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Introduction
Objectives

This presentation aims to develop robust and comprehensive
solutions to the development of Health-aware control.

Predict the RUL of a component using model-based prognosis that accounts for
uncertainty.

Incorporate the prognostic information from 1 into a control framework.
Develop a data-based prognostic scheme with a robust uncertainty description.
Incorporate the developed prognostic methodology in 3 into a control framework.

Propose and develop a controller that preserves the health of an interconnected
network.



Introduction
Background-Degradation
Introduction
H ) 5 Fault
p E Failure /
S m Degradation is a precursor to fail-
E ure(fault)
dy i
Time
C Figure: Degradation trend.
gﬁ *Zagorowska, M., Wu, O., Ottewill, J., Reble, M., and Thornhill, N.. (2020). A survey of models of degradation for control applications. Annual
AEE\IE\'&EEE‘;D Reviews in Control, 50, 150-173.



Introduction
Background-Degradation

Introduction
i !
| . Failure /
l & :
s i m Degradation is a precursor to fail-
i o ure(fault)
il : m prognostics to evaluate RUL
0 T
mtei i
%0k tr Time

@’KC Figure: Degradation trend.




Introduction
Background-Degradation

Introduction
i Ut
4 E leme. ..’—/’:(—
i m Degradation is a precursor to fail-
£ : ure(fault)
| m Prognostics to evaluate RUL
4 i m HAC control to manage degradation.
00t ty ;H“ Time

@7{\(: Figure: Degradation trend.




Introduction
Background-Degradation

Introduction
! T — L . .
o Ty m Degradation is a precursor to failure (i.e
: \ = fault).
' e .
i o m Prognostics to evaluate RUL.
g i m HAC control to manage degradation.
i : m FTC for accommodation or managing
4 ' fault.
00k t b tuw Time

@’ﬂc Figure: Degradation trend.




Introduction
Background-Degradation

Introduction

Failure

m Degradation is a precursor to failure (i.e
fault).

m Prognostics to evaluate RUL.
m HAC control to manage degradation.
m FTC for accommodation or managing
fault.
Design controller based on the concept of
degradation.

Degradation

do

@']{lc Figure: Degradation trend.




Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of the system.

Introduction

AAAAAAAA
uuuuuuu
SYSTEMS




Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of the system.
m ”Calculated” guess of a future event.

Introduction

AAAAAAAA
uuuuuuu
sssssss




Introduction

Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of the system.
m ”Calculated” guess of a future event.

Threshold

Degaradation state / \

Estimation stage tp te

Y = h(‘rkn Py U vk)’

RUL
¥distribution
k/\ _____ 3 stages of Prognostics:
True state ,: ' H . .
RN m State estimation:
O
tsite’;r:u%tian ,E xk_‘_l = f<xk7 pk’ uk’ wk)’

Predict ;;, and/or p;, and accompany-
ing uncertainty.

Time

Figure: Illustration of prognostics methodol-

0gy.



Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of system.
m ”Calculated” guess of a future event.

Introduction

RUL
Threshold ¥distributian
/ """"""""""" / \ """ 3 stages of Prognostics:
\‘ """"" Tresge 1 hSE m State estimation.
% 2O = Propagation stage.
g y
§ start of E
S degradation H
= :

Estimation stage tp tr Time
A;:,VN%ELD Figure: Illustration of prognostics methodol-

0gy.



Introduction

Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of system.

m ”Calculated” guess of a future event.

RUL

Threshold

start of
degradation

Degaradation state / \

Estimation stage tp b Ti
ime

Figure: Illustration of prognostics methodol-
ogy.

3 stages of Prognostics:
m State estimation.
m Propagation stage.
m Evaluation of the RUL:

RUL(z, .y, t,) =tp —t,.



Introduction

Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of system.

m ”Calculated” guess of a future event.

RUL

Threshold

start of
degradation

Degaradation state / \

Estimation stage tp te T
e

Figure: Illustration of prognostics methodol-
ogy.

3 stages of Prognostics:
m State estimation.
m Propagation stage.
m Evaluation of the RUL:

RUL(z, .y, t,) =tp —t,.

3 types of Prognostics



Introduction

Introduction
Background-Prognostics

m Prognostics is the estimation of the RUL of system.

m ”Calculated” guess of a future event.

RUL
Thresh% /
o
E
B
8
5
S start of
o degradation
aQ
—
'
Estimation stage tp te

Time

Figure: Illustration of prognostics methodol-
ogy.

3 stages of Prognostics:
m State estimation.
m Propagation stage.
m Evaluation of the RUL:

RUL(z, .y, t,) =tp —t,.

3 types of Prognostics
m Model, Data and Hybrid Prognostics



Introduction

Introduction
Background-Health management control

Approaches to degradation
Modelling

[ 1
Degradation — dependent Degradation — independent
Models Models

Figure: Classification of models of degradation related to control systems.
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*Khoury, B., Bessa, 1., Puig, V., Nejjari, F., and Palhares, R.M. (2022b). Data-driven prognostics based on evolving fuzzy degradation models for

power semiconductor devices. In Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022.
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*Khoury, B., Bessa, 1., Nejjari, F., and Puig, V. (2022a). A set-based uncertainty quantification of evolving fuzzy models for data-driven prognostics.

In 15th International Conference on Diagnostics of Processes and Systems.
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*Khoury, B., Puig, V., and Nejjari, F. (2020b). Model-based prognosis approach using a zonotopic Kalman filter with application to a wind turbine. In

Proceedings of the 5th European Conference of the Prognostics and Health Management Society (PHME 2020)), volume 5, 9.
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gﬂ Khoury, B., Nejjari, F., and Puig, V. (2022d). Reliability—aware zonotopic tube-based model predictive control of a drinking water network. Int. J.
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Set based prognostics
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m Uncertainty is assumed unknown but
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= Tpor + R x R = B, the EOL(kP) Figure: : Set-based Prognostics methodology.

EOL(k,) = inf{k € N : k > kA
s Tror(@(k),0(k), uk)) =1}, Zonotopic Kalman filter is used for
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Set-based Uncertainty Quantification for Prognostics

Zonotopes

2(p,H)=p® HB"

(p1, Hy) ®(pa, Hy) = (p1 +po, [H Hy))

X O (p,H) = (Xp, XH)



Set-based Uncertainty Quantification for Prognostics
Reachability analysis

Reachability Analysis
o meerinty | Technique to evaluate resultant reachable sets under set bounded uncertainty
Prognostics. description.
Ry (Lo, W)= | R,(Xp, W)
[tov T]
m Union of all feasible trajectories stw(t) e W

m computationally feasible and efficient.
m Resultant set must be interpretable.
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Set-based Uncertainty Quantification for Prognostics
Application-Wind turbine dynamics
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Application-Wind turbine dynamics
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Application-Wind turbine dynamics

Set-based Uncertainty ﬂ f(t) P /'[ﬁref(tl);lpj;[gtﬂf(t)]
Quantification For re 1LCi
P::gnustci‘:s.o ’ — system

()

V() - L@®
——» Aerodynamics | Drivetrain | . (f) Generator
- wlD) -
Fr() N\

A
| Tower | Ta = 0.5pARC, (A1), BENVE(H) Rao)

Fr = 0.5pACT(A(t), B(H) Vi (t) A = Vy(t)

uuuuuuu
sssssss




Set-based Uncertainty Quantification for Prognostics
Application-Wind turbine dynamics
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Set-based Uncertainty Quantification for Prognostics
Application-Wind turbine dynamics

Set-based Uncertainty _ﬁ”ﬁ.} Pitch Pg(f)
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Set-based Uncertainty Quantification for Prognostics

Modelling wind turbine blade’s degradation

Set-based Uncertainty

Quantification For
Prognostics. Ea E — stif fness at a specific point
Eo
Eo — Undamaged stif fness
(0,1
N — Total test cycles

Ny — Fatigue life in cycles

2nd Stage

4

| 1st Stage

L
(1,0) N
Ny

Figure: : Stages of stiffness degradation.
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Modelling wind turbine blade’s degradation

Set-based Uncertainty

Quantification For
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15, — Microscopic cracks (2 — 5%)
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2,4 — Edge laminations and longitudinal
cracks (gradual)

3,4 — Fast, abrupt steps

2nd Stage
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Modelling wind turbine blade’s degradation

Set-based Uncertainty

Quantification For
Prognostics.
15, — Microscopic cracks (2 — 5%)

Eo
2,4 — Edge laminations and longitudinal
cracks (gradual)

3,4 — Fast, abrupt steps

o
o
S D
Qi 2nd Stage — = f,(¢, D) + f,(, D
@ dN
—
(0,0) . (1,0) =N ¢ = stress magnitude
Ny




Set-based Uncertainty Quantification for Prognostics

Modelling wind turbine blade’s degradation

Set-based Uncertainty
Quantification For

Prognostics. D 3
\ i0,D) = |1z, Dyewy [‘szj]

Eo
c
©1 / k—\gf,,((p,D):CgDZ(qa,D)z 1+exp(§(2(¢,p))—c4
o N
& P 2
Di 2nd Stage 2
kf SN
0,0 1,0
Ny
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Set-based Uncertainty Quantification for Prognostics

Modelling wind turbine blade’s degradation

Set-based Uncertainty
Quantific'ation For D 3
Prognostics. E‘k fi(¢,D) = [C1£(¢, D)exp [_CZZ(¢/ D)] ]
Eo
/ 2 GCs
©,1 y_\%fp@’ D) = C3DX(¢, D) [1 +exp(5 (2o, D) - c4]
o N
£ P 8 5(¢,D)= —
D1 2nd Stage n (1-D)X.
©,0) 10" N
Ny

¢ is the stress taken as the flap-wise blade root moment
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Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

m Degradation independent and a factor-based models

Set-based Uncertainty ® Blade root moment is approximated with plant variables
Quantification For .
Prognostics. Plant model” Degradation model

. 1
, = (T, -N,T
w ]( 2 T¢) O(t) = a1p(t) + aw(t)

dD

T
;B = T_p(_ﬁ"'ﬁref)
5] :fi(¢'D)+fp(¢rD)

. 1
Tg = —(—Tg + T,gf)
Tg

Odgaard, P. et al. “Observer based detection of sensor faults in wind turbines.” In EWEC,4421-4430. Marseille, France
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Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

m Degradation independent and a factor-based models

m Blade root moment is approximated with plant variables

Plant model”

Degradation model

. 1
wy = 5T =N,Ty)
-1
;B = T_p(_ﬁ"'ﬁref)

. 1
Tg = —(—Tg + T,gf)
Tg

(1) = a1B(t) + ayw(t)

dD
5] :fi(¢'D)+fp(¢rD)

— Discontinous and
nonlinear
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m Blade root moment is approximated with plant variables

Plant model”

Degradation model

Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

. 1
wy = 5T =N,Ty)
-1
;B = T_p(_ﬁ"'ﬁref)

. 1
Tg = —(—Tg + T,gf)
Tg

D _

dN

(1) = a1B(t) + ayw(t)

— Discontinous and
nonlinear

~Useof LIDAR in

preprocessing stage

fi(¢'D)+fp(¢rD)




Set-based Uncertainty
Quantification For
Prognostics.

m Degradation independent and a factor-based models

m Blade root moment is approximated with plant variables

Plant model”

Degradation model

Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

. 1
wy = 5T =N,Ty)
-1
;B = T_p(_ﬁ"'ﬁref)

. 1
Tg = —(—Tg + T,gf)
Tg

D _

dN

(1) = a1B(t) + ayw(t)

fi(¢'D)+fp(¢rD)

— Discontinous and
nonlinear

~Useof LIDAR in
preprocessing stage
—Count cycles using
Rainflow counting
e
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Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

m Degradation independent and a factor-based models

m Blade root moment is approximated with plant variables

Plant model* Degradation model

. 1(T N.T,) — Discontinous and
L 0 = a1 88 + arw(t nonlinear

- P = 21f () + 2 ~Use of LIDAR in
B= T—(—ﬁ + Brey) iD preprocessing stage
. pl N fi(@, D)+ f,(¢, D) —Count cycles using
T, = T_(_Tg +Tref) T Rainflow counting

8 o(t) = Zx ne e .
te —Delay in contact
te

D = 6(t)(fi(, D) + f»(¢, D)




Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

m Degradation independent and a factor-based models

Set-based Uncertainty m Blade root moment is approximated with plant variables
Quantification For . .
Prognostics. Plant model Degradation model
.1 (T,-N.T.) — Discontinous and
L (t) = a1 B(t) + aqu(t nonlinear
- ) = afple) + azll) ~Use of LIDAR in
B= T—(—ﬁ + Brey) iD preprocessing stage
) pl N fi(@,D) + f,(¢, D) —Count cycles using
Ty = —(~Tg + Tref) T Rainflow counting
. s 0(t) = — xn, e
D = 0(t)(fi(¢, D)... te —Delay in contact
D) <« | |, L
L= 0(1)(fi(¢, D) + f1(¢, D)




Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

m Degradation independent and a factor-based models

Set-based Uncertainty m Blade root moment is approximated with plant variables
Quantification For . .
Prognostics. Plant model Degradation model
.1 (T,-N.T.) — Discontinous and
L (t) = a1 B(t) + aqu(t nonlinear
- ) = afple) + azll) ~Use of LIDAR in
B= T—(—ﬁ + Brey) iD preprocessing stage
) pl N fi(@,D) + f,(¢, D) —Count cycles using
Ty = —(~Tg + Tref) T Rainflow counting
. s 0(t) = — xn, e
D = 0(t)(fi(¢, D)... te —Delay in contact
+fp(¢, D)) ) te
= L= 0(t)(fi(¢, D) + f,(¢, D) — Nonlinear dynamics




Set-based Uncertainty Quantification for Prognostics
Modelling wind turbine blade’s degradation

m Degradation independent and a factor-based models

Set-based Uncertainty m Blade root moment is approximated with plant variables
Quantification For . .
Prognostics. Plant model Degradation model
.1 (T,-N.T.) — Discontinous and
L (t) = a1 B(t) + aqu(t nonlinear
- ) = afple) + azll) ~Use of LIDAR in
B= T—(—ﬁ + Brey) iD preprocessing stage
) pl N fi(@,D) + f,(¢, D) —Count cycles using
Ty = —(~Tg + Tref) T Rainflow counting
. s 0(t) = — xn, e
D = 0(t)(fi(¢, D)... te —Delay in contact
+fp(¢, D)) ) te
= L= 0(t)(fi(¢, D) + f,(¢, D) — Nonlinear dynamics

LPV model




Set-based Uncertainty Quantification for Prognostics
LPV Modelling

Polytopic LPV model:

Set-based Uncertainty x(k —|— 1) = A(O(k‘)),ﬁlj(k}) —|— Bu(k‘)

Quantification For
Prognostics.
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Set-based Uncertainty Quantification for Prognostics
LPV Modelling

Polytopic LPV model:
x(k+1) = A(0(k))x(k) + Bu(k)

where © = [w, 8T, D|" € R*,u = [T, B,]" € R™
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Set-based Uncertainty Quantification for Prognostics

LPV Modelling

Polytopic LPV model:

2(k+1) = A((k))z(k) + Bu(k)

where © = [w, 8T, D|" € R*,u = [T, B,]" € R™

AO(k) =1 +T,

k10, (k) 0
_1
OP
0 05 (k)

©

Il

M
odl- o o

o oo
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Set-based Uncertainty Quantification for Prognostics
LPV Modelling

Polytopic LPV model:
z(k+1) = A(0(k))z(k) + Bu(k)

where © = [w, 8T, D|" € R*,u = [T, B,]" € R™

ko (k) 0 —Z o
_1 0 0
AO(R) =T+T, R B=T,
0o - 0
0 6Oy(k) 0 64(k)

270

A(0(k)) = Zuxe(k)miw(k))

odl- o o

o oo
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Set-based Uncertainty Quantification for Prognostics
LPV Modelling

Polytopic LPV model:
z(k+1) = A(0(k))z(k) + Bu(k)

where © = [w, 8T, D|" € R*,u = [T, B,]" € R™

_1 0 0
AO(k) =TI +T, R B=T
0o -+ 0
0 05 (k) 0 04(k)

270

A(0(k)) = Zuxe(k))Aiw(k))

A(6(k)) selected based on observability check

odl- o o

o oo
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

m Worst case encapsulation of uncertainties



Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

m Worst case encapsulation of uncertainties
Setbased Uncertainty | gy A dditive uncertainties represented as symmetric interval sets.

Quantification For
Prognostics.
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

m Worst case encapsulation of uncertainties
m Additive uncertainties represented as symmetric interval sets.
x(k+1) = A(0(k))z(k) + Bu(k) + E,w(k)
y(k) = Cx(k) + E,v(k)
v(k) = [-Av Av] © =[-AO AQ] w(k) = [-AwAw)
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

m Worst case encapsulation of uncertainties
m Additive uncertainties represented as symmetric interval sets.
x(k+1) = A(0(k))z(k) + Bu(k) + E,w(k)
y(k) = Cx(k) + E,v(k)
v(k) = [-Av Av] © =[-AO AQ] w(k) = [-AwAw)

270

B(k+1) =) (i(6(k))) (A;(8(k))a(k) + Bu(k)) +

i=1

+ LK) (y(k) — y(k))
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

m Worst case encapsulation of uncertainties
m Additive uncertainties represented as symmetric interval sets.
x(k+1) = A(0(k))z(k) + Bu(k) + E,w(k)
y(k) = Cx(k) + E,v(k)
v(k) = [-Av Av] © =[-AO AQ] w(k) = [-AwAw)

Tk +1) = Z (1s(0(K))) (A;(0(k))z(K) + Bu(k)) +
+ LK) (y(k) — y(k))
AL 2m0

”—(H)ZZM(H)[H Zﬂi(e)zl
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

Assumption 1: The system matrices A(f(k)) and C are observable for any
realization of 0(k).
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Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

Assumption 1: The system matrices A(f(k)) and C are observable for any
realization of 0(k).

m Solve the LMI minimization problem:

T YA, —WITC THT WT
M, 1, ATYT — CTW -7 0 0
[un T] >0, BT 0 , o | <Y
W 0 0 —-R!
' TA, —WI'C YHT WT
ATYT —CTW - 0 0 .
HY 0 L, 0 |°
W 0 0 —R!



Set-based Uncertainty Quantification for Prognostics

Estimation via ZKF

3
o WO AV A ANT AN NN AU r T Yoy e
Set-based Uncertainty F S omaanstvad purrreaaf 74884 i uPecnawar
Quantification For -
0 . . . . . . . . —_——
0 100 200 300 400 500 600 700 800 == == bounds

Prognostics.
Time(s)
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Figure: ZKF Estimation of states with bounds.

ce(k+1)=cp(k)+L(y(k)— Cecy(k)) R, (k+1)=[1-LC) R, (k),-LE,]




Set-based Uncertainty Quantification for Prognostics
Estimation via ZKF

0.20000001

Set-based Uncertainty

Quantification For
Prognostics. 0.200000008 [

0.200000006 [

0.200000004

Degradation

0.200000002

0.2

0.199999998 . . .
0 0.5 1 1.5 2
Time(sec) «10%

@7{\_ Figure: Estimated Monotonous degradation.
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Set-based Uncertainty Quantification for Prognostics.
Predicting RUL sets via set propagation

Propagate estimated Zonotopes:
LL’kp C ey » Ry )
P P
(Inputs sourced through random sampling from an as-

sumed known distribution of inputs.)

Propagation Positive invariant sets:
[C(kp); C(kp +1)...C(kpor)]

Kyin 0 EOL
Keew N EOL
Kiner N EOL

Degradation

kEOL

C(kpoL) C U jekr( [0, T](~5r )) ’ '
Figure: Set Propagation.
AX(k, +j) C D,Z0" A(0(5)) Ax(k,) & A(6(5))Y
BAu(k, +]—1)€BE Aw(k, +j— 1))

Reduction operator: (¢, Hy,) 2 (ci, Hy,)
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Set-based Uncertainty Quantification for Prognostics.

Results

Degradation(-)

0 .
0 2 4 6 8 10 12
Time(s) «10%
—~ 08F
3
S075F
3
B 4 i e
5
S 065
[
0 1000 2000 3000 4000 5000 6000 7000 8000

Time(s)

Figure: Propagation of degradation uncertainty set to EOL.



Set-based Uncertainty Quantification For Prognostics.

Results

120 !
- - - - prediction from D:0.6‘ .:
Set-based Uncertainty - - - - prediction from D=0.2 b
Quantification For 100 - 1:
Prognostics. "
1
l|
1
80 F i
I 1
1
&, "
Q 60 Nl
X /"
"
1
40 n
1
h
1
20 - 0
1
i
--------- i
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@7{\(: Figure: PDFs of degradation at the EOL.
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Set-based Uncertainty Quantification For Prognostics.
Results

x10*

Set-based Uncertainty 12l
Quantification For
Prognostics.

RUL prediction

‘4@7 RUL prediction with interval error ‘
I I I I I

2 3 4 5 6 7 8 9 10 11 12
Time(s) x10*

@7{\(: Figure: Remaining useful life Predictions.
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Outline

Health-Aware Control Of a Wind Turbine



Health Aware Control of a Wind Turbine

Motivation for its study:
Exposed to harsh conditions.

Damage before the expected economic

Health-Aware Control

Of a Wind Turbine ]-lfetlme

m Design a controller that manages com-
ponent health

m Combine a degradation-independent
model with a factor-based model

m The Designed controller must:

- Computationally inexpensive
- Account for discontinuity in degradation

@’K‘C (Rainflow Counting)
- Practically viable

ADVANCED
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Health Aware Control of a Wind Turbine

Wind turbine control.

T, A ) Teopt ~w,?
Temaxf ==~ ===7=======7=%
L e -
Pitch
control
P P :.: ..... wﬁ‘rute‘i : G

i wind
1.5m/s12m/s 25m/is
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Health Aware Control of a Wind Turbine

Wind turbine control.

P< cut—in — no

,
To4 / Tyopt~w,?
Temaxf ==~ ===7=======7=%
Tgapt FT T T TEEEEE s s sEEssEEsEs==
Pitch
control
P P :.: ..... wﬁ‘rute‘i : G

1.5m/s12m/s

operation
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Health Aware Control of a Wind Turbine

Wind turbine

8

Tomax

Toopt

control.

p=0°

Torque control

Pitch
control

1.5m/s12m/s

w,rated : Wy
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Health Aware Control of a Wind Turbine

Wind turbine control.

,
To4 / Tyopt~w,?
Temaxf ==~ ===7=======7=% [
¢ Rapid transition
i T.opt ~w,?
Tgapt TR S e gop wy
Pitch
control
P P :.: ..... wﬁ‘rute‘i : G

1.5m/s12m/s
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Health Aware Control of a Wind Turbine

Wind turbine control.

To4 /| Teopt ~w,?
Temaxf == === "=====77=="
> 25m/s — no
R e e e ! operation
Toopt E
Pitch
control
eenilonnndls wyrated _ : Wr

i wind
1.5m/s12m/s 25m/59
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Health Aware Control of a Wind Turbine

Wind turbine control.
,
T 4 )/ Topt ~w,*
Temax[ === ============= T - :
i )/ i 2LPV Models
i 1
Teopt fm=============== e bl
i ’
[ LPV 1
Pitch
control
LPV 2
Torque conigrol 3
Pt :- :-: (Y : S i wfrute‘j E wy
w,in l Wn )
t wind
1.5m/s12m/s 25m/5s




Health Aware Control of a Wind Turbine
LPV Model 1.

Considering:
x(k+1) = Az(k) + Bu(k) + B, (0(k))V,,(k),

Health-Aware Control d . .
i Aware Lont where V,, (k) € R” is the disturbance from the wind.
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Health-Aware Control
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Health Aware Control of a Wind Turbine
LPV Model 1.

Considering:
x(k+1) = Az(k) + Bu(k) + B, (0(k))V,,(k),

where V, (k) € R is the disturbance from the wind.
LPV nonlinear parameter embedding:

1 04L><1
0, (k)
RO, (k)

03><1

B, (0(k)) =

Varying parameters are 0, (k) = C,(A(k), B(k))V,, (k) and 04 (k) =C,,(A(k), B(k))V,, (k).
* F. A. Inthamoussou et al. “LPV Wind Turbine Control With Anti-Windup Features Covering the Complete Wind
Speed Range”.



Health Aware Control of a Wind Turbine
LPV Model 2.

Considering:

Health-Aware Control
Of a Wind Turbine

The matrix A(6(k)) is therefore:

A(B(R) = [ﬁ"gmaé(k) i) _0_] -

05 (k) = w,(k); w,.(k) # 0, where z = [w,., f].
C * S. Georg. “Fault Diagnosis and Fault-Tolerant Control of ind Turbines”. PhD) thesis. Universitat lostock,
2015
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Health Aware Control of a Wind Turbine
LPV Modelling

m Varying parameter, 6, € [E 0-],

m candidate models are a linear combination of 7 = 2" vertices 6, of a polytope.
For LPV 1:
n’U
OF a Wind Turbine B, (0(k) =" o,;(k) B, (6;),
i=1
and LPV 2:

A(b(R)) = Zfai(k)Aw»,

where in both cases

>
o
<
>
z
o
@
Il
—_

uuuuuuu
sssssss



Health-Aware Control
Of a Wind Turbine

Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

— Stif fness degradation SN S S IS )
'g 0.6
%
g
2
< 04
S
% 0.2
0
0 5 10 15
Accumulated Stress (KNm) «108




Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

— Stif fness degradation 08 bommmeeb :
Health-Aware Control — Flapwise root moment
Of a Wind Turbine g
from OpenFAST 2 06
=1
:
<04
&
0

0 \ 5 10 15
Accumulated Stress (KNm) «108
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Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

— Stif fness degradation

— Flapwise root moment

— Segment 15, and 3,4
regions

from OpenFAST — v

1 15
Accumulated stress (KNm)

2

25
108



Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

— Stif fness degradation : ] e B T B o
07 4
Health-Aware Control — Flapwise root moment EP
Of a Wind Turbine 3
from OpenFAST Zos
O, Z 04
— Segment 15, and 3,4 . i
regions & : 2 //
=0 H 01
Ry H ]
v:2nd Stage: ) ——T
g . "G 0 2 4 1] 8 10 12 14
2 N Accumulated Stress (KNm) 0°
(0,0) (1LON
Ny




Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

— Stif fness degradation 0" R——
— Flapwise root moment !
Health-Aware Control 6 2 om
Of a Wind Turbine f rom OpenFAST k é ot
— Segment 15, and 3,4 / _
regions
— Polynomial fit N / " g e e w0
P = bZI‘Pucc(k) +bl,¢acc(k) o
+b0 j 4
0 05 1 15 2 25
Accumulated stress (KNm) s
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Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

045
~ Stif fress degradation w P — " el
— Flapwise root moment I I I A M o /
from OpenFAST g o / ]
Z 06
K] 0425
— Segment 15, and 3,4 i u//V
regions " “
=03
- Polynomial fit o o o
2
¢ = bZI‘Pucc(k) + bl,¢acc(k) &
+b0j; b2] =0; S g /a 8 0 1
Accumulated Stress (KNm) 10




Health Aware Control of a Wind Turbine

Offline prognostics of a wind turbine blade

— StifanSS degmdation Sed egion seguentation - =

— Flapwise root moment
from OpenFAST s * v

Health-Aware Control
Of a Wind Turbine

— Segment 15, and 3,4
regions

Stiflness degradat
5 B &

S 0s /
— Polynomial fit J vmmmwmmwww e
=~ 2 CAEPUPPETELLL L
¢ % by Guec)? + by duecd) | ///~ .....
+b0 j iy 02w
"Accumulated Stress (KNm) 108

- Deg®) = { 00 for duccinin < uiT'E Buccinmy

BT ¢ = a;B(t) + a,V,,(t) — Factor-based|| b;, W ;(weights for each segment)
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Health Aware Control of a Wind Turbine

Rainflow counting in control

Estimate effective load cycles in
stress

Sequential and nonlinear (not
suitable for control) 9 S N Y U BN N B

Externalize (PORC) Time(sec)

Stress magnitude and duration
allocated in prediction horizon.

Windspeed (m/s)

)
g
g

5000 1

Assuming a pre-processed data
of stress (moving window).

Root Moment (Nm

0 . . . . . . . . .
4 .. 5 6 7 8 9 10
Time(sec)

Figure: Input wind and respective Blade root moment

*S. Low, D. Obradovic, and C. Bottasso. “Model predictive control of wind turbine fatigue via online rainflow-
counting on stress history and prediction”.
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Health Aware Control of a Wind Turbine

Rainflow counting in control

Amplitude

Number of Cycles

Load Reversals

Time (secs)
Rainflow Matrix Histogram

6000 6000
4000 o 2000 4000

Cycle Average Cycle Range

Figure: Information from rainflow counting.
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Health Aware Control of a Wind Turbine

Rainflow counting in control

cycle # | Count | Range | Mean | Start | End |

1 1 7 | 8534.5 | 0.008 | 0.016
2 2 7028 | 0.024 | 0.032
Health-Aware Control 3 1 29 | 6880.5 | 0.04 0.048
Of a Wind Turbine 4 1 1 | 6467.5 | 0.056 | 0.064
5 1 1 | 6455.5 | 0.072 0.08
124 1 307 | 75835 | 1.936 | 1.992
125 1 1698 7622 | 1.68 1.896
126 0.5 | 8467.2 | 43284 | 0 l.64
127 0.5 | 8467.2 | 4328.4 | 1.64 2.016
1 1 1 1 1
=51 =s1 55124 55124 %127
1] 1]
"3_°_° p-sumnbbEEERLEELEED S—o—o—o—o—o—o—.. - p
- 0 e -
S g =) o
S o - o~

@’ﬂc . ' pred:ctisn horizon




Health Aware Control of a Wind Turbine

Rainflow counting in control

| cycle # | Count | Range | Mean | Start | End |
[1 1 7 | 8534.5 | 0.008 | 0.016
L 2 574 IULO UUZL2 U.UoSL
Health-Aware Control 3 1 29 | 6880.5 | 0.04 0.048
Of a Wind Turbine 4 1 1 | 6467.5 | 0.056 | 0.064
5 1 1 | 64555 | 0.072 | 0.08
124 1 307 | 7583.5 | 1.936 | 1.992
125 1 1698 7622 | 1.68 1.896
126 0.5 | 8467.2 | 43284 | 0 l.64
127 0.5 | 8467.2 | 43284 | 1.64 2.016
1 1 1 1 1
51 —s1 55124 55124 %127
1] 1]
"3_°_° Sy oo —....ap
- @ 2 -
S S o o
S o - o~

@’ﬂc . ' pred:ctisn horizon
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Health Aware Control of a Wind Turbine

Rainflow counting in control

cycle # | Count | Range | Mean | Start | End |

i ; 1 7 | 8534.5 | 0.008 | 0.016
2 1 2 7028 | 0.024 | 0.032
3 T 29 | 6880.5 | 0.04 0.048
4 1 1 | 6467.5 | 0.056 | 0.064
5 1 1 | 6455.5 | 0.072 0.08
124 1 307 | 7583.5 | 1.936 1.992]
125 1 1698 7622 | 1.68 1.896
126 0.5 | 8467.2 | 43284 | O 1.64
127 0.5 | 8467.2 | 43284 | 1.64 2.016
l51 - 1512~1 lS 1
o % AR
"8_°_ ............. 8—.—._._._._._N aee "»
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Health Aware Control of a Wind Turbine

Rainflow counting in control

cycle # | Count | Range | Mean | Start | End |

1 1 7 | 8534.5 | 0.008 | 0.016
2 2 7028 | 0.024 | 0.032
Health-Aware Control 3 1 29 | 6880.5 | 0.04 0.048
Of a Wind Turbine 4 1 1 | 6467.5 | 0.056 | 0.064
5 1 1| 64555 | 0.072 | 0.08
124 1 307 | 75835 | 1.936 | 1.992
125 1 1698 7622 | 1.68 | 1.896
126 0.5 | 8467.2 | 43284 | 0 1.64
127 0.5 | 8467.2 | 4328.4 | 1.64 2.016
1 1 1 1 1
=51 =s1 55124 55124 %127
] a
"3_°_° p-sumnbbEEERLEELEED oo —....ap
- 0 e -
S g - =}
c o - o~

@fﬂt . . predlctisn horizon




Health Aware Control of Wind Turbine

Control setup

JPHMC

Pre— A —Prioi window Wind information Known

—r Sl E —Presimulation on OpenFAST for stress
Health-Aware Control ! —Load reversal counted and allocated

h . 03
Of a Wind Turbine "
K
Parameter "
allocation |, :

uj 1
ST Switching
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Health Aware Control of a Wind Turbine

Control setup

JPHMC
Pre— A —Prioi window Wind information Known
[ simulation OFFLINE —Presimulation on OpenF AST for stress
—Load reversal counted and allocated
Parameter
allocation | Windl —OFFLINE pronostics for local degredation
J' fxn & weights
] RS 18, ¢ || Wind
: & Turbine

Switching
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Health Aware Control of a Wind Turbine

Control setup

T Pre— A —Prioi window Wind information Known
T Sl B OFFLINE —Presimulation on OpenFAST for stress
- —Load reversal counted and allocated
; N
Parameter | 1%
allocation | Windl —OFFLINE pronostics for local degredation
J' fxn & weights

& coeeed : Lower — Level MPC — Control below
o . 1 By ‘|| Wind cut —in
: : | Turbine Y — Torque control

Vi, — Bilinearity
P Lower — Level 3
Control w < 12m
up

Switching
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Control setup
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Parameter | 1%
allocation | Windl —OFFLINE pronostics for local degredation
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Health Aware Control of a Wind Turbine

Control setup-upper Level

£, (k, ulk), x(k), U (k) = W,Deg(k) — W, P(k) + WoAu(k)

Health-Aware Control Np —1
Of a Wind Turbine
min > Lulkuk),z,(k), ¥(k))

Bn(1...Np)x,(1...N,),Deg(1...N,) “=
subject to

2, (i + 1[k) = A(0(k))z,(ilk) + B0 (ilF)

Deg(i+ 1|k) = Deg(ilk) + (Ry(i).f(¢(K), A(K))). T,
P(i+1lk) = nngoptwg(ﬂk),
P(ilk) < Prggs

(@ Bnin < Br(ilk) < Braz:

(W, Brin] " < 2, (i + 1K) < [w,

ADVANCED min max

aaaaaaa Aﬂh(z + ]_|k) = 5h(l + 1|]€) — 5h(7’|k)

75maz]T7
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Health Aware Control of a Wind Turbine

Control setup-Lower Level

Lk wy(k), 2(k)) = @y (w, (k) — wi)? + 5 (T, (k) — T5)%..

-+ p3(B(k) = B*)? + p Ay

N,—1
ul(l...NrB%I'l(l...Np) ; L, (kyuy(k), x(k))
subject to
(i + 1k) = Az(ilk) + Bu,(ilk) + B, (6,,)V,,(ilk),
w(ilk) C U,
(i +1[kK) C X,

Auy (i + 1|k) = uy(i + 1|k) — u; (2] k).
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Results
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Figure: Operation of the upper-level control.
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Health Aware Control of a Wind Turbine

Results
W, | Power(MW) | Acc. Stress ¢
W, 5 4.11x10'0 ¢
Wi, 4.54 3.74x1010 © ¢
i3 4.164 3.43x10"
W, 4 3.97 3.26x10'°

2600 2800 3000 3200 3400 3600 3800 4000 4200
Accumulated stress (Nm)

Figure: Pareto front Power vs Accumulated stress.
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Data-Based Prognostics

Motivation of study:

m Most data-based are black-box models (lack interpretability)
m Import of Interpretability:

m Trust from industry
m Identify flaws

Data-Based . . .
Prognostics m Peripheral use of information

m *1. Develop an interpretable model of degradation
m EEFIG model is employed
m Degradation of a power semiconductor (IGBT)
m *2. Contribute to set-based uncertainty quantification in data-based prognostics

m Interval uncertainty set description via interval predictor estimation
* B. Khoury et al. “Data-driven Prognostics based on Evolving Fuzzy Degradation Models for Power Semicon-

@’ﬂ‘c ductor Devices”.
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Evolving Ellipsoidal Fuzzy Information Granules Modelling.

—Granulatation in
hyperelipsoids — E

— Granule has membership degree — G
— Acquire granule models

—Weighted average sum

—Takagi — sugeno Fuzzy in ference — H
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Evolving Ellipsoidal Fuzzy Information Granules Modelling

x|}

Granule ﬂ'ototype.
®f = (1l uk k. 1)

) Membership func.
Gi = (R™,gi); gk :R™ > [0,1]

i) = L’XP‘_[(ZI( - #L)T(Ai)i (1) ]z’

wi(zi)

giz) = ————
Y vl
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Evolving Ellipsoidal Fuzzy Information Granules Modelling
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Evolving Ellipsoidal Fuzzy Information Granules Modelling

Admissability test ¥

square mehalanobis distance
d(zk, y,’() <v
EFFIG per formance index

Qi >Q




Data-Based Prognostics

Evolving Ellipsoidal Fuzzy Information Granules Modelling
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¥ Admissability test X

A : square mehalanobis distance
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Evolving Ellipsoidal Fuzzy Information Granules Modelling

X e .. %
S,
¥ Admissability test X

A : square mehalanobis distance
: i i
G1 Zke : d(zk, yk) <v
] . E
Data-Based X1 s EFFIG per formance index
Prognostics E Q;{ > Q]‘C

* Anomaly *
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Evolving Ellipsoidal Fuzzy Information Granules Modelling

Creation of new granule

—Concurrently a tracker, Ty
= Tk (HAT ,Z7)

1- Tisc—seperated from
existing granules.

g = il = Cy/nmax(E(Z], Z})
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Evolving Ellipsoidal Fuzzy Information Granules Modelling

Creation of new granule

—Concurrently a tracker, Ty
- Ti(ud, =)

1- Tisc—seperated from
existing granules.

Hug = il = Cy/nmax(E(Z], Z})

2— n,>C

Gi = (R"z,g‘k*); gt R™ —[0,1]
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Data-Based Prognostics
EEFIG modelling for prognostics

B Based on i € IN_11. granules in granulation at prediction time kp :

el Cedem

Rule': If zy, is G}, — | B
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EEFIG modelling for prognostics

B Based on i € IN_11. granules in granulation at prediction time kp :

Rule’: If zy, is G;;p «— | P
. T /
Then yi = Of Wi Yipo e Yipeb]
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Data-Based Health index
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EEFIG modelling for prognostics

B Based on i € IN_11. granules in granulation at prediction time kp :
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EEFIG modelling for prognostics
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EEFIG modelling for prognostics

B Based on i € IN_11. granules in granulation at prediction time kp :

Rule': If z;, is G,
. T
Thenyy, = 6k, ks Vi oo Y, 1"

Health index

e
_ i oT T
Y = ng oy, Wis Yo - Y, 2]
i=1
Predicted

By, ———— Recursive least squares(SFWRLS)
! |y one —step ahead

Ne

Yipalky = 28;@;2 Wiy iy ooee Yy 1T
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[y, sn (L ky ~ 152 ) RUL |




Data-Based Prognostics
Application-IGBT and its degradation

m Power electronic predominate in machinery.

Data-Based
Prognostics

AAAAAAAA
uuuuuuu
sssssss




Data-Based Prognostics
Application-IGBT and its degradation

m Power electronic predominate in machinery.
m IGBT combines:
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Data-Based Prognostics
Application-IGBT and its degradation

m Power electronic predominate in machinery.
m IGBT combines:

m MOSFET— high input impedance and switching speed
m BJT— low saturation voltage

Data-Based . . . .
Prognostics m Medium to high power applications

m Prone to electrical and thermal stress leading to failure

m Bond wire and solder layer fatigue, gate diode degradation etc.
m Find failure precursor indicative of failure modes

m Solder layer and bond wire fatigue — V,

m Run to failure test for failure precursors
@Y{\_C m NASA Ames research center’s IGBT degradation dataset

ADVANCED
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Run to failure test on 4 IGBTs
Subjected to aggressive electrical cycles

m DC square voltage [0v 4v]

= Under control temp. [320°c 330°]

m Run until failure (latch-up or thermal
runway)

Veer Voo 1,

ce’

V.. — Failure precursor.
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Collector — emitter turn on Voltage [V]

0 2 4 6 8 10 12 14

——IGBTI
———IGBT2

IGBTS
—IGBTY

samples (—) %108

Figure: V_, from run to failure test.
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Data-Based Prognostics
IGBT Data set

Run to failure test on 4 IGBTs
Subjected to aggressive electrical cycles

m DC square voltage [0v 4v]
m Under control temp. [320°c 330°c]

m Run until failure (latch-up or thermal
runway)

Veer Voo 1,

ce’
V.. — Failure precursor.

Collector — Emitter Voltage [V]

Figure

4 6 8 10 12 14
Samples %108

.V, from run to failure test.
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Data-Based Prognostics

Feature extraction

m Pseudo-representative features are ex-

tracted

m Antecedent — Maintains data granularity
(original information)

m Consequent — Best for prognostics

Data-Based 11 1
Prognostics DenOISng by d mOVlng average

Feature Formula

SD of asinh(X) o (log [a:Z + (22 + 1)%]
Monotonicity ] [ 1 1SDofatan(X) o (4 log (Zf—?‘))

Suitability = | Trendability O.976J
Prognosability 1

Consequent:

@KC cumulative SD of trig function of the

dataset used

ADVANCED
uuuuuuu

sssssss = Antecedent — Energy and RMS
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Consequent features

SD(atan)

Cummulative SD(atan)
. ! ! : | ! q
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Figure: C-SD(atan).

C-SD(atan) selected due to superior suitability index
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Figure: SD atan.
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Premise feature

RMS
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Figure: RMS of the data set.
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Figure: Energy feature from the data set.

RMS selected due to similarity and also based on tests
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Data-Based Prognostics

Experiment and results

m Grid search for optimal hyper-
parameters

ml = (L,7,mn,¢,() is the vector of
hyper-parameters, £ = [2,5] x [2,5] x
[0.96,1] x [2,6] x [2, 6]

EOL p

¢(D) = argmin Z kra,(D,l) st. le L
! k=1

[RUL,, — RUL,|
B RUL,

ra, =1
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Data-Based Prognostics

Experiment and results

m Grid search for optimal hyper-
parameters

ml = (L,7,mn,p,() is the vector of
hyper-parameters, £ = [2, 5] x [2, 5] x
[0.96, 1] x [2,6] x [2,6]

EOLp,
(D)=, Y kra(D,]) st lel
k=1

[RUL,, — RUL,|
RUL,

RUL prediction for the 3rd IGBT with param-
eters obtained for the test dataset with data
from the 2nd IGBT.

ra, =1—

Granule index
o n w £ [, [e2}

a-\ Plot

----True RUL

—RUL

... Accuracy cone (£30%)

} Uncertainty bounds

30 35 40

Most relevant granule

45

0

25
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Experiment and results

m Grid search for optimal hyper- o oAPbt
----True RUL
parameters sol - Accuracy cone (£30%)
_ . — ROL
. l (L, R C) 1S the vector Of ____________ } Uncertainty bounds

hyper-parameters, £ = [2, 5] x [2, 5] x
[0.96, 1] x [2,6] x [2,6]

Data-Based
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EOL, ‘ ‘ ‘ ‘ ‘ :
(D) =, Z kra,(D,l) st lel 20 25 30 35 40 45 50
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Most relevant granule
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RUL, ’
. C RUL prediction for the 2nd IGBT with pa-

rameters obtained for the test dataset with : : : : :
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Experiment and results

m Grid search for optimal hyper-
parameters

ml = (L,7,n,¢,() is the vector of
hyper-parameters, £ = [2,5] x [2,5] X
[0.96, 1] x [2,6] x [2,6]

EOLp,
(D)=, Y kra(D,]l) st leL
k=1
[RUL,, — RUL,|
ra, =1— ,
RUL,,

Desirable results from data sets 1,2 and 4,
however 3 posed challenges

Table:Mape, results

1

Tuning dataset

2

3 4

1]20.35 [31.59

59.65 | 48.32

2| 23.03|15.19

34401 15.29

UUT dataset

3 167.41|76.05

70.84 (74.9

4]40.78(31.46

37.66|28.23

MAPE; =

100

'ﬁ RUL; - RUL;

EOl-k+1,44"  RUL
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Set based uncertainty quantification

B Based on i € IN.11. granules in granulation at prediction kp:

u Uncertainty Ay = [y vl i/\ =y +Ay

Health index
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Set based uncertainty quantification

B Based on i € IN.11. granules in granulation at prediction kp:

u Uncertainty Ay = [y vl i/\ =y +Ay

Health index

e
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Data-Based Prognostics

Set based uncertainty quantification

B Based on i € IN.11. granules in granulation at prediction kp'

u Uncertainty Ay = [y vl i/\ =y +Ay

Health index

e

- r
Yk, = 28: O WYkys Yhyy wone Ui, )1 + 00
i=1
Data-Based '
Prognostics weW, w< o
W, Yoy e i, 1T = ¢

(=]

Parametric uncertainties

AT AT .
@k ) @k,/' @k constructed via
2 2

interval predictor estimation

orst case bounding scenario

‘ yk,,g[zkp—o,%+a]

With initial uncertainty set; Ay, solve for A
such that Ayx, = AAyo

CorTRD
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Data-Based Prognostics

Set based uncertainty quantification

B Based on i € IN.11. granules in granulation at prediction kp:

u Uncertainty Ay = [y vl i/\ =y +Ay

Health index min f(2) R
e [
i A
Yr, = Eé’kw OF sy Yz o Wiy |7 470 : Ay,

weW, w< o
[, Yk, e Y 1"=¢

(=]

AN L
Ap Ayo = |y, _ykvl -
N N
F) = Dwidth Ay =243, ¢ Ayo
k=1 k=1

Parametric uncertainties

AT AT .
@k ) @k,/' @k constructed via
2 2

interval predictor estimation

orst case bounding scenario
Yk, S [Zk,, =0, Yk, +0

With initial uncertainty set; Ay, solve for A
such that Ayx, = AAyo
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Data-Based Prognostics

Set based uncertainty quantification

B Based on i € IN.11. granules in granulation at prediction kp:

u Uncertainty Ay = [y vl i/\ =y +Ay

Health index min f(2)

[k, = ’y\k,,l -0
Yr, = zggi"@;zlykp,i Yo e Ui, 1T+ 0 stA2 ok
i=
weW, w< o Ap Ayozg,;_’y‘u_a
Wi, Yoy e i, 1T =00 N .

F) = Dwidth Ay =243, ¢ Ayo
. . . k=1 =
Parametric uncertainties ' -

AT AT .
@k ) @k,/' @k constructed via
2 2

One,step ahead
MYk, = Zgiﬁ@[ﬂ ks Vi -
i=1

interval predictor estimation

g

+A€x
orst case bounding scenario

Yk, S [Zk,_g’ Yk, t0

With initial uncertainty set; Ay, solve for A
such that Ayx, = AAyo
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Data-Based Prognostics

Set based uncertainty quantification

B Based on i € IN.11. granules in granulation at prediction kp:

u Uncertainty Ay = [y vl i/\ =y +Ay

Health index min f(A) ~
e [
yeor T A
Yk, = z;g; O Whys Yy e iy 17+ 70 s v
i=
N~
weW, ws g A‘PAVOZWk,,—kal—U
W, Yoy e i, 1T =00 N N
F) = Dwidth Ay =243, ¢ Ayo
. . . k=1 k=1
Parametric uncertainties
AT N
8, 2 6y 8), constructed via One,step ahead
2 2
interval predictor estimation

Y, alk, = Z:;giﬁ@f,,[ykw [
=

+A€x
orst case bounding scenario
Y, € [zk -0, Yx, +0 Multistep ahead
! Ak, ik, (AY(L,eonoop = 1)) =
With initial uncertainty set; Ay,, solve for A Note autoregressive
such that Ayx, = AAyo

Predict ARUL
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Set based uncertainty quantification-Results
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Figure: : RUL prediction and uncertainty set Figure: :RUL uncertainty set description for
© description for the IGBT2 with parameters IGBT1 with parameters obtained for the test
@K obtained for the test dataset with data from the dataset with data from the IGBT?2.
vancen IGBT2.
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Set based uncertainty quantification-Results
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Figure: Width of uncertainty set at each RUL prediction cycle.
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Robust Reliability-Aware Control of a DWN

Motivation of this study:

Employ EMPC for DWN ensuring reli-

ability.

m Important for critical infrastructure

m Involves uncertainty in demand (human
behaviour)

m RobustEMPC avoids intractability and
ensures stability

m Uncertainty described as zonotopic sets

m Reliability of an interconnected system

m Reliability model — Factor-based model

m WDN model—Degradation independent
model

m Account for uncertainty (*practical)




Robust Reliability-Aware Control of a DWN

Application-Drinking water network

m uy is in linear variety

m Affine parametrization
m u, = PM,a, + PM,d,. (Gauss-Jordan

N elimination)
obust . X A .
Reliability-Aware m Reduce decision variables and aid in set
Control of a DWN .

construction

B=BPM, B,=BPM,+B,.

AAAAAAAA
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Robust Reliability-Aware Control of a DWN

Robust MPC preliminaries

Ensure: For all ¥ = f(k,x, uy,d},)
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Robust MPC preliminaries

Ensure: For all ¥ = f(k,x, uy,d},)
m Robust constraints satisfaction
m Recursive feasibility
= Robust stability

Robust
Reliability-Aware
Control of a DWN
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Robust MPC preliminaries

Ensure: For all ¥ = f(k,x, uy,d},)
m Robust constraints satisfaction
m Recursive feasibility
= Robust stability
Assuming Ad,, C D,, is unknown but bounded
Robust m The sets Az, C dX and Au,, C dU constructed in RPI sets (tube).

Reliability-Aware
Control of a DWN
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Robust Reliability-Aware Control of a DWN

Robust MPC preliminaries

Ensure: Forall ¥ = f(k, x, u, dy,)
m Robust constraints satisfaction
m Recursive feasibility
= Robust stability
Assuming Ad,, C D, is unknown but bounded
m The sets Az, C JX and Auk C 60U constructed in RPI sets (tube).

[ f( {f( X,,. X Nh Y X R= @ 0X,, and an accompanying control tube
k) é [ ] ¢ @HdkB ¢
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Robust Reliability-Aware Control of a DWN

Robust MPC preliminaries

Ensure: Forall ¥ = f(k, x, u, dy,)
m Robust constraints satisfaction
m Recursive feasibility
= Robust stability
Assuming Ad,, C D, is unknown but bounded
m The sets Az, C dX and Au,, C dU constructed in RPI sets (tube).

[ X = {XO,X17 XN}, v X, = x, ® 6%, and an accompanying control tube
= {UO,Ul, .. UN}, YU, =u;,®0U,
[ 5[D(l<:) = [0]"¢ @ H 4, B™.
m Appropriately to ensure that 6X;, C interior(X) and U, C interior(U)

* D. Mayne, M. Seron, and S. V. Rakovi¢. “Robust model predictive control of constrained linear system with
bounded disturbances”.



Robust Reliability-Aware Control of a DWN

Online computation of zonotopic reachable sets

A feedback LQR controller K is designed to :
m Minimize spread of trajectories

m Asymptotic stability to a predefined terminal set

o0

T
T o= 2@ —wp) TQE, — ) + Uy Rily

[u07'1’aco i=0

Robust
Reliability-Aware
Control of a DWN
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Robust Reliability-Aware Control of a DWN

Online computation of zonotopic reachable sets

A feedback LQR controller K is designed to :
m Minimize spread of trajectories

m Asymptotic stability to a predefined terminal set

o0 T .
g = 2@ = @) TQ(E — 1) + g Rity
1=
Decomposing: 7, = z; + Az,
m Uncertain dynamic part: A
Azyq = (A4 BK)Azy, + B;Ady,
where Au = KAx.
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Robust Reliability-Aware Control of a DWN

Online computation of zonotopic reachable sets

A feedback LQR controller K is designed to :
m Minimize spread of trajectories

m Asymptotic stability to a predefined terminal set

o0

T~
J[am-ﬂ:l )~ > (T — xk)TQ(v%k — ) + Uy, Ry,

</ i=0
Decomposing: 7, = z; + Ax,
m Uncertain dynamAic part: R
Az, = (A+ BK)Azx, + B;Ad,,
where Au = KAx.
Assuming that initial deviation, Az(0) = 0

= 0%y C D' (A+ BK)'B,0D(i)



Robust Reliability-Aware Control of a DWN

Online computation of zonotopic reachable sets

A feedback LQR controller K is designed to :
m Minimize spread of trajectories

m Asymptotic stability to a predefined terminal set

00 ~T  ~
_ ~ T ~ ~ ~
S i) = z%)(ﬂfk —3,)" QT — mp) + Uy Ry,
1=
Robust Decomposing: 7, = z; + Ax,
Reliability-Aware
Control of a DWN m Uncertain dynamic part:

Azy,, 2 (A+ BK)Az, + ByAd,,
where Au = KAx.

Assuming that initial deviation, Az(0) = 0
© | = Ky S, (A+BK) I B,0D(i) = Uy (i) = @), (A+BK)™ B, H,(i).

uuuuuuu
sssssss
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Robust Reliability-Aware Control of a DWN

Online computation of zonotopic reachable sets

A feedback LQR controller K is designed to :
m Minimize spread of trajectories

m Asymptotic stablhty to a predefined termmal set

J[{LO,.,&OO) = ;)(a:k — wk) Q(wk — xk) + uk Ruk

Decomposing: 7, = z;, + Az,
= Uncertain dynamic part: R
Az, = (A+ BK)Az, + B;Ad,,
where Au = KAx.
Assuming that initial deviation, Az(0) =0

= $Rps C B, (A+BE)B,8D(0) — Wy () = D',

m U, C @;’=1[PM1K\I/[1,1']K+1'7PMZHdk+i]B2nd'

Used for Robust constraints satisfaction

(A+BK)"IB,H,(i).
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Robust Reliability-Aware Control of a DWN

Online computation of zonotopic reachable sets-Terminal set

Robust stability and recursive feasibility
Terminal mRPI set constructed:

An approximate of the exact :
Q. 2 @2 (A+ BK)/B,dD,

Q.. CO;(A+BK)=Aand B;6D C W
A is strictly stable

Guaranteed convergence under infinite
Minkowski sum*

0o A\ A
@j:O(A)JW c (1 - Oé) ®j:0 (A)JW
Truncated, Geometric series

*S. V. Rakovic et al. “Invariant approximations of the

minimal robust positively Invariant set”.

3 \
@ b A
Xo \

_______

X1

Figure: Transition through tubes to mRPI set
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Robust Reliability-Aware Control of a DWN

Network reliability modelling

m Reliability modeling is stochastic and complex

m Markov chain — Combinatorial explosions
m Stochastic petri-nets — Monte Carlo simulations (computationally demanding)

m Bayesian network modelling is used



Robust Reliability-Aware Control of a DWN

Network reliability modelling

m Reliability modeling is stochastic and complex

m Markov chain — Combinatorial explosions
m Stochastic petri-nets — Monte Carlo simulations (computationally demanding)

m Bayesian network modelling is used

Bayesian network model depends on:

Robust

Reliability-Aws
Cantzol of a DWN = Structure of the graph

m Conditional dependencies between the nodes related with the arcs

k
(=T 32 Ai(u(s)))
| | Rz(k> = RO,ie SZ:IO Where; )‘z<t) = A?G(Bzuz(t))*

* F. Karimi Pour, V. Puig, and G. Cembrano. “Economic Health-Aware LPV-MPC Based on System Reliability

@’K‘ ) Assessment for Water Transport Network”.
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Robust Reliability-Aware Control of a DWN

Broad Reliability Modelling

By = (P, Ap, Np)
m Direct dependencies of nodes with P(n,)

m Joint probability under Conditional probability assumptions
N
P’r(”i’ N, nN) = Pr(”l) Hi=2 Pr<nz|Pa(nz))

Figure: Dependencies between nodes and parents
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Robust Reliability-Aware Control of a DWN

Broad Reliability Modelling

By = (P,Ap, Np)
m Direct dependencies of nodes with P(n,)
m Joint probability under Conditional probability assumptions
Py(n,ng, i) = Po(m) TL, Pr(n| Py(n,)
m However static
m Introduce temporal dependencies through dynamic BN

(T, 3 As(usk)



Robust Reliability-Aware Control of a DWN
Broad Reliability Modelling

By = (P, Ap, Np)
m Direct dependencies of nodes with P(n,)
m Joint probability under Conditional probability assumptions
Pr(”ia N, nN) = Pr(nl) Hlj\iz Pr(nz‘Pa(nz»
m However static
m Introduce temporal dependencies through dynamic BN

k
(=T 2 Xi(w.k))

ﬁzll::;‘ilily-Aware P’I‘(XZ (k + 1)) = (A|Xz(k> == A) - Roﬂze s=0
Controlofa DWN DWN Reliability modelling:

m Represented in a DAG actuators as node and pipes as arcs
m A resultant Series-parallel architecture

R (k)=1— H?zl(l — ]_[Zep R,(k)), and thus:

@ﬁt log(R,(k + 1)) = log(R,(k ))+Z iep, Vj(K) 2 p 108 Ry (k)
{
NONLINEAR




Robust Reliability-Aware Control of a DWN

Reliability-aware MPC

Lk, 1, x) = W1F,(k) + W1 (k) + WiT aq(k) - W1Fr(k)

safety in tanks

Js = ||t’3(k)||2
x(k) = xs —¢(k)

Robust
Reliability-Aware
Control of a DWN
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Reliability-aware MPC

Lk, 1, x) = W1Fo(k) + W1 (k) + WiT aq(k) - W1Fr(k)
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Reliability-aware MPC

Lk, 1, x) = W1Fo(k) + W1 (k) + W1T aq(k) - W1Fr(k)

Slew rate

Robust
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Control of a DWN
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Robust Reliability-Aware Control of a DWN

Reliability-aware MPC

Lk, 1, x) = W1Fo(k) + W1 (k) + WiT aq(k) - W1 T r(k)

Reliability



Robust Reliability-Aware Control of a DWN

Reliability-aware MPC

Lk, i, x) = WiJs(k) + WiFe(k) + W1 T (k) - W1 Tr(k)

Np-1
i %L(kﬁ,x(k»x,(k»
i=
Robust subject to
Reliability-Aware ~ A~
Control of a DWN x(i + 1|k) = Ax(ilk) + Bu(ilk) + Bad(ilk)

wi(ilk) € U(ilk) em oU(ilk),

x(ilk) € X(ilk) em 6X(ilk),

XN, -1)c Q

gﬁc x,(i+11k) = A, (0(R))x,(ilk) + B,(O(K))ii(ilk)

AAAAAAAA

eNTESE x,(ilk) € (0,1]
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Reliability-aware MPC

Lk, i, x) = WiJs(k) + WiFe(k) + W1 T (k) - W1 Tr(k)

Np-1
min %L(kﬁ,x(kxx,(k»
i
Robust subject to Robust cqnstmint
Reliability-Aware . ~ satis faction
Control of a DWN x(i + 11k) = Ax(ilk) + Bu(ilk) + Byg#lk)
u(ilk) < U(ilk) em sU(ilk),
x(ilk) € X(ilk) om 6X(ilk),
XN, -1)c Q

@’ﬂc x,(i+11k) = A, (0(R))x,(ilk) + B,(O(K))ii(ilk)

AAAAAAAA

eNTESE x,(ilk) € (0,1]




Robust Reliability-Aware Control of a DWN

Reliability-aware MPC

Lk, i, x) = WiJs(k) + WiFe(k) + W1 T (k) - W1 Tr(k)

Np-1
min ZO Lk, 7, x(0), x,(K))
P
subject to Robust stability
~ ~ & .
x(i + 1K) = Ax(ilk) + Bii(ilk) + Bad(ilk Recursive
feasibility

Ailk) € U(ilk) om sU(K),
x(ilk) € X(ilk) om 6X(ilk),

[ XN, -1)c Q ]

x,(i+11k) = A, (0(R))x,(ilk) + B,(O(K))ii(ilk)

x,(ilk) € (0,1]
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Reliability-aware MPC

Lk, i, x) = WiJs(k) + WiFe(k) + W1 T (k) - W1 Tr(k)

Np-1
min ZO £k, T, x(0), x,(K))
i
subject to Reliability

~ constraints
x(i + 1k) = Ax(ilk) + Bii(ilk) + Bad(ilk)

1(ilk) € U(ilk) em sU(ilK),
x(ilk) € X(ilk) em 6X(ilk),

XN, -1)c Q

[xy(i +11k) = A, (0(k))x(ilk) + Br(f)(k))ﬁ(ilk)]

x,(ilk) < (0,1]
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Experimental Setup and Results

0.014 T T 7 T
1 I predicted demand
\ | L : : — — — - real demand
0012t 1’1‘ b ! ! ™
Nttt 1 |
ot a H 1 |
0.01F bt b i 1 1]
. \ ! !
) 1 1
= 1
£ 0.008
i ~
& n £
o0 s
5 0.006
Robust i [
Reliability-Aware + + — — e 1 I' ||
Control of a DWN 0.004 'l I \|
\
\

Figure: A 24 hrs demand profile of node  oo0f
C129PAL with symmetric bounded uncer- ‘ ‘ ‘ ‘
tainty. 0 50 100 150 200 250

Time (hours)

C Figure: 80-hour test scenarios for robust control

1
1
1
1
1
1
1
1
1
1
1
1

considering demand node c125PAL.




Robust
Reliability-Aware
Control of a DWN

Robust Reliability-Aware control of a DWN

Experimental Setup and Results
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Robust Reliability-Aware control of a DWN

Experimental Setup and Results
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Conclusion and Contributions

[1] Set based prognostics quantification for prognostics

Model-based prognostics for wind turbine blade is undertaken,
m Direct degradation incorporation into wind turbine model
m Applied in ZKF for set estimation.

m Reachability analysis for uncertainty propagation.
*+ A novel means of quantifying uncertainty in prognostics (nascent).

[2] HW control of a wind turbine

With information from [1],
m Segmentation of degradation path for stage models
m Accounts for discontinuity in stress identification.

m Allocated weights per segment.
*x Controller operates in a practical fashion.
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Conclusion and Contributions

[3] Data-based prognostics

Data-based prognostics with interpretability properties are designed,

® EEFIG is applied to the IGBT data set
B Competitive rules are predicted

m Interpretability capabilities.

m Set-based quantification is duly applied.

*x Novel tool for interpretation and set-based quantification.

[4] Robust Reliability-Aware control of DWN

Reliability Aware controller is designed,
m Improves reliability at a cost

m Designed to be robust
*x Controller operates in a practical fashion.



Future Works

[1] Set based prognostics quantification for prognostics

m Test with statistical methods

[2] HW control of a wind turbine

= Robustify the control

m efficient way of including degradation function

Concluding Remarks

[3] Data-based prognostics

m Test uncertainty quantification on complex data-based methods
m Compare the set based with statistical methods.

gfi_ m use other set—representation.
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khoury, B., Bessa, I., Puig, V., Nejjari, F., and Palhares, R.M. (2022).”Reliability—aware zonotopic tube-based model predictive control of a

drinking water network”. In: Systems & Control Letters. Int. J. Appl. Math. Comput. Sci., 32(2), 197-211. doi: 10.34768/amcs-2022-0015

F. Nejjari, Khoury B., V. Puig and Ocompos S.. “Economic Linear Parameter Varying Model Predictive Control of the Aeration System of a
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Conference proceedings:

khoury, B., Bessa, 1., Puig, V., Nejjari, F., and Palhares, R.M. (2022). "Data-driven prognostics based on evolving fuzzy degradation models
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