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November 22th, 2023

aUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France. monica.spinola-felix@grenoble-inp.fr



Table of Contents

i. Problem statement

ii. Proposed approach

iii. Control design

iv. Results

v. Conclusion



Problem statement Proposed approach Control design Results Conclusion

Motivation

disturbances

torsiontorque torque

Figure 1: Torsion caused by intensity of turbulence

• System suffers from stress during operation often neglected.

1 / 20



Problem statement Proposed approach Control design Results Conclusion

Motivation

disturbances

torsiontorque torque

Figure 1: Torsion caused by intensity of turbulence

• System suffers from stress during operation often neglected.

• Stress → degradation → downtime/maintenance.

1 / 20



Problem statement Proposed approach Control design Results Conclusion

Motivation

disturbances

torsiontorque torque

Figure 1: Torsion caused by intensity of turbulence

• System suffers from stress during operation often neglected.

• Stress → degradation → downtime/maintenance.

• This work presents a health(degradation)-aware control solution (focused on RUL control).

1 / 20



Problem statement Proposed approach Control design Results Conclusion

Motivation

disturbances
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Figure 1: Torsion caused by intensity of turbulence

• System suffers from stress during operation often neglected.

• Stress → degradation → downtime/maintenance.

• This work presents a health(degradation)-aware control solution (focused on RUL control).

• We focus on the degradation caused by torsion effects in the drive train.
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System behavior

Electrical energy is generated using the blades’ movements caused by wind flowing trough.
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wind speed
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• Thanks to a control system, rotation speed is controlled.
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System behavior

WTwind speed Egen, Ediss

Control
parameters

• Such control is determined by given parameters to maximize energy generation.

• Torsions are inevitable in this process and they dissipate a certain amount of energy.

• Let us assume that this energy loss is an image of the degradation observed during the

lifetime of the system with a degradation-rate given by :

Ėdiss = Pdiss (1)
2 / 20
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System behavior

• Previous study1 have shown that the degradation rate is affected by the control gain k(λ∗)

that depends on a parameter called λ∗.

→ λ∗ sets the operation point (usually) chosen to max energy output.
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that depends on a parameter called λ∗.

→ λ∗ sets the operation point (usually) chosen to max energy output.
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• If a relationship is established between the λ∗ parameter and the Pdiss values, the

following function is obtained:

Pdiss =
Bdtṽ

2

R2
λ2
∗ + η (2)

→ Pdiss belongs to a set of values that depends on the set point λ∗, intensity of the turbulence of

the wind ṽ and structural parameters (R and the stiffness coefficient Bdt).

1Romero, Elena E., John J. Martinez, and Christophe Bérenguer. ”Degradation of a wind-turbine drive-train under turbulent conditions: effect of the control law.” 2021 5th

International Conference on Control and Fault-Tolerant Systems (SysTol). IEEE, 2021.
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System behavior; illustration
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• We propose to control the degradation rate by reconfiguring the control parameter λ∗

with small variations.

k(λnew
∗ ) = k(λopt±∆λ(t)) (3)
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• A controller can calculate values of ∆λ to follow a desired degradation curve !
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Proposed RUL control problem

• We propose to solve this problem by using a RUL control approach as follows:

RUL control problem

Find ∆λ that min. ∥P̂diss − P ref
diss∥ such that it enforces Ediss(t = RULref ) = Emax

diss .

• P̂diss : current degradation-rate, assumed to be estimated.

• P ref
diss : desired degradation-rate calculated wrt desired remaining useful life RULref .

• Ediss(t = RULref ) : degradation level at desired RUL.

6 / 20



Problem statement Proposed approach Control design Results Conclusion

Proposed RUL control problem

• We propose to solve this problem by using a RUL control approach as follows:

RUL control problem

Find ∆λ that min. ∥P̂diss − P ref
diss∥ such that it enforces Ediss(t = RULref ) = Emax

diss .

• P̂diss : current degradation-rate, assumed to be estimated.

• P ref
diss : desired degradation-rate calculated wrt desired remaining useful life RULref .

• Ediss(t = RULref ) : degradation level at desired RUL.

• RULref must be adequately calculated to optimize the reliability/performance balance

problem subject to operating limits.
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RUL control solution: summary

• A state-space approach for RUL control has been already presented in (Felix et al. 2023)2.

• Degradation curve is modeled as a linear or an exponential trend:

Ḋ = β or Ḋ = βD (4)

• We assume that the values of β can be affected by a manipulable process variable w

through a monotonic relationship as follows:

β = γf(w) + η (5)

2Monica S. Felix, John J. Martinez and Christophe Bérenguer. ”A state-space approach for remaining useful life control.” IFAC WC 2023-22nd IFAC World Congress. 2023. 7 / 20
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• A state-space approach for RUL control has been already presented in (Felix et al. 2023)2.

• Degradation curve is modeled as a linear or an exponential trend:

Ḋ = β or Ḋ = βD (4)

• We assume that the values of β can be affected by a manipulable process variable w

through a monotonic relationship as follows:

β = γf(w) + η (5)

• Here, let’s consider D := Ediss, β := Pdiss and w := λ∗, so (5) becomes:

Pdiss =
Bdtṽ

2

R2
λ2
∗ + η (6)

2Monica S. Felix, John J. Martinez and Christophe Bérenguer. ”A state-space approach for remaining useful life control.” IFAC WC 2023-22nd IFAC World Congress. 2023. 7 / 20
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RUL control design: state-space approach
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1. Find an appropriate βref (RULref , D̂) by using a reference generator.
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D̂

1. Find an appropriate βref (RULref , D̂) by using a reference generator.

2. Perform a (necessary) estimation of process states (D̂, β̂) by using a state-observer.

3. Finally, find λd to min∥β̂ − βref∥ by using a state-feedback controller.
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Reference generator

Objective: Find βref given RULref .

If we consider a constant value β, degradation

D(t) reaches Dmax as follows:

D̂(t) + β ·RUL(t) = Dmax , (7)

where D̂(t) is the current (“initial”) state.
0

0

Dmax

t

D̂(t) current

predicted

lifetime

d
eg
ra
d
at
io
n

9 / 20



Problem statement Proposed approach Control design Results Conclusion

Reference generator

Objective: Find βref given RULref .

If we consider a constant value β, degradation

D(t) reaches Dmax as follows:

D̂(t) + β ·RUL(t) = Dmax , (7)

where D̂(t) is the current (“initial”) state.
0

0

Dmax

t RULref

D̂(t) current

predicted
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For a given RUL(t) = RULref , there is a value βref that guarantees the following equality:

βref (t) =
1

RULref

(
Dmax − D̂(t)

)
(8)

• β corresponds to a set of values of PD bounded by operating conditions.
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Observer design

Objective: Estimations of [D̂, β̂].

• Focus on degradation trend observations:

Ḋ = β (9)
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0
0

t− 2 t− 1 t

D̂(t)

time

d
eg
ra
d
at
io
n

10 / 20



Problem statement Proposed approach Control design Results Conclusion

Observer design

Objective: Estimations of [D̂, β̂].

• Focus on degradation trend observations:
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0
0

t− 2 t− 1 t

D̂(t)

time

d
eg
ra
d
at
io
n

• The observer’s gain K can be obtained by using KF techniques, but could also be any other

optimal observer.
10 / 20



Problem statement Proposed approach Control design Results Conclusion

Observer design

Objective: Estimations of [D̂, β̂].

• Focus on degradation trend observations:
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x̂+K(y − ŷ) (11)
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D̂(t)
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Here we consider observations of dissipated en-

ergy y = ED.

• The observer’s gain K can be obtained by using KF techniques, but could also be any other

optimal observer.
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Control design (1)

Control objective: min∥β̂ − βref∥

The tracking error can be minimized by con-

sidering an integral error action:

zk+1 = zk +
(
βk − βref

k

)
. (12)

If decisions have been taken in discrete-time,

with possible time-delay, we model βk follow-

ing a dynamic given by:

λk+1 = λd
k ,

βk = γ · f(λk) + ηk . (13)

Σβ(λ)

βref
z(integral error)
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k ,

βk = γ · f(λk) + ηk . (13)

Σβ(λ)

βref
z(integral error)

λd λ(delayed action)

Σ : Integral error model

for control design.
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Control design (2)

Here, we want to find λd
k around a nominal

value λopt, i.e.

λd
k = λopt +∆λd

k ,

Thus, the system to control (in a linearized

form), will be:

xk+1 = A(γ)xk +Buk + Edk ,

with x = [∆λ, z], u = [∆λd], d = [∆βref ]

function of the following parameter: γ =

2λopt Bdtṽ
2

R2 ∈ [γmin, γmax]

Σβ(λ)

βref
z

λd+

λopt

λ∆λd
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Remark : operating around λopt results

β = β(λopt)±∆β
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Control design (3)

Therefore, the control law will be implemented

by using the following state-feedback:

∆λd
k = −K1∆λk −K2zk (14)

We can find the gains K1 and K2 solution of

a:

• LQR control problem, as proposed in

(Felix et al. 2023b)a, where γ is a

constant

aFelix, Monica Spinola, John Martinez, and Christophe Bérenguer. ”Remaining

Useful Life Control of a Deteriorating Wind Turbine with Flexible-Shaft Drive-Train.”

ESREL 2023-33rd European Safety and Reliability Conference. Research Publishing

Services, 2023.
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Therefore, the control law will be implemented

by using the following state-feedback:

∆λd
k = −K1∆λk −K2zk (14)

We can find the gains K1 and K2 solution of

a:

• LQR control problem, as proposed in

(Felix et al. 2023b)a, where γ is a

constant

• Robust LQR problem, where γ is a

bounded uncertain parameter

where K stabilizes system for all γ

values A(γmin) ≤ A(γ) ≤ A(γmax)

aFelix, Monica Spinola, John Martinez, and Christophe Bérenguer. ”Remaining

Useful Life Control of a Deteriorating Wind Turbine with Flexible-Shaft Drive-Train.”

ESREL 2023-33rd European Safety and Reliability Conference. Research Publishing

Services, 2023.
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Results: Open loop vs. Closed loop
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Results: Dissipated power (zoom in)
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Results: Control response (zoom in)

1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4

Time (s) 10 4

6.4

6.6

6.8

7

7.2

7.4

7.6

S
e

t-
p

o
in

t 
la

m
b

d
a

(.
)

"Optimal" 

Adapting 

1.2 1.25 1.3 1.35 1.4

Time (s) 10
4

0.011

0.012

0.013

0.014

0.015

0.016

0.017

D
is

si
p

at
ed

 e
n

er
g

y
 (

W
h

)

Open-Loop

Closed-Loop

Figure 4: Caption

16 / 20



Problem statement Proposed approach Control design Results Conclusion

Results: 103 realisations
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Figure 5: Generated energy and lifetime for 103 simulated realizations with and without RUL control (EoLref

equal to 4000s).
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Results: Control response x wind speed variance

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

6

6.5

7

7.5

std(Wind speed) (m/s)

m
ea
n
(λ

∗ )
(.
)

18 / 20



Problem statement Proposed approach Control design Results Conclusion

Conclusions and future perspectives

Main conclusions:

• Proposed approach extend the lifetime and still guarantee a nominal energy production.

• Adaptive control law can govern RUL by focusing on correction of the degradation-rate.

• A degradation model for control design can be obtained from the modeling of interactions

of operating points of the system and dissipated energy.

Perspectives:

• Include other control systems into the RUL control problem (e.g, pitch control)

• Apply the proposed methodology to other applications.

• To be discussed (?)
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Tracking problem: Control problem (Extra)

Wind speed is composed of:

v = (mean) v̄ + (fluctuations) ṽ. (15)

At the equilibrium point ṽ = 0, the MPPT system guarantees:

(blades side) ωeq
r = (generator side) ωeq

g =
λ∗

Rr
v̄ (16)

Then, because of a variation of the wind speed, the blades side is disturbed:

ωr ≈ λ∗

Rr
v (17)

It results a relative speed:

ω̃ = ωr − ωeq
g . (18)

that causes torsion and dissipates energy:

PD = Bdtω̃
2 (19)

Therefore, we have the final relationship:

PD ≈ Bdtṽ
2

R2
r

λ∗2 (20)
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