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Introduction
Objectives

This presentation aims to develop robust and comprehensive 
solutions to the development of Health-aware control.

1 Predict the RUL of a component using model-based prognosis that accounts for
uncertainty.

2 Incorporate the prognostic information from 1 into a control framework.
3 Develop a data-based prognostic scheme with a robust uncertainty description.
4 Incorporate the developed prognostic methodology in 3 into a control framework.
5 Propose and develop a controller that preserves the health of an interconnected
network.
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3 stages of Prognostics:
State estimation:

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝜌𝑘, 𝑢𝑘, 𝑤𝑘),
𝑦𝑘 = ℎ(𝑥𝑘, 𝜌𝑘, 𝑢𝑘, 𝑣𝑘).

Predict 𝑥𝑘∗
and/or 𝜌𝑘∗

and accompany-
ing uncertainty.
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Evaluation of the RUL:
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3 types of Prognostics
Model, Data and Hybrid Prognostics
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Modelling

Degradation - independent
  Models

Degradation - dependent
  Models

Figure: Classification of models of degradation related to control systems.

*Zagorowska, M., Wu, O., Ottewill, J., Reble, M., and Thornhill, N.. (2020). A survey of models of degradation for control applications. Annual

Reviews in Control, 50, 150–173.
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y = g x t , u t , t( ( ) ( ) )
= f x t , u t , t␒x ( ( ) ( ) )= f x t , u t , h t , t␒xd ( d( ) d( ) d( ) )

y = g x t , u t , h t , td ( d( ) d( ) d( ) )

Figure: Classification of models of degradation related to control systems.
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Figure: Classification of models of degradation related to control systems.
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*Khoury, B., Bessa, I., Puig, V., Nejjari, F., and Palhares, R.M. (2022b). Data-driven prognostics based on evolving fuzzy degradation models for

power semiconductor devices. In Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022.
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Khoury, B., Nejjari, F., and Puig, V. (2022d). Reliability–aware zonotopic tube–based model predictive control of a drinking water network. Int. J.

Appl. Math. Comput. Sci., 32(2), 197–211.
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Introduction
Background-Health management control

Control designs against degradation are classified into:

Control System Aware of Degradation.
Control System Mitigating Degradation.

Control System Aware of Degradation.
Requires knowledge about degradation and how it influences the system’s behaviour.
Compensate for the degraded state.
Fault tolerant control, Optimization-based control.

Control System Mitigating Degradation.
Acts as part of a Maintenance mechanism.
Incorporates factor-based models in control setup.
Manipulates plants’ variables to prolong lifetime or achieve mission targets.
Predict degradation for support in the optimization layer.
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Set-based Uncertainty Quantification for Prognostics
Set based prognostics

Uncertainty is assumed unknown but
bounded.
Set-based estimation for bounded state
or parameter.
Initial bounded set is propagated under
model dynamics.
𝑇𝐸𝑂𝐿 ∶ ℝ𝑛𝑥 × ℝ𝑛𝜃 → 𝔹, the 𝐸𝑂𝐿(𝑘𝑝)

𝐸𝑂𝐿(𝑘𝑝) = inf{𝑘 ∈ ℕ ∶ 𝑘 ≥ 𝑘𝑝∧
𝑇𝐸𝑂𝐿(𝑥(𝑘), 𝜃(𝑘), 𝑢(𝑘)) = 1},

□𝑅𝑈𝐿(𝑘𝑝) = □𝐸𝑂𝐿(𝑘𝑝) − 𝑘𝑝.

System Estimation Prediction

Prognostics
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Figure: : Set-based Prognostics methodology.

Zonotopic Kalman filter is used for
estimation
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Set-based Uncertainty Quantification for Prognostics
Zonotopes

𝒵⟨𝑝, 𝐻⟩ = 𝑝 ⊕ 𝐻𝐵𝑟

⟨𝑝1, 𝐻1⟩⊕⟨𝑝2, 𝐻2⟩ = ⟨𝑝1 +𝑝2, [𝐻1𝐻2]⟩

𝒦 ⊙ ⟨𝑝, 𝐻⟩ = ⟨𝒦𝑝, 𝒦𝐻⟩
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Set-based Uncertainty Quantification for Prognostics
Reachability analysis

Reachability Analysis

Technique to evaluate resultant reachable sets under set bounded uncertainty
description.

Union of all feasible trajectories
computationally feasible and efficient.
Resultant set must be interpretable.

ℛ[𝑡0, 𝑇 ](𝒳0, 𝒲) = ⋃
𝑡∈[𝑡0, 𝑇 ]

ℛ𝑡(𝒳0, 𝒲)

s.t.𝑤(𝑡) ∈ 𝒲

x

x01
x02

X0

T

t0

t

𝜉
k,
X

,W

(
0

)

𝜉
t,
x

,w

(
0 2

)

f
t,
x

(
0
1
)

Xt1

X2

XN-1

XN1 2 3

Figure: : Illustration of reachability analysis
temporally [𝑡, 𝑇 ].

∗ M. Althoff, G. Frehse, and A. Girard. “Set Propagation Techniques for Reachability Analysis”. In: Annual
Review of Control, Robotics, and Autonomous Systems 4 (May 2021)
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Set-based Uncertainty Quantification for Prognostics
Application-Wind turbine dynamics
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Figure: : Wind turbine dynamics.
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Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation
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Figure: : Stages of stiffness degradation.
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Modelling wind turbine blade’s degradation
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= f 𝜙, D + f 𝜙, D
dD

dN
i( ) p( )

𝜙 = stress magnitude



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation
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𝜙 is the stress taken as the flap-wise blade root moment
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Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

■ Degradation independent  and a factor-based models

■ Blade root moment is approximated with plant variables

= T - N T␒wr
1

J
( a g g)

= -𝛽 + 𝛽␒𝛽
1

𝜏p
( r ef)

= -T + T␒Tg
1

𝜏g

( g r ef)

Plant model* Degradation model

= f 𝜙, D + f 𝜙, D
dD

dN
i( ) p( )

𝜙 t = a 𝛽 t + a w t( ) 1 ( ) 2 ( )

Odgaard, P. et al. ”Observer based detection of sensor faults in wind turbines.” In EWEC,4421–4430. Marseille, France
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Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

■ Degradation independent  and a factor-based models

■ Blade root moment is approximated with plant variables

= T - N T␒wr
1

J
( a g g)

= -𝛽 + 𝛽␒𝛽
1

𝜏p
( r ef)

= -T + T␒Tg
1

𝜏g

( g r ef)

- Discontinous and
nonlinear

Plant model* Degradation model

= f 𝜙, D + f 𝜙, D
dD

dN
i( ) p( )

𝜙 t = a 𝛽 t + a w t( ) 1 ( ) 2 ( )

Sanchez et al. ”Fault diagnosis of advanced wind turbine benchmark using interval-based ARRs and observers. ” IEEE Transactions on Industrial

Electronics, 62(6).
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𝐴(𝜃(𝑘)) selected based on observability check



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics
LPV Modelling

Polytopic LPV model:

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)

where 𝑥 = [𝑤𝑟 𝛽 𝑇𝑔 𝐷]𝑇 ∈ 𝑅𝑛, 𝑢 = [𝑇𝑔𝑟
𝛽𝑟]𝑇 ∈ 𝑅𝑚

𝐴(𝜃(𝑘)) = 𝐼 + 𝑇𝑠

⎡
⎢⎢⎢
⎣

𝑘1𝜃1(𝑘) 0 −𝑁𝑔
𝐽 0

0 − 1
𝜏𝑝

0 0
0 0 − 1

𝜏𝑔
0

0 𝜃2(𝑘) 0 𝜃3(𝑘)

⎤
⎥⎥⎥
⎦

𝐵 = 𝑇𝑠

⎡
⎢⎢⎢
⎣

0 0
0 1

𝜏𝑝
1
𝜏𝑔

0
0 0

⎤
⎥⎥⎥
⎦

.

𝐴(𝜃(𝑘)) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖(𝜃(𝑘))𝐴𝑖(𝜃(𝑘))

𝐴(𝜃(𝑘)) selected based on observability check



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics 
LPV Modelling

Polytopic LPV model:

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)

where 𝑥 = [𝑤𝑟 𝛽 𝑇𝑔 𝐷]𝑇 ∈ 𝑅𝑛, 𝑢 = [𝑇𝑔𝑟
𝛽𝑟]𝑇 ∈ 𝑅𝑚

𝐴(𝜃(𝑘)) = 𝐼 + 𝑇𝑠

⎡
⎢⎢⎢
⎣

𝑘1𝜃1(𝑘) 0 −𝑁𝑔
𝐽 0

0 − 1
𝜏𝑝

0 0
0 0 − 1

𝜏𝑔
0

0 𝜃2(𝑘) 0 𝜃3(𝑘)

⎤
⎥⎥⎥
⎦

𝐵 = 𝑇𝑠

⎡
⎢⎢⎢
⎣

0 0
0 1

𝜏𝑝
1
𝜏𝑔

0
0 0

⎤
⎥⎥⎥
⎦

.

𝐴(𝜃(𝑘)) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖(𝜃(𝑘))𝐴𝑖(𝜃(𝑘))

𝐴(𝜃(𝑘)) selected based on observability check



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics 
LPV Modelling

Polytopic LPV model:

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)

where 𝑥 = [𝑤𝑟 𝛽 𝑇𝑔 𝐷]𝑇 ∈ 𝑅𝑛, 𝑢 = [𝑇𝑔𝑟
𝛽𝑟]𝑇 ∈ 𝑅𝑚

𝐴(𝜃(𝑘)) = 𝐼 + 𝑇𝑠

⎡
⎢⎢⎢
⎣

𝑘1𝜃1(𝑘) 0 −𝑁𝑔
𝐽 0

0 − 1
𝜏𝑝

0 0
0 0 − 1

𝜏𝑔
0

0 𝜃2(𝑘) 0 𝜃3(𝑘)

⎤
⎥⎥⎥
⎦

𝐵 = 𝑇𝑠

⎡
⎢⎢⎢
⎣

0 0
0 1

𝜏𝑝
1
𝜏𝑔

0
0 0

⎤
⎥⎥⎥
⎦

.

𝐴(𝜃(𝑘)) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖(𝜃(𝑘))𝐴𝑖(𝜃(𝑘))

𝐴(𝜃(𝑘)) selected based on observability check



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics 
LPV Modelling

Polytopic LPV model:

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)

where 𝑥 = [𝑤𝑟 𝛽 𝑇𝑔 𝐷]𝑇 ∈ 𝑅𝑛, 𝑢 = [𝑇𝑔𝑟
𝛽𝑟]𝑇 ∈ 𝑅𝑚

𝐴(𝜃(𝑘)) = 𝐼 + 𝑇𝑠

⎡
⎢⎢⎢
⎣

𝑘1𝜃1(𝑘) 0 −𝑁𝑔
𝐽 0

0 − 1
𝜏𝑝

0 0
0 0 − 1

𝜏𝑔
0

0 𝜃2(𝑘) 0 𝜃3(𝑘)

⎤
⎥⎥⎥
⎦

𝐵 = 𝑇𝑠

⎡
⎢⎢⎢
⎣

0 0
0 1

𝜏𝑝
1
𝜏𝑔

0
0 0

⎤
⎥⎥⎥
⎦

.

𝐴(𝜃(𝑘)) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖(𝜃(𝑘))𝐴𝑖(𝜃(𝑘))

𝐴(𝜃(𝑘)) selected based on observability check



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

Worst case encapsulation of uncertainties

Additive uncertainties represented as symmetric interval sets.
𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑤𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐸𝑣𝑣(𝑘)
𝑣(𝑘) = [−Δ𝑣 Δ𝑣] Θ = [−ΔΘ ΔΘ] 𝑤(𝑘) = [−Δ𝑤Δ𝑤]

̂𝑥(𝑘 + 1) =
2𝑛𝜃

∑
𝑖=1

(𝜇𝑖(𝜃(𝑘))) (𝐴𝑖(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)) +

+ 𝕃 (𝜃(𝑘)) (𝑦(𝑘) − ̂𝑦(𝑘))

𝕃 (𝜃) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) 𝕃𝑖
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) = 1



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

Worst case encapsulation of uncertainties
Additive uncertainties represented as symmetric interval sets.

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑤𝑤(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐸𝑣𝑣(𝑘)

𝑣(𝑘) = [−Δ𝑣 Δ𝑣] Θ = [−ΔΘ ΔΘ] 𝑤(𝑘) = [−Δ𝑤Δ𝑤]

̂𝑥(𝑘 + 1) =
2𝑛𝜃

∑
𝑖=1

(𝜇𝑖(𝜃(𝑘))) (𝐴𝑖(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)) +

+ 𝕃 (𝜃(𝑘)) (𝑦(𝑘) − ̂𝑦(𝑘))

𝕃 (𝜃) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) 𝕃𝑖
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) = 1



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics 
Estimation via ZKF

Worst case encapsulation of uncertainties
Additive uncertainties represented as symmetric interval sets.

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑤𝑤(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐸𝑣𝑣(𝑘)

𝑣(𝑘) = [−Δ𝑣 Δ𝑣] Θ = [−ΔΘ ΔΘ] 𝑤(𝑘) = [−Δ𝑤Δ𝑤]

̂𝑥(𝑘 + 1) =
2𝑛𝜃

∑
𝑖=1

(𝜇𝑖(𝜃(𝑘))) (𝐴𝑖(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)) +

+ 𝕃 (𝜃(𝑘)) (𝑦(𝑘) − ̂𝑦(𝑘))

𝕃 (𝜃) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) 𝕃𝑖
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) = 1



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics 
Estimation via ZKF

Worst case encapsulation of uncertainties
Additive uncertainties represented as symmetric interval sets.

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑤𝑤(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐸𝑣𝑣(𝑘)

𝑣(𝑘) = [−Δ𝑣 Δ𝑣] Θ = [−ΔΘ ΔΘ] 𝑤(𝑘) = [−Δ𝑤Δ𝑤]

̂𝑥(𝑘 + 1) =
2𝑛𝜃

∑
𝑖=1

(𝜇𝑖(𝜃(𝑘))) (𝐴𝑖(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)) +

+ 𝕃 (𝜃(𝑘)) (𝑦(𝑘) − ̂𝑦(𝑘))

𝕃 (𝜃) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) 𝕃𝑖
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) = 1



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics 
Estimation via ZKF

Worst case encapsulation of uncertainties
Additive uncertainties represented as symmetric interval sets.

𝑥(𝑘 + 1) = 𝐴(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑤𝑤(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐸𝑣𝑣(𝑘)

𝑣(𝑘) = [−Δ𝑣 Δ𝑣] Θ = [−ΔΘ ΔΘ] 𝑤(𝑘) = [−Δ𝑤Δ𝑤]

̂𝑥(𝑘 + 1) =
2𝑛𝜃

∑
𝑖=1

(𝜇𝑖(𝜃(𝑘))) (𝐴𝑖(𝜃(𝑘))𝑥(𝑘) + 𝐵𝑢(𝑘)) +

+ 𝕃 (𝜃(𝑘)) (𝑦(𝑘) − ̂𝑦(𝑘))

𝕃 (𝜃) =
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) 𝕃𝑖
2𝑛𝜃

∑
𝑖=1

𝜇𝑖 (𝜃) = 1



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

Assumption 1: The system matrices A(𝜃(𝑘)) and C are observable for any
realization of 𝜃(𝑘).

Solve the LMI minimization problem:

[𝛾𝕀𝑛 𝕀𝑛
𝕀𝑛 Υ] > 0,

⎡
⎢⎢
⎣

−Υ Υ𝔸𝑖 − 𝕎𝑇 𝐶 Υℍ𝑇 𝕎𝑇

𝔸𝑇
𝑖 Υ − ℂ𝑇 𝕎 −Υ 0 0

ℍΥ 0 𝕀𝑛𝑥
0

𝕎 0 0 −ℝ−1

⎤
⎥⎥
⎦

< 0

⎡
⎢⎢
⎣

−Υ Υ𝔸𝑖 − 𝕎𝑇 𝐶 Υℍ𝑇 𝕎𝑇

𝔸𝑇
𝑖 Υ − ℂ𝑇 𝕎 −Υ 0 0

ℍΥ 0 𝕀𝑛𝑥
0

𝕎 0 0 −ℝ−1

⎤
⎥⎥
⎦

< 0
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Set-based Uncertainty Quantification for Prognostics 
Estimation via ZKF

Assumption 1: The system matrices A(𝜃(𝑘)) and C are observable for any
realization of 𝜃(𝑘).
Solve the LMI minimization problem:

[𝛾𝕀𝑛 𝕀𝑛
𝕀𝑛 Υ] > 0,

⎡
⎢⎢
⎣

−Υ Υ𝔸𝑖 − 𝕎𝑇 𝐶 Υℍ𝑇 𝕎𝑇

𝔸𝑇
𝑖 Υ − ℂ𝑇 𝕎 −Υ 0 0

ℍΥ 0 𝕀𝑛𝑥
0

𝕎 0 0 −ℝ−1

⎤
⎥⎥
⎦

< 0

⎡
⎢⎢
⎣

−Υ Υ𝔸𝑖 − 𝕎𝑇 𝐶 Υℍ𝑇 𝕎𝑇

𝔸𝑇
𝑖 Υ − ℂ𝑇 𝕎 −Υ 0 0

ℍΥ 0 𝕀𝑛𝑥
0

𝕎 0 0 −ℝ−1

⎤
⎥⎥
⎦

< 0
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF
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Figure: ZKF Estimation of states with bounds.

𝑐𝑥(𝑘 + 1) = 𝑐𝑝(𝑘) + 𝕃 (𝑦(𝑘) − 𝐶𝑐𝑝(𝑘)) 𝑅𝑥(𝑘 + 1) = [(𝕀 − 𝕃𝐶) 𝑅𝑝(𝑘), −𝕃𝐸𝑣]
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF
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Figure: Estimated Monotonous degradation.
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Set-based Uncertainty Quantification for Prognostics.
Predicting RUL sets via set propagation

Propagate estimated Zonotopes:
�̂�𝑘𝑝

⊂ ⟨𝑐𝑥𝑘𝑝
, 𝑅𝑥𝑘𝑝

⟩
(Inputs sourced through random sampling from an as-

sumed known distribution of inputs.)

Propagation Positive invariant sets:
[𝜁(𝑘𝑝), 𝜁(𝑘𝑝 + 1)....𝜁(𝑘𝐸𝑂𝐿)]

𝜁(𝑘𝐸𝑂𝐿) ⊆
𝑘𝐸𝑂𝐿

⋃
𝑘=𝑘𝑝

ℛ𝑘𝜏 (ℛ[0, 𝜏](�̂�𝑘𝑝
))

Δ𝕏(𝑘𝑝 + 𝑗) ⊆ ⨁𝑘𝐸𝑂𝐿
𝑗=1 𝐴(𝜃(𝑗))𝑗Δ𝑥(𝑘𝑝) ⊕ 𝐴(𝜃(𝑗))(𝑗−1)

𝐵Δ𝑢(𝑘𝑝 + 𝑗 − 1) ⊕ 𝐸𝑤Δ𝑤(𝑘𝑝 + 𝑗 − 1))
Reduction operator: ⟨𝑐𝑘, �̄�𝑘⟩ ⊇ ⟨𝑐𝑘, 𝐻𝑘⟩

t

Kc en
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Figure: Set Propagation.
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Set-based Uncertainty Quantification for Prognostics.
Results
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Figure: Propagation of degradation uncertainty set to EOL.
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Results
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Figure: PDFs of degradation at the EOL.
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Set-based Uncertainty Quantification For Prognostics.
Results
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Health Aware Control of a Wind Turbine

Motivation for its study:
Exposed to harsh conditions.
Damage before the expected economic
lifetime
Design a controller that manages com-
ponent health
Combine a degradation-independent
model with a factor-based model

The Designed controller must:
- Computationally inexpensive
- Account for discontinuity in degradation
(Rainflow Counting)

- Practically viable
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Health Aware Control of a Wind Turbine
Wind turbine control.
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control

Torque control
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Health Aware Control of a Wind Turbine
Wind turbine control.
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control

Torque control
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Health Aware Control of a Wind Turbine
Wind turbine control.

T maxg

T optg
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control

Torque control

T opt ~ wg r
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Torque control
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Health Aware Control of a Wind Turbine
Wind turbine control.

T maxg

T optg
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control

Torque control

T opt ~ wg r
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Rapid transition

  T opt ~ wg r
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Health Aware Control of a Wind Turbine
Wind turbine control.
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Health Aware Control of a Wind Turbine
Wind turbine control.
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Health Aware Control of a Wind Turbine
LPV Model 1.

Considering:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐵𝑤(𝜃(𝑘))𝑉𝑤(𝑘),

where 𝑉𝑤(𝑘) ∈ 𝑅𝑑 is the disturbance from the wind.

LPV nonlinear parameter embedding:

𝐵𝑤(𝜃(𝑘)) =
⎡
⎢
⎢
⎣

04×1
1

𝑁𝑚𝐵
𝜗𝜃1(𝑘)

1
𝐽𝑟

𝜗𝑅𝜃2(𝑘)
03×1

⎤
⎥
⎥
⎦

.

Varying parameters are 𝜃1(𝑘) = 𝐶𝑡(𝜆(𝑘), 𝛽(𝑘))𝑉𝑤(𝑘) and 𝜃2(𝑘) =𝐶𝑝(𝜆(𝑘), 𝛽(𝑘))𝑉𝑤(𝑘).
∗ F. A. Inthamoussou et al. “LPVWind Turbine Control With Anti-Windup Features Covering the Complete Wind
Speed Range”. In: IEEE Transactions on Energy Conversion 29.1 (2014), pp. 259–266
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Health Aware Control of a Wind Turbine 
LPV Model 1.

Considering:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐵𝑤(𝜃(𝑘))𝑉𝑤(𝑘),

where 𝑉𝑤(𝑘) ∈ 𝑅𝑑 is the disturbance from the wind.
LPV nonlinear parameter embedding:

𝐵𝑤(𝜃(𝑘)) =
⎡
⎢
⎢
⎣

04×1
1

𝑁𝑚𝐵
𝜗𝜃1(𝑘)

1
𝐽𝑟

𝜗𝑅𝜃2(𝑘)
03×1

⎤
⎥
⎥
⎦

.

Varying parameters are 𝜃1(𝑘) = 𝐶𝑡(𝜆(𝑘), 𝛽(𝑘))𝑉𝑤(𝑘) and 𝜃2(𝑘) =𝐶𝑝(𝜆(𝑘), 𝛽(𝑘))𝑉𝑤(𝑘).
∗ F. A. Inthamoussou et al. “LPVWind Turbine Control With Anti-Windup Features Covering the Complete Wind
Speed Range”. In: IEEE Transactions on Energy Conversion 29.1 (2014), pp. 259–266
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Health Aware Control of a Wind Turbine 
LPV Model 2.

Considering:

𝐴 = [
1

𝐽𝑟+𝐽𝑔
(𝑇𝑎(𝑥𝑢, 𝑉𝑤) − 𝑇𝑔) 0

0 − 1
𝜏𝛽

] ,

𝐵𝑢 = [ 0
1

𝜏𝛽

] .

The matrix 𝐴(𝜃(𝑘)) is therefore:

𝐴(𝜃(𝑘)) = [
1

𝐽𝑟+𝐽𝑔
(𝜗𝑅𝜃2(𝑘) − 𝑇𝑔

𝜃3(𝑘)) 0
0 − 1

𝜏𝛽

] .

𝜃3(𝑘) = 𝑤𝑟(𝑘); 𝑤𝑟(𝑘) ≠ 0, where 𝑥 = [𝑤𝑟, 𝛽].
∗ S. Georg. “Fault Diagnosis and Fault-Tolerant Control of ind Turbines”. PhD thesis. Universit�̈�𝑡𝑅𝑜𝑠𝑡𝑜𝑐𝑘,
2015
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Health Aware Control of a Wind Turbine 
LPV Modelling

Varying parameter, 𝜃𝑖 ∈ [𝜃𝑖, 𝜃𝑖],
candidate models are a linear combination of 𝑛𝑣 = 2𝑛0 vertices 𝜃𝑖 of a polytope.
For LPV 1:

𝐵𝑤(𝜃(𝑘)) =
𝑛𝑣

∑
𝑖=1

𝛼𝑖(𝑘)𝐵𝑤(𝜃𝑖),

and LPV 2:

𝐴(𝜃(𝑘)) =
𝑛𝑣

∑
𝑖=1

𝛼𝑖(𝑘)𝐴(𝜃𝑖),

where in both cases

𝑛𝑣

∑
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 = [0, 1].
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Health Aware Control of a Wind Turbine
Offline prognostics of a wind turbine blade

- Stiffness degradation
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Health Aware Control of a Wind Turbine
Offline prognostics of a wind turbine blade

- Stiffness degradation

- Flapwise root moment
from  OpenFAST
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Health Aware Control of a Wind Turbine
Offline prognostics of a wind turbine blade

- Stiffness degradation

- Flapwise root moment
from  OpenFAST

- Segment 1  and 3s t rd

regions
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Health Aware Control of a Wind Turbine
Offline prognostics of a wind turbine blade

- Stiffness degradation

- Flapwise root moment
from  OpenFAST

- Segment 1  and 3s t rd

regions

- Polynomial fit

φ ≈ b 𝜙 k + b 𝜙 k2 j a cc( )2
1j a cc( )

+b0 j
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Health Aware Control of a Wind Turbine
Offline prognostics of a wind turbine blade

- Stiffness degradation

- Flapwise root moment
from  OpenFAST

- Segment 1  and 3s t rd

regions

- Polynomial fit

φ ≈ b 𝜙 k + b 𝜙 k2 j a cc( )2
1j a cc( )

+b b = 0;0 j ;   2 j
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Health Aware Control of a Wind Turbine
Offline prognostics of a wind turbine blade

- Stiffness degradation

- Flapwise root moment
from  OpenFAST

- Segment 1  and 3s t rd

regions

- Polynomial fit

φ ≈ b 𝜙 k + b 𝜙 k2 j a cc( )2
1j a cc( )

+b0 j    

- Deg k = φ k  for ϕ ≤  ϕ ≤  ϕ( ) ( )j a c c min( ) a c c a c c max( )

𝜙 = 𝑎1𝛽(𝑡) + 𝑎2𝑉𝑤(𝑡) ⟶ Factor-based|| 𝑏𝑖, 𝑊𝑗(weights for each segment)
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Health Aware Control of a Wind Turbine
Rainflow counting in control

Estimate effective load cycles in
stress
Sequential and nonlinear (not
suitable for control)
Externalize (PORC)
Stress magnitude and duration
allocated in prediction horizon.
Assuming a pre-processed data
of stress (moving window).
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0

5000

10000

Figure: Input wind and respective Blade root moment 
∗ S. Löw, D. Obradovic, and C. Bottasso. “Model predictive control of wind turbine fatigue via online rainflow-
counting on stress history and prediction”. In: Journal of Physics Confernce.Series 118 (Sept. 2020)
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Health Aware Control of a Wind Turbine
Rainflow counting in control

Figure: Information from rainflow counting.
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Rainflow counting in control
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Health Aware Control of a Wind Turbine
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ℒ𝑢(𝑘, 𝑢(𝑘), 𝑥(𝑘), Ψ(𝑘)) = 𝑊𝑗𝐷𝑒𝑔(𝑘) − 𝑊1𝑃 (𝑘) + 𝑊2Δ𝑢(𝑘)

min
𝛽ℎ(1...𝑁𝑝),xu(1...𝑁𝑝),𝐷𝑒𝑔(1...𝑁𝑝)

𝑁𝑝−1

∑
𝑖=0

ℒ𝑢(𝑘, 𝑢(𝑘), 𝑥𝑢(𝑘), Ψ(𝑘))

subject to
𝑥𝑢(𝑖 + 1|𝑘) = 𝐴(𝜃(𝑘))𝑥𝑢(𝑖|𝑘) + 𝐵𝑢𝛽ℎ(𝑖|𝑘)
𝐷𝑒𝑔(𝑖 + 1|𝑘) = 𝐷𝑒𝑔(𝑖|𝑘) + (𝑅𝑓(𝑖).𝑓(𝜙(𝑘), Λ(𝑘))).𝑇𝑢,
𝑃 (𝑖 + 1|𝑘) = 𝑛𝑔𝑇𝑔𝑜𝑝𝑡

𝑤𝑔(𝑖|𝑘),
𝑃 (𝑖|𝑘) ≤ 𝑃𝑚𝑎𝑥,
𝛽𝑚𝑖𝑛 ≤ 𝛽ℎ(𝑖|𝑘) ≤ 𝛽𝑚𝑎𝑥,
[𝑤𝑟𝑚𝑖𝑛

, 𝛽𝑚𝑖𝑛]⊺ ≤ 𝑥𝑢(𝑖 + 1|𝑘) ≤ [𝑤𝑟𝑚𝑎𝑥
, 𝛽𝑚𝑎𝑥]⊺,

Δ𝛽ℎ(𝑖 + 1|𝑘) = 𝛽ℎ(𝑖 + 1|𝑘) − 𝛽ℎ(𝑖|𝑘).
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ℒ𝑙(𝑘, 𝑢𝑙(𝑘), 𝑥(𝑘)) = 𝜑1(𝑤𝑟(𝑘) − 𝑤∗
𝑟)2 + 𝜑2(𝑇𝑔(𝑘) − 𝑇 ∗

𝑔 )2..

... + 𝜑3(𝛽(𝑘) − 𝛽∗)2 + 𝜑4Δ𝑢𝑙

min
u𝑙(1...𝑁𝑝), ̂y(1...𝑁𝑝)

𝑁𝑝−1

∑
𝑖=0

ℒ𝑙(𝑘, 𝑢𝑙(𝑘), 𝑥(𝑘))

subject to
𝑥(𝑖 + 1|𝑘) = 𝐴𝑥(𝑖|𝑘) + 𝐵𝑢𝑙(𝑖|𝑘) + 𝐵𝑤(𝜃𝑝𝑖)𝑉𝑤(𝑖|𝑘),
𝑢𝑙(𝑖|𝑘) ⊆ 𝒰,
𝑥(𝑖 + 1|𝑘) ⊆ 𝕏,
Δ𝑢𝑙(𝑖 + 1|𝑘) = 𝑢𝑙(𝑖 + 1|𝑘) − 𝑢𝑙(𝑖|𝑘).
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Data-Based Prognostics

Motivation of study:
Most data-based are black-box models (lack interpretability)

Import of Interpretability:
Trust from industry
Identify flaws
Peripheral use of information

*1. Develop an interpretable model of degradation
EEFIG model is employed
Degradation of a power semiconductor (IGBT)

*2. Contribute to set-based uncertainty quantification in data-based prognostics
Interval uncertainty set description via interval predictor estimation

∗ B. Khoury et al. “Data-driven Prognostics based on Evolving Fuzzy Degradation Models for Power Semicon-
ductor Devices”. In: Proceedings of the 7th European Conference of the Prognostics and Health Management
Society 2022. PHM Society, 241 Woodland Drive, State College, PA 16803., June 2022
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Evolving Ellipsoidal Fuzzy Information Granules Modelling.
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Run to failure test on 4 IGBTs
Subjected to aggressive electrical cycles

DC square voltage [0𝑣 4𝑣]
Under control temp. [320∘𝑐 330∘𝑐]

Run until failure (latch-up or thermal
runway)
𝑉𝑐𝑒, 𝑉𝐺, 𝐼𝑐
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Figure: 𝑉𝑐𝑒 from run to failure test.
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Feature extraction

Pseudo-representative features are ex-
tracted

Antecedent→Maintains data granularity
(original information)
Consequent → Best for prognostics

Denoising by a moving average
Consequent:

Suitability = ⎡⎢
⎣

Monotonicity
Trendability
Prognosability

⎤⎥
⎦

⊤

⎡⎢
⎣

1
0.976

1
⎤⎥
⎦

cumulative SD of trig function of the
dataset used
Antecedent → Energy and RMS

Feature Formula

SD of asinh(X) 𝜎 (log [𝑥𝑖 + (𝑥2
𝑖 + 1) 1

2 ])
SD of atan(X) 𝜎 ( 𝑖

2 log ( 𝑖+𝑥𝑖
𝑖−𝑥𝑖

))
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Consequent features
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Figure: C-SD(atan).
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C-SD(atan) selected due to superior suitability index



Introduction

Set-based Uncertainty
Quantification For
Prognostics.

Health-Aware Control
Of a Wind Turbine

Data-Based
Prognostics

Robust
Reliability-Aware
Control of a DWN

Concluding Remarks

Data-Based Prognostics
Premise feature

0 20 40 60 80 100 120

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure: RMS of the data set.
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Figure: Energy feature from the data set.

RMS selected due to similarity and also based on tests
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Data-Based Prognostics 
Experiment and results

Grid search for optimal hyper-
parameters
𝑙 = (𝐿, 𝜏, 𝜂, 𝜑, 𝜁) is the vector of
hyper-parameters, ℒ = [2, 5] × [2, 5] ×
[0.96, 1] × [2, 6] × [2, 6]

ℓ(𝐷) = argmin
𝑙

EOL𝐷

∑
𝑘=1

𝑘ra𝑘(𝐷, 𝑙) s.t. 𝑙 ∈ ℒ

ra𝑘 = 1 −
∣RUL𝑘 − ̂RUL𝑘∣

RUL𝑘
,

prediction for the 2nd IGBTwith parame-
ters obtained for the test dataset with data
from the 4th IGBT.
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hyper-parameters, ℒ = [2, 5] × [2, 5] ×
[0.96, 1] × [2, 6] × [2, 6]

ℓ(𝐷) = argmin
𝑙

EOL𝐷

∑
𝑘=1

𝑘ra𝑘(𝐷, 𝑙) s.t. 𝑙 ∈ ℒ

ra𝑘 = 1 −
∣RUL𝑘 − ̂RUL𝑘∣

RUL𝑘
,

prediction for the 2nd IGBTwith parame-
ters obtained for the test dataset with data
from the 4th IGBT.
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RUL𝑘
,

RUL prediction for the 3rd IGBTwith param-
eters obtained for the test dataset with data
from the 2nd IGBT.
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Grid search for optimal hyper-
parameters
𝑙 = (𝐿, 𝜏, 𝜂, 𝜑, 𝜁) is the vector of
hyper-parameters, ℒ = [2, 5] × [2, 5] ×
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Desirable results from data sets 1,2 and 4,
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■ Uncertainty 𝛥y =   ;  = y + 𝛥y[y y⏨] y c

Health index

y = g 𝛩 y  y  .....  y + wkp
∑
nc

i=1

i
kp

T
kp

[ kp-1 kp-2 kp -l
]
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w ∈ W;  w ≤  𝜎

y  y  .....  y = 𝜙[ kp-1 kp-2 kp -l
]T
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Worst case bounding scenario

With initial uncertainty set;  𝛥y ,  solve for 𝜆0

 such that 𝛥y = 𝜆𝛥ykp 0
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Robust Reliability-Aware Control of a DWN

Motivation of this study:
Employ EMPC for DWN ensuring reli-
ability.
Important for critical infrastructure
Involves uncertainty in demand (human
behaviour)
RobustEMPC avoids intractability and
ensures stability
Uncertainty described as zonotopic sets

Reliability of an interconnected system
Reliability model → Factor-based model
WDN model→Degradation independent
model
Account for uncertainty (*practical)
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Robust Reliability-Aware Control of a DWN 
Application-Drinking water network

𝑥(𝑘 + 1) = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑑𝑑𝑘,
0 = 𝐸𝑢𝑢𝑘 + 𝐸𝑑𝑑𝑘.

𝑢𝑘 is in linear variety
Affine parametrization
𝑢𝑘 = ̃𝑃 ̃𝑀1�̂�𝑘 + ̃𝑃 ̃𝑀2𝑑𝑘. (Gauss-Jordan
elimination)
Reduce decision variables and aid in set
construction

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + �̂��̂�(𝑘) + �̂�𝑑𝑑(𝑘).

�̂� = 𝐵�̃��̃�1 ̂𝐵𝑑 = 𝐵�̃��̃�2 + 𝐵𝑑.
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Robust Reliability-Aware Control of a DWN
Robust MPC preliminaries

Ensure: For all Σ = 𝑓(𝑘, 𝑥𝑘, 𝑢𝑘, 𝑑𝑘)

Robust constraints satisfaction
Recursive feasibility
Robust stability
Assuming Δ𝑑𝑘 ⊆ 𝔻𝑘 is unknown but bounded
The sets Δ𝑥𝑘 ⊆ 𝛿𝑋 and Δ𝑢𝑘 ⊆ 𝛿𝑈 constructed in RPI sets (tube).
�̃� = {�̃�0, �̃�1, ..., �̃�𝑁}, ∀ �̃�𝑘 = 𝑥𝑘 ⊕ 𝛿𝕏𝑘 and an accompanying control tube

̃𝑈 = { ̃𝑈0, ̃𝑈1, ..., ̃𝑈𝑁}, ∀ ̃𝑈𝑘 = �̂�𝑘 ⊕ 𝛿𝕌𝑘
𝛿𝔻(𝑘) ≜ [0]𝑛𝑑 ⊕ 𝐻𝑑𝑘𝐵𝑛𝑑 .
Appropriately to ensure that 𝛿𝕏𝑘 ⊂ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝕏) and 𝛿𝕌𝑘 ⊂ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝕌)

∗ D. Mayne, M. Seron, and S. V. Raković. “Robust model predictive control of constrained linear system with
bounded disturbances”. In: Automatica 41 (Feb. 2005), pp. 219–224
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bounded disturbances”. In: Automatica 41 (Feb. 2005), pp. 219–224
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Robust MPC preliminaries

Ensure: For all Σ = 𝑓(𝑘, 𝑥𝑘, 𝑢𝑘, 𝑑𝑘)
Robust constraints satisfaction
Recursive feasibility
Robust stability
Assuming Δ𝑑𝑘 ⊆ 𝔻𝑘 is unknown but bounded
The sets Δ𝑥𝑘 ⊆ 𝛿𝑋 and Δ𝑢𝑘 ⊆ 𝛿𝑈 constructed in RPI sets (tube).
�̃� = {�̃�0, �̃�1, ..., �̃�𝑁}, ∀ �̃�𝑘 = 𝑥𝑘 ⊕ 𝛿𝕏𝑘 and an accompanying control tube
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Robust Reliability-Aware Control of a DWN 
Online computation of zonotopic reachable sets

A feedback LQR controller 𝐾 is designed to :
Minimize spread of trajectories
Asymptotic stability to a predefined terminal set

𝐽[ ̃�̂�0,., ̃�̂�∞) =
∞
∑
𝑖=0

( ̃𝑥𝑘 − 𝑥𝑘)𝑇 𝑄( ̃𝑥𝑘 − 𝑥𝑘) + ̃�̂�
𝑇
𝑘 𝑅 ̃�̂�𝑘

Decomposing: ̃𝑥𝑘 = 𝑥𝑘 + Δ𝑥𝑘
Uncertain dynamic part:
Δ𝑥𝑘+1 ≜ (𝐴 + �̂�𝐾)Δ𝑥𝑘 + �̂�𝑑Δ𝑑𝑘,
where Δ�̂� = 𝐾Δ𝑥.
Assuming that initial deviation, Δ𝑥(0) = 0
𝛿𝕏𝑘+𝑖 ⊆ ⨁𝑖

𝑗=1(𝐴 + �̂�𝐾)𝑖−𝑗 ̂𝐵𝑑𝛿𝔻(𝑖)
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Online computation of zonotopic reachable sets
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Minimize spread of trajectories
Asymptotic stability to a predefined terminal set
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𝑗=1(𝐴+�̂�𝐾)𝑖−𝑗 ̂𝐵𝑑𝛿𝔻(𝑖) → Ψ[1,𝑖](𝑖) = ⨁𝑖
𝑗=1(𝐴+�̂�𝐾)𝑖−𝑗 ̂𝐵𝑑𝐻𝑑(𝑖).
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Online computation of zonotopic reachable sets

A feedback LQR controller 𝐾 is designed to :
Minimize spread of trajectories
Asymptotic stability to a predefined terminal set

𝐽[ ̃�̂�0,., ̃�̂�∞) =
∞
∑
𝑖=0

( ̃𝑥𝑘 − 𝑥𝑘)𝑇 𝑄( ̃𝑥𝑘 − 𝑥𝑘) + ̃�̂�
𝑇
𝑘 𝑅 ̃�̂�𝑘

Decomposing: ̃𝑥𝑘 = 𝑥𝑘 + Δ𝑥𝑘
Uncertain dynamic part:
Δ𝑥𝑘+1 ≜ (𝐴 + �̂�𝐾)Δ𝑥𝑘 + �̂�𝑑Δ𝑑𝑘,
where Δ�̂� = 𝐾Δ𝑥.
Assuming that initial deviation, Δ𝑥(0) = 0
𝛿𝕏𝑘+𝑖 ⊆ ⨁𝑖

𝑗=1(𝐴+�̂�𝐾)𝑖−𝑗 ̂𝐵𝑑𝛿𝔻(𝑖) → Ψ[1,𝑖](𝑖) = ⨁𝑖
𝑗=1(𝐴+�̂�𝐾)𝑖−𝑗 ̂𝐵𝑑𝐻𝑑(𝑖).

𝛿𝕌𝑘+𝑖 ⊆ ⨁𝑖
𝑗=1[ ̃𝑃 ̃𝑀1𝐾Ψ[1,𝑖]𝐾+𝑖, ̃𝑃 ̃𝑀2𝐻𝑑𝑘+𝑖]𝐵2𝑛𝑑 .

Used for Robust constraints satisfaction
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Robust Reliability-Aware Control of a DWN 
Online computation of zonotopic reachable sets-Terminal set

Robust stability and recursive feasibility
Terminal mRPI set constructed:
An approximate of the exact Ω̃:
Ω∞ ≜ ⨁∞

𝑗=0(𝐴 + �̂�𝐾)𝑗 ̂𝐵𝑑𝛿𝔻,
Ω∞ ⊆ Ω̃ ; (𝐴 + �̂�𝐾) = ̂𝐴 and ̂𝐵𝑑𝛿𝔻 ⊆ 𝒲

̂𝐴 is strictly stable

Guaranteed convergence under infinite
Minkowski sum*
⨁∞

𝑗=0( ̂𝐴)𝑗𝒲 ⊆ (1 − 𝛼)−1 ⨁𝑘−1
𝑗=0 ( ̂𝐴)𝑗𝒲

Truncated, Geometric series
∗ S. V. Raković et al. “Invariant approximations of the
minimal robust positively Invariant set”. In: Automatic
Control, IEEE Transactions on 50 (Mar. 2005), pp. 406–
410

x1

x2

Figure: Transition through tubes to mRPI set
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Robust Reliability-Aware Control of a DWN 
Network reliability modelling

Reliability modeling is stochastic and complex

Markov chain → Combinatorial explosions
Stochastic petri-nets → Monte Carlo simulations (computationally demanding)
Bayesian network modelling is used

Bayesian network model depends on:
Structure of the graph
Conditional dependencies between the nodes related with the arcs

𝑅𝑖(𝑘) = 𝑅0,𝑖𝑒
(−𝑇𝑠

𝑘
∑

𝑠=0
𝜆𝑖(𝑢(𝑠)))

where; 𝜆𝑖(𝑡) = 𝜆0
𝑖 𝑒(𝛽𝑖𝑢𝑖(𝑡))∗

∗ F. Karimi Pour, V. Puig, and G. Cembrano. “Economic Health-Aware LPV-MPC Based on System Reliability
Assessment for Water Transport Network”. In: Energies 12 (Aug. 2019), p. 3015
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(−𝑇𝑠

𝑘
∑

𝑠=0
𝜆𝑖(𝑢(𝑠)))

where; 𝜆𝑖(𝑡) = 𝜆0
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Robust Reliability-Aware Control of a DWN
Broad Reliability Modelling

𝐵𝑁 = (𝑃 , 𝐴𝐵, 𝑁𝐵)
Direct dependencies of nodes with 𝑃 (𝑛𝑖)
Joint probability under Conditional probability assumptions
𝑃𝑟(𝑛𝑖, 𝑛2, ....𝑛𝑁) = 𝑃𝑟(𝑛1) ∏𝑁

𝑖=2 𝑃𝑟(𝑛𝑖|𝑃𝑎(𝑛𝑖))

n1

n2

P
n

=
n

(
2 )

1

Figure: Dependencies between nodes and parents
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Robust Reliability-Aware Control of a DWN 
Broad Reliability Modelling

𝐵𝑁 = (𝑃 , 𝐴𝐵, 𝑁𝐵)
Direct dependencies of nodes with 𝑃 (𝑛𝑖)
Joint probability under Conditional probability assumptions
𝑃𝑟(𝑛𝑖, 𝑛2, ....𝑛𝑁) = 𝑃𝑟(𝑛1) ∏𝑁

𝑖=2 𝑃𝑟(𝑛𝑖|𝑃𝑎(𝑛𝑖))
However static
Introduce temporal dependencies through dynamic BN

𝑃𝑟(𝑋𝑖(𝑘 + 1)) = (𝐴|𝑋𝑖(𝑘) = 𝐴) = 𝑅0,𝑖𝑒
(−𝑇𝑠

𝑘
∑

𝑠=0
𝜆𝑖(𝑢,𝑘))

DWN Reliability modelling:
Represented in a DAG actuators as node and pipes as arcs
A resultant Series-parallel architecture

𝑅𝑠(𝑘) = 1 − ∏𝑠
𝑗=1(1 − ∏𝑖∈𝑃𝑗

𝑅𝑖(𝑘)), and thus:
log(𝑅𝑠(𝑘 + 1)) = log(𝑅𝑠(𝑘)) + ∑𝑠

𝑖∈𝑃𝑗
𝜗𝑗(𝑘) ∑𝑖∈𝑃𝑗

log𝑅𝑖(𝑘)
↓
NONLINEAR
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Reliability-aware MPC 

L k, , x =  W J k + W J k + W J k - W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

safety in tanks

J = ‖𝜀 k ‖s ( ) 2

x k = x - 𝜀 k( ) s ( )
s. t
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Robust Reliability-Aware Control of a DWN
Reliability-aware MPC 

L k, , x =  W J k + W J k + W J k -W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

Cost

J =  𝛼 + 𝛼 k kE ( 1 2( ))u( )
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Reliability-aware MPC 

L k, , x =  W J k + W J k + W J k - W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

Slew rate

J = ‖ k ‖𝛥u u( ) 2
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L k, , x =  W J k + W J k + W J k - W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

Reliability

J =  xR r
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Robust Reliability-Aware Control of a DWN
Reliability-aware MPC 

L k, , x =  W J k + W J k + W J k - W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

min
, x k , xu ( ) r

L k, , x k , x k∑
Np-1

i=0

( u ( ) r( ))

subject to

x i + 1|k = Ax i|k + i|k + d i|k( ) ( ) Bu( ) Bd ( )

i|k ⊆ U i|k  ⊖⊡ 𝛿U i|k ,u( ) ( ) ( )

x i|k ⊆ X i|k  ⊖⊡ 𝛿X i|k ,( ) ( ) ( )

x N - 1 ⊆  ( p ) Ω

x i + 1|k = A 𝜃 k x i|k + B 𝜃 k i|kr( ) r( ( )) r( ) r( ( ))u( )

x i|k ⊆ 0, 1r( ) ( ]
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L k, , x =  W J k + W J k + W J k - W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

min
, x k , xu ( ) r

L k, , x k , x k∑
Np-1

i=0

( u ( ) r( ))

subject to

x i + 1|k = Ax i|k + i|k + d i|k( ) ( ) Bu( ) Bd ( )

i|k ⊆ U i|k  ⊖⊡ 𝛿U i|k ,u( ) ( ) ( )

x i|k ⊆ X i|k  ⊖⊡ 𝛿X i|k ,( ) ( ) ( )

x N - 1 ⊆  ( p ) Ω

x i + 1|k = A 𝜃 k x i|k + B 𝜃 k i|kr( ) r( ( )) r( ) r( ( ))u( )

x i|k ⊆ 0, 1r( ) ( ]

Robust constraint
satisfaction
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Robust stability
&

Recursive
feasibility
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Robust Reliability-Aware Control of a DWN
Reliability-aware MPC 

L k, , x =  W J k + W J k + W J k - W J k( u ) 1 s( ) 1 E( ) 1 𝛥u( ) 1 R( )

min
, x k , xu ( ) r

L k, , x k , x k∑
Np-1

i=0
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Robust Reliability-Aware Control of a DWN
Experimental Setup and Results
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Figure: 80-hour test scenarios for robust control
considering demand node c125PAL.
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Robust Reliability-Aware control of a DWN
Experimental Setup and Results
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Robust Reliability-Aware control of a DWN
Experimental Setup and Results
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Conclusion and Contributions

[1] Set based prognostics quantification for prognostics

Model-based prognostics for wind turbine blade is undertaken,
Direct degradation incorporation into wind turbine model
Applied in ZKF for set estimation.
Reachability analysis for uncertainty propagation.
∗∗ A novel means of quantifying uncertainty in prognostics (nascent).

[2] HW control of a wind turbine
With information from [1],
Segmentation of degradation path for stage models
Accounts for discontinuity in stress identification.
Allocated weights per segment.
∗∗ Controller operates in a practical fashion.
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Conclusion and Contributions

[3] Data-based prognostics

Data-based prognostics with interpretability properties are designed,

EEFIG is applied to the IGBT data set
Competitive rules are predicted
Interpretability capabilities.
Set-based quantification is duly applied.
∗∗ Novel tool for interpretation and set-based quantification.

[4] Robust Reliability-Aware control of DWN

Reliability Aware controller is designed,
Improves reliability at a cost
Designed to be robust
∗∗ Controller operates in a practical fashion.
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Future Works

[1] Set based prognostics quantification for prognostics

Test with statistical methods

[2] HW control of a wind turbine

Robustify the control

efficient way of including degradation function

[3] Data-based prognostics

Test uncertainty quantification on complex data-based methods
Compare the set based with statistical methods.

use other set-representation.
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Conclusion and Contributions
Publications
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