
sensibility pointed in [11] need not to be treated a
posteriori but is integrated in the design procedure since
the transfer from the Ul to the estimate errors is bounded
while a decay ration of the estimate error can be imposed.
The assumption (A3) is needed for theoretical proofs but
our approach remains effective in practical cases where
(A3) is not satisfied, as one can see in the example, in
section 5. Note that if /E*/ C*] is full column rank, (A1)
and (A2) are satisfied.

It is of interest to notice that since N,* is non null, the
approach is more generic than for instance in [11].
Augmenting the state vector with the failure vector to
apply [11] to the augmented system will give rise to more
restrictive conditions to verify the impulse observability
condition.

An analogous argument can be opposed to the common
idea that including UI in descriptor systems is redundant
since it suffices to augment the state with the UL

Performing a singular value decomposition of E* and
partitioning 4*, C* N;*and M* according to it, we obtain
the following matrices

s (L 0) oy (A Ap + [Ny L _( My,
PE Q_(O OJ'PA Q_(éy 4 N1 = N, M= M,
C*Q:(ZQJ 92)

On the one hand, the impulse observability of the system
augmented with the failure (resp. the UI) is verified if and
only if Py (resp, Py;) is full column rank with

(45 Ny (A My,

Pf_[gz N;}PUI_[QZ 0 ] (5)

On the other hand, the impulse observability of (1) is

verified if and only if /45" C,'] is full row rank, which is

less restrictive than the rank condition on Py (or Py;). The

example in section 5 provides an illustration of the above
discussion.

The aim of this contribution is to design the following PI

observer to robustly estimate the state x(?) and the failure

S0 of (1)

i=Fz+(L;+ L)y +Ju+ Hf

f=Ls(y-») (6)
xX=M;z+Myy+M;u

y=Cx+Du+Kf

The above observer is termed proportional integral,
because of the integral loop due to the second equation of
(6). This structure of observer is particularly efficient for
failures characterised by low frequency signals. The
different matrices in (6) will be determined to ensure the
convergence of the estimate errors.
[II.DESIGN OF THE PI OBSERVER

In this section the existence condition of the PI observer
is established and its design is performed in order to bound
the sensitivity of the estimate error to the UIL. Full and
reduced order PI observer are studied.

A. H, design of the full order PI observer
The design is based on the approach of [4] and [11].
Under assumption (A1) there exists a non singular matrix
P such that system (1) is equivalent to the following
Ex(t)= Ax(t)+ Bu(t)+ N, f(t)+Md(t) )
(1)=Cx(t)+Du(t)+N,f (1)

where F is full row rank and
*_ E *_ A * B * N]
PE _[0}, PA _[AJ, PB _[BJ, PNI_{NIJ

_| = Bu(t) « _[M] |4 _|Niz| | 0
e e e L] 2

Proposition 1. Using the P transformation, the three
following propositions are equivalent.

i (E* A* C%*) is impulse observable

ii (E,A,C)isimpulse observable

iii [E/C] is full column rank

Proof. i< ii is obvious since P is non singular and ii<> iii
since £ is full row rank. =



Under assumption (A3) and with proposition 1 there exist
two matrices T; and 75 such that

T1E+T2C:]n. (8)
Moreover, T; and T, are given by
1
T,=\ETE+cTc) ET
1
,=\ETE+c'c) cT
and T is full column rank. Let us set

H:T]N]—LzNz, M]:In, Mz:Tz,ij:—TzD (9)
K:Nz, FZTJA—ch, L] =FT2, JZT]B—(LI +L2)D

Let e and ef denote the state and fault estimation errors
defined by e=x-xand e;=f- f respectively. The
estimate error e’=/e’ efT ] is given by

e(t) \ e(t)
[éf(t)j =4 _E{e‘f(t)j +Bd(1) (10)

_(T;A TNy 5 _(TiM; _(L>
where 4_(0 o PB=l"p ) L= L)

QZ(C NZ) and Q:I)an

Obviously the PI observer exists if and only if there
exists a matrix L such that the estimate errors
asymptotically converges toward zero, in other words if
and only if the pair (4, C) is detectable. The following
theorem gives the existence condition of the PI observer.

Theorem 1. Under assumptions (A1-A3), the PI observer
(6) for descriptor system (1) converges asymptotically if
and only if the following condition holds

SE - A" - N,
rank 0 slye |=n+nf (11)
N

for all s complex with Re(s)>0

Proof. Since P is non singular, the following equality
holds

POO SE - A" —N; sE—4 - N;
rank g é ? 0 slyr ||=rank| 0 sl
¢ N ¢ N
since 77 is full column rank, for all s complex we have
SE—A - N, 0T, 0 “EO_A:INI
_ 0710 0 nf
rank 0* sl |=rank 001 -sI| sC sN,
C N, 000 I cC N,
[sI, —T;4 sTyN, —T;N,
=rank 0 slyr
c N,

[s1,-T;4 —T)N,
=rank| 0 slyp
C N,

which is equivalent to the detectability of the pair (4,C).
The last equality is obtained by separately considering the
cases s=0 and s # 0. m

The design parameter L is chosen to minimize the H.,-
norm of the transfer 7,,(s) from d to e. the following
theorem gives a computation of L to achieve the objective

Il Tea(s)l]0<y (12)
for a prescribed real positive y made as small as possible.

Theorem 2. The optimally robust PI observer (6) for
descriptor system (1) which satisfies (12), is determined by
minimizing y under the following LMI constraints in the

variables X eR™™", ¥ eR""™" and y (real positive number)
A'x+xa-vc-c'vy" xp D'
T
§ X _ylnd 0 |<0 (13)
D 0 7

X>0
and L is given by L=x'y

where “>0” (resp. “<0”) stands for symmetric positive
(resp. negative) definite

Proof. Apply the well-known bounded real lemma (BRL)
[16] to the system (10), there exists a matrix L such that
(12) is verified if and only if there exists a symmetric
positive definite X solution of

(4-Lc) x +x(4-LC) XB D

B'x —yI 0 |<0
D 0 —vyl
X>0
Let us set Y=XL, (13) follows. =

Remark 1. The minimisation of y may result in slow
dynamics of the estimation error (10). The LMI constraint
(14) can be added to (13) to impose a minimal decay ratio
A by shifting the spectrum of A-LC (i.e. the poles of (10)
lie in the left half complex plane defined by {z | Re(z)< -

M)
X(A+m)+(a+uf x—yc-c'yT <o (14)

(13) and (14) guaranty a robust and effective estimation of
the state and failures. Indeed it can be seen as an LMI
formulation of a basic pole placement. More precise pole
clustering could be perform in the LMI formulation [2] but
would result in conservatism in the robustness objective.

B. H,, design of the PI observer using weighting function

The previous design method secures an unique norm
bound of the sensitivity of the estimation to all the Uls and
on the whole frequency range. This may cause some
conservatism, as pointed in [15]. Introducing a stable
weighting function on the UI allows to reflect the expected
frequency content of d, for example a pass band filter will
give a relative importance to a prescribed frequency range
in which d is likely to be significant.



Let W;(s) be a stable weighting function with a state-
space realization (4;, B;, C;, D;) and let denote n, its order.
The objective is to design a PI observer such that

[reatsmics)), < (15)
for a prescribed real positive 7y, then it will ensure
ng(s)|<y|W1(s)|_],for all s (16)

Assuming the weighting function to be stable, the
existence condition of the PI-observer remains the same.
The following theorem establishes the computation of a PI
observer satisfying (15).

Theorem 3. Given a stable W,(s), the optimally robust PI
observer (6) for descriptor system (1) is the solution of the
minimization of y under the following LMI constraint in
the variables X; ((nxn) real matrix), X, ((n;xn;) real
matrix) Y ((nxm) real matrix) and y (real positive number)

X;A-vC+(x,4-vcf  x;BC,  x;BD; D'
cl'B'x, X,Ai+A[ X, X5B 0 |_,
D] B" X, B[ X, g 0
D 0 0 —yI
X]>0,X2>0 (17)

and L is given by L=X;ly

Proof. The augmented system is defined by

o)) [ et)
(xj(t)j‘i(xmr)}ﬁd”)

g(t)=C[;((tt))j

A BC L BD
where 4= [5 —A/j - (5)@ 0), B= (—Bllj and C= (D 0)

applying the BRL to (17), a sufficient condition for (15) is
that a symmetric positive definite block diagonal matrix
X=blockdiag(X,, X;) satisfies

x4+4"x xB C"
B'X  —yl 0 |<0and X>0
C 0 -yl

let Y=X;L and the proof is completed. =

As pointed in the previous section the minimization of y
may result in slow dynamics. The speed of convergence
can be forced by adding the LMI (18) to the set (17)

X (A4+n)+(a+u)f x,-yc-c'yT <o (18)

C. Reduced order PI observer

For the sake of simplicity of implementation, it may be
of interest to reduce the order of the PI observer. Here,
following [11], the PI observer of order r+nf is studied.
Since F is full row rank, computing a column compression,
there exists a non singular matrix P;=/E W] , where Wj
is an orthonormal basis of the null space of E, such that
EP;=[1, 0]. Then system (7) is equivalent to

{)'cl(t):Ale(t)+Azxz(t)+Bu(t)+N1f(t)+Md(t)
(1) =Cpxy(t)+Coxy(t)+ Du(t)

where AP]Z[AI Ag] and CP]Z[CI Cg] (19)
and it is easy to verify that (A3) implies that C, is full
column rank, then computing a row compression there
exists a non singular matrix P,=/W/ C;'], where W is
an orthonormal basis of C,’, such that P,C,=/0 I,,]" and
(19) becomes

x(t)= (AI —AZC;CI)xI(t)+(B—A2C+D)4(t)+...
...A2C2+y(t)+Md(t)+iN] - A4,C3N, )f(t)

x3(1)=C3y(1)=C3Cx;(1)=C3N, f(1)
Wey(t)=WeCixi(t)+WeDu(t)+WeN,f(t)

Let synthesise the PI observer to estimate x,(¢) and f{?)
and reconstruct x,(z) by
Xp(t)=Fiy(t)+Lyy(t)+Ju(t)+ Hf (t)+ LyPy(y(1)~ (1))
S()=LsP5(y(1)= (1)) )
(1) =C3y(1)=C3Cp3 (1)~ C3N, f(1)
Y(t)=Cpx;(1)+Coxy(t)+Du(t)+N,f(1)
(20)
where
F:AI—A2C3C1, J:B—Azch (21)
L] = 1‘12(73r and H ZNI —A2C;N]
Since P,'=[E" Wg]", the estimate errors are given by the

following dynamic system, where e;(z) denotes the
estimate error of x;(z)

e;(t) e;(t)
(e';(t)j:@_E{e;(t)j"'gd(t)
e(t) -D e(t)

er(t)) =\ es(t)

where A:[AI—Azc;Q NI_AZC;N]} B:(ﬁglj

(22)

0 0

C=(WcC; WeN,) Qz(E+ _WOECJCJ _WEf;sz
Similarly to the full order case, the existence condition
of such an observer is the detectability of the pair (4, C).
An optimally robust reduced order PI observer satisfying
(12) is obtained with theorem 2 and the weighting function
can be introduced by applying theorem 3.

IV.ROBUST FAULT DIAGNOSIS

In this section the PI observers are specifically designed
for fault diagnosis. In the framework of robust fault
detection, we are looking forward to generating alarm
signals indicating whether a given fault occurs or not.
Alarms are usually generated by a decision making based
on residual signals. The estimation of the faults and the
value of y can be interpreted as residual signals and
threshold respectively since

ict) 2y = fict)=0 (23)

where (*); denotes the i component of the vector (*), then
a very simple decision making (fixed threshold) generates
failure alarms without any false alarm due to the UL



If the objective is failure diagnosis rather than state
estimation, the robustness of the fault estimation can be
improved by minimizing the transfer from d to e, instead of
e (set D=[0 1,7 in (13) or (17)). A bank of nf dedicated PI
observer —an observer is designed for each fault— can be
synthesised for more accurate fault estimation. Each PI
observer is designed to minimize the transfer from d to ej; .

Algorithm of robust fault diagnosis For each failure f;
synthesise a PI observer (6) by minimizing y, under the
LMI constraint in the variables JX; ((nxn) real matrix), Y;
((nxm) real matrix) and vy; (real positive number)

A" X+ x;4-v,c-Cc'v" x;B D]
T
EXI' _Yilnd 0 |<0
D 0 —v;

=i

(24)

X;>0
where 4, B, C are defined in (10) and D; is the (n+i)th
column of D in (10),then L; is given by
L=X"Y;

and an alarm a,(2) associated to f; is defined by
nir [z

0. 1f |fict)<v;
Remark 2. Weighting function and/or reduced order PI
observer can obviously be used in the previous algorithm,

applying theorem 3 with Di and/or using 4, B, C, D
defined in (22).

V. NUMERICAL EXAMPLE

In this section an illustrative example is examined. Let
consider the LTI descriptor (1) subject to actuator and
sensor failures and disturbances, defined by

a;(1)

0.1 0 00 0010 0 1 0Y
e looroo| « [ 1000 . [I| « |01
0 0 00 -100 1 1ol € oo
0 0 00 0 111 0 00
0 0 0.1 0
N;:—IOM*: 0 0.1 D*:(OJN;:(O Ij 25)
0 0 0 0 0 00
0 0 0 0

First it is easy to check that (25) verifies (Al), (A2) and
(A3). According to the discussion of section 2.2 one can
see that neither (/E* 0], [A* N;*],/C* N,*]) nor ([E* 0],
[A* M*], [C* 0]) are impulse observable which proves the
efficiency of the above contribution.

The unknown inputs d are random signals uniformly
distributed in /-O.5 0.5]. fi(?) is an actuator failure and f5(?)
is a sensor offset defined by (26)

f](t):{gu(t{,e{?er 3<t<6

fg(t):{]’ for 7<t<9

0, else

(26)

Firstly the design of a PI observer is illustrated,
introducing a weighting function and secondly, application
to fault diagnosis is illustrated.

A. Design of a PI observer with weighting function

The PI observer is synthesised to satisfy (15) with
Wi(s)=2*(1+0.01s)/(1+0.0002s). Solving the LMI (17) the
PI observer (6) is designed. Figure 1 displays the minimal
and maximal singular values of 7,,(s) and the magnitude of
W(s). The design objective (16) is fulfilled and we have
[|T.a(s)||=0.23. The observer provides a correct estimation
of the states, as seen on figure 2, and of the failures, see
figure 3. On figure 3, one can see that the estimation of f5
is perturbed by the variation of f; (=3 and ¢=5) this can be
significantly improved by the use of dedicated observers
instead of a global one.

B. Fault diagnosis with dedicated PI observers

In this section fault diagnosis is the principal objective,
thus following the algorithm of section 4 we design two
dedicated PI observers to minimize the transfer of the
perturbation to each estimate error separately. Figure 4
displays the obtained estimation of f>(¢). The H,, norms of
T.r1a(s) and T,py(s) are y;=0.14 and y,=0.1 respectively.
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Fig 4. Comparison of fault estimations of > with a
dedicated PI observer (solid line) and with a general PI
observer (dashed line).

VI.CONCLUSION

The design of robust PI observer for descriptor systems has
been studied. The existence condition and an LMI-based
computation have been established. PI observers provide
the estimation of the state variables and of the failures.
They are optimally robust since they are synthesised in
order to minimise the sensitivity of the estimate errors to
the UI. The introduction of weighting function ensures the
performance of the estimation in a prescribed frequency
range. The H,norm bound of the sensitivity to
perturbations can be interpreted as a threshold for fault
diagnosis. An algorithm for robust fault diagnosis is
derived. For ease of implementation, reduced order PI
observers have also been studied.
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