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This paper addresses the fault diagnosis problem of uncertain systems in the context of
Bond Graph modelling technique. The main objective is to enhance the fault detection step
based on Interval valued Analytical Redundancy Relations (named I-ARR) in order to
overcome the problems related to false alarms, missed alarms and robustness issues.
These I-ARRs are a set of fault indicators that generate the interval bounds called thresh-
olds. A fault is detected once the nominal residuals (point valued part of I-ARRs) exceed
the thresholds. However, the existing fault detection method is limited to parametric faults
and it presents various limitations with regards to estimation of measurement signal
derivatives, to which I-ARRs are sensitive. The novelties and scientific interest of the
proposed methodology are: (1) to improve the accuracy of the measurements derivatives
estimation by using a dedicated sliding mode differentiator proposed in this work, (2) to
suitably integrate the Fourier-Motzkin Elimination (FME) technique within the I-ARRs
based diagnosis so that measurements faults can be detected successfully. The latter
provides interval bounds over the derivatives which are included in the thresholds. The
proposed methodology is studied under various scenarios (parametric and measurement
faults) via simulations over a mechatronic torsion bar system.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

An autonomous system is expected to achieve different objectives at given times without the intervention of a human
operator. The increase in system complexity and industrial safety requirements has led to a growing interest for the devel-
opment of fault diagnosis procedures. Fault diagnosis is crucial for ensuring the safe operation and prevention of unaccept-
able system behavior. The overall aim of a diagnosis procedure consists of fault detection (FD) and isolation as quickly as
possible. Most of the fault detection and isolation (FDI) approaches rely mainly upon set of fault indicators. These indicators
are so-called residuals which are generated such that the discrepancies between the expected system behavior and real
behavior are captured efficiently. This issue has been addressed by using parity space technique [1,2], observer based tech-
niques [3–5], data based techniques [6], parameters identification [7], graphical approaches [8], and so on. A comprehensive
classification of these approaches can be found in [9–11]. Among the graphical approaches, the Bond Graph (BG) [12] as a
multidisciplinary and unified graphical modelling language has proved its adequacy and efficiency to represent energy
exchanges in multi- energetic systems. BG has been used extensively to generate fault indicators in a systematic and generic
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Nomenclature

Abbreviations & Acronyms
FD fault detection
FDI fault detection and isolation
ARRs Analytical Redundancy Relations
BG Bond Graph
VAF Percentage Variance Accounted For
I-ARR Interval Valued Analytical Redundancy Relations
FME Fourier-Motzkin Elimination
URIF Uncertain Residual Interval Function (URIF)
AME Absolute Mean Error
IoA Index of Agreement
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way. The BG model can be exploited, due to its structural and causal properties, for automatic generation of Analytical
Redundancy Relations (ARRs), numerical evaluation of which produce residuals that are used for diagnosis. These ARRs
are mathematical constraints used to verify the coherence between the process measurements and system model. ARR gen-
eration technique that exists within the realm of BG modelling [13] has been extensively exploited in last one decade. The
latter includes covering causal paths technique which has successfully been used for supervision of highly non-linear and
complex thermo-chemical systems [14,15], non-linear mechatronic systems [16,17], intelligent and autonomous systems
[18], industrial chemical reactors [19], hybrid systems [20–24], etc.

The model uncertainties mainly arise due to discrepancy between the model and the real system such as measurement
noise and variable environmental conditions. Uncertainties can be considered with respect to system parameters, system
measurements or both, depending upon the modelling/user requirements. In this context, Bond Graph (BG) based works
have been exploited extensively for efficient and robust passive diagnosis [25–28]. Very recently, modelling of system
parameters and measurements in interval form has been proposed in [29], where model uncertainties (parametric and mea-
surement uncertainties) are modelled as interval models. Then, interval valued uncertainties are used to generate Interval
Valued Analytical Redundancy Relations (I-ARRs) which are evaluated using Interval Analysis (IA) [30–32]. A passive fault
detection methodology is developed by exploiting the structural, causal aspects of BG and IA based calculations. Moreover,
[33] proposes the I-ARR based methodology as FD module for robust detection of parametric degradation beginning. Therein,
uncertainty is considered with respect to system parameters only; system measurements (sensors) are not considered
uncertain. Although, the integration of IA with BG has resulted in successful alleviation of issues related to FD, residual eval-
uation and presence of parametric as well as measurement uncertainties, lead to significant issues that remain unaddressed.

a. ARRs and I-ARRs are inevitably sensitive to derivative of system measurements. Differentiation of noisy measurement
signals leads to significant noise in residuals. The latter leads to false alarms, hidden alarms, fault masking and robust-
ness issues. Thus, minimization of noise over residuals has been a major research endeavor in the last decade. In
present context, optimal estimation of measurement signal derivatives sensitive to I-ARRs is sought. To that end, a
dedicated sliding mode differentiator is proposed in this paper which is shown to ameliorate the accuracy of
measurement(s)-derivative(s). The proposed differentiator produces interval bounds over signal-differentiation. The
latter, in turn, are included in the threshold generation process.

b. Uncertain measurement intervals are generally non-linearly sensitive to system parameters in an I-ARR; this may not
result in perfectly separable nominal and uncertain parts. Moreover, due to presence of measurement uncertainties, an
I-ARR expression may remain sensitive to multiple interval variables. This leads to multiple incidence problem [36],
thin interval enclosures [31] for Interval function range. The latter in turn results in over-estimation of thresholds [37],
wrapping effects [38], etc. One of the efficient ways to overcome these problems, as proposed in this work, is to decou-
ple the FD reasoning strategy for uncertain system measurements from that of uncertain system parameters.

To that end, Fourier-Motzkin Elimination (FME) technique which is a computational method for solving linear
inequalities by iterative elimination of variables [34], is exploited. FME was introduced by Fourier in 1827; it was
rediscovered in Motzkin’s thesis in 1936. This finite algorithm enables to find a solution of a linear inequality system
A � x 6 B. Recently, various works have exploited FME for resolving optimization problems in operational research
field. FME has also been extensively used to solve system of linear inequalities for real and integer solution spaces
and solution of node-capacitated routing problem in an undirected ring network (for simple matrices) [35].
In the context of I-ARR enabled FD, I-ARRs are usually expressed as linear combination of functions of system param-
eters andmeasurements. As a result, the residuals bounded within upper and lower limits, may be treated as system of
linear inequalities. Benefits of FME can be exploited for FD reasoning. It is worth noting that FME theory has never
been applied in FD context. Thus, integration of the benefits of Interval Analysis and FME in Bond graph framework
presents a strong motivation.
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Thus, in summary, the scientific interest of the paper is to ameliorate I-ARR enabled FD methodology in two major steps:
(1) enhancement of signal measurement(s)-differentiation(s) accuracy by using a dedicated sliding mode differentiator, (2)
suitable integration of Fourier-Motzkin Elimination (FME) technique within the I-ARRs enabled FD methodology for efficient
FD. Moreover, this work also serves as the continuation of [33] with measurement uncertainties being taken into account.

The proposed methodology is studied under various scenarios (parametric and measurement faults) via simulations over
a mechatronic torsion bar system. Apart from the Introduction section, the paper has 4 more sections. In Section 2, Uncertain
BG, I-ARRs, FME techniques are introduced and discussed. Moreover, the existing issues are presented through illustrative
examples. Additionally, a sliding mode differentiator is presented and a comparative study is made to assess the betterment
in performance. In Section 3, the fault detection methodology is detailed and discussed. In Section 4, the mechatronic system
is exploited for simulations, fault injection and fault detection. Section 5 draws conclusions.

2. Background and problem formulation

Firstly, the pre-requisite techniques are discussed in brief.

2.1. Uncertain BG and I-ARR derivation

The basics of BG modelling, interval valued representation of uncertainty and I-ARR derivation technique are omitted in
this paper. The latter can be referred in [33] where a concise introduction is available with extensive literature references. In
this section, authors have made an attempt to illustrate I-ARR generation method using a pedagogical example.

Example 1. Consider a pedagogical R-L-C electrical circuit as shown in Fig. 1a. The circuit current i through resistor R1,
inductor L1 and capacitor C1 is im and the measured voltage across the capacitor is Vm.

Deterministic Diagnosis: Diagnosis oriented BGs are constructed in preferred derivative causality [39]. Moreover, the
sensors are dualized implying that effort (flow) sensors De (Df) become sources of effort SSe (flow SSf) [40]. Following the
aforementioned techniques, the diagnosis oriented BG of the nominal system is obtained in Fig. 1b. It should be noted that
BG (see Fig. 1b) is constructed in derivative causality with dualized sensors (SSf:im and SSe:Vm).

Analytical Redundancy Relations (ARRs) are obtained from the over-constrained (redundant and observable) subsystems
that compose the overall system. ARRs are formulated using only known variables of the system [26,28,41]. They have the
form f ðkÞ ¼ 0 for any function f. Numerical evaluation of an ARR yields a residual r ¼ Eval½f ðKÞ�. From Fig. 1b, two indepen-
dent ARRs can be derived by elimination of unknown variables according to covering-causal paths (reaching the unknown
variables by known ones through cause-effect relationships) as,
Fi
ARR1 : UðtÞ � L1
dfSSf : img

dt
� R1fSSf : img � fSSe : Vmg ¼ 0 ð1Þ

ARR2 : fSSf : img � C1
dfSSe : Vmg

dt
¼ 0 ð2Þ
Under fault free conditions, the residuals (numerical evaluation of ARRs) are theoretically equal to zero.
Robust Diagnosis with Interval valued Uncertainties: To highlight the existing issues, first, only system parameters are con-

sidered uncertain. In the subsequent part, uncertain parameters and uncertain system measurements are considered
together for diagnosis [29]. Uncertain system parameters are considered as intervals where the upper and lower bounds
are formed by taking parametric variation into account. In fact, for a system parameter h with its nominal value as hn,
Dhl P 0 and Dhu � 0 are the additive uncertainty/deviation on the left and right sides respectively over the nominal value
hn; ½hn; hn� is a degenerate interval (interval with equal upper and lower limits). Multiplicative interval uncertainty dh;l; dh;u

� �
g. 1. Pedagogical example, (a) pedagogical RLC circuit and (b) BG model of the nominal system in derivative causality and dualized sensors.
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is expressed as dh;l; dh;u
� � ¼ �Dhl

hn
; �Dhuhn

h i
. In this way, the uncertain parameter h is also expressed as ½hl; hu� ¼ hn � 1þ dh;l; dh;u

� �� �
.

In the context of Example 1, consider R1, C1 and L1 as uncertain system parameters. These parameters are modelled in inter-
val form: ½R1;l;R1;u� ¼ R1;n 1þ dR1;l; dR1;u

� �� �
, ½C1;l;C1;u� ¼ C1;n 1þ dC1;l; dC1;u

� �� �
and ½L1;l; L1;u� ¼ L1;n 1þ ½dL1;l; dL1;u�

� �
. The uncertain

BG is shown in Fig. 2, wherein the additional effort(s)/flow(s) (bonds 7, 8 and 10) being generated by interval valued uncer-
tainty is(are) brought-in at BG junctions by fictitious sources of effort(s)/flow(s) (MSe : ½wR1�, MSe : ½wL1� and MSe : ½wC1�). For
instance, under nominal conditions, the constitutive relation for resistor element R is ei = R x fi, where ei is the effort and fi is
the flow variable on ith bond. Then, with interval-valued R1,
½e6;l; e6;u� ¼ ½R1;l;R1;u� � f 6 ¼ R1;n 1þ dR1;l; dR1;u
� �� � � f 6 ¼ R1;nf 6|fflffl{zfflffl}

e3

� � dR1;l; dR1;u
� � � R1;n � f 6

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e7

ð3Þ
where MSe : ½wR1� denotes the fictitious source of uncertain effort e7 (see (3) and Fig. 2). Similarly, various other parametric
uncertainties are taken into account in order to construct Fig. 2.

Recently, measurement uncertainties have also been taken into account over BG models [29]. An uncertain flow detector
(carrying measured flow signal) is modelled as:
SSf ; SSf
h i

measure
¼ SSft; SSft
h i

true
þ �DSSfl;DSSfu½ �:
The uncertainty interval ½�DSSfl;DSSfu� is modelled by virtual source of flowMSf � : ½�DSSfl;DSSfu� (denoted as MSf � : ½fSSf �). In
the context of Example 1, SSf : im and SSe : Vm are considered uncertain. They are modelled on BG (see Fig. 2), such that
relations (4) and (5) are obeyed. The latter lead to development of BG shown in Fig. 3.
im; im
h i

true
¼ SSf : im �MSf � : ð�½�DSSfim ;l;DSSfim ;u�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MSf � :½fSSf ;im �

ð4Þ

Vm;Vm
� �

true ¼ SSf : Vm �MSf � : ð�½�DSSfVm ;l;DSSfVm ;u�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MSf � :½fSSf ;Vm �

ð5Þ
In Fig. 3, one I-ARR can be derived from observable junction 11 [33] as:
½IARR1ðtÞ; IARR1ðtÞ� ¼ Ir1;nðtÞ þ ½B1ðtÞ;B1ðtÞ� ð6Þ
Fig. 2. BG of RLC circuit (Fig. 1) with interval valued uncertain system parameters R1, C1 and L1.



Fig. 3. BG of RLC circuit (Fig. 1) with interval valued uncertain system parameters R1, C1 and L1 and uncertain measurements im and Vm .
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Ir1;nðtÞ ¼ UðtÞ � L1
dfSSf : img

dt
� R1fSSf : img � fSSe : Vmg ð7Þ

½B1ðtÞ;B1ðtÞ� ¼ �ð½wL1 � þ ½wR1 �Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Parametric
Uncertainty

� ½L1; L1� � dð½fSSf :im �Þdt
þ ð½R1;R1�ÞðMSf : �½fSSf :im �Þ þ ðMSe : �½fSSe:Vm �Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Measurement
Uncertainty

ð8Þ
where Ir is the nominal part of the I-ARR (sensitive to nominal value of parameters and point valued system variables)
referred-to as nominal residual and ½B1ðtÞ;B1ðtÞ� is the interval valued part (sensitive to intervals) referred-to as Uncertain

Residual Interval Function (URIF). Under faulty conditions, ð�Ir1;nðtÞÞ R ½B1ðtÞ;B1ðtÞ� (see [29,33] for proof). Range of URIF is
obtained by a set of finite sequence of steps, involving interval arithmetic as detailed in [29,33].

2.2. Major issues at hand

There are two major issues related with efficient evaluation of URIF range. These limitations arise due to the presence of
measurement uncertainty intervals.

1. Multi-incident interval variables: Presence of multi-incident intervals in an interval function lead to over-estimation of
range [37] and wrapping effects [38]. This classic problem leads to over-estimation of interval range and thin interval
enclosures [31]. The I-ARR derived at an observable junction is sensitive to measurement uncertainty intervals. As such,
a particular measurement uncertainty interval can manifest multiple times in an I-ARR, depending upon the number of
BG elements to which the junction is sensitive. For instance, URIF of (8) is sensitive to multiple occurring
� ½�DSSfim ;l;DSSfim ;u�. In complex systems, this problem may escalate significantly depending upon the number of BG ele-
ments that are sensitive to the BG junction at which a particular I-ARR is derived. Thus, there is a necessity to develop FD
reasoning so that measurement uncertainties are not considered for URIF range evaluation (or threshold generation).

2. Estimation of signal derivative(s): The I-ARR expressions are mostly sensitive to derivatives (single or multiple order) of
measurement signals. These derivatives manifest in the point valued nominal residual and URIF. As of present, the estima-
tion of interval bounds over derivative of interval valued signals is done using finite difference of successive intervals. For
instance, URIF of (8) is sensitive to dð½fSSf :im �Þ=dt which is approximated as,
½L1; L1� � dð½fSSf :im �Þdt
¼ L1; L1
� � � ð �DSSeim ;l;DSSeim ;u

� �
ti
� �DSSeim ;l;DSSeim ;u
� �

ti�1
Þ

ti � ti�1
ð9Þ
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with,
�DSSeim ;l;DSSeim ;u
� �

ti
� �DSSeim ;l;DSSeim ;u
� �

ti�1
¼ ½�DSSeim ;l;ti � DSSeim ;u;ti�1

;DSSeim ;u;ti þ DSSeim ;l;ti�1
� ð10Þ
where ti is the discrete time index. Finite-difference method is a worst case approximation. As such, efficient methods are
required for optimal approximation of the measurement derivative interval. The above mentioned issues are dealt respec-
tively, by exploiting FME and sliding-mode differentiator as discussed below.

2.2.1. Fourier-Motzkin (FME) Elimination
To alleviate the aforementioned issues, FME is exploited for FD reasoning with respect to uncertain measurements. FME

finds the solution(s) of a given linear system of inequalities: A � x 6 B where A 2 Rm;n and B 2 Rm. Firstly, following notations
are considered:
Iþ ¼ fi : ai1 > 0g; I0 ¼ fi : ai1 ¼ 0g; I� ¼ fi : ai1 < 0g; a0ij ¼ aij=jai1j; b0
i ¼ bi=jai1j
A system of inequalities A � x 6 B can be written in component form as:
a11 � x1 þ a12 � x2 þ � � � þ a1n � xn 6 b1

a21 � x1 þ a22 � x2 þ � � � þ a2n � xn 6 b2

..

.

an1 � x1 þ an2 � x2 þ � � � þ amn � xn 6 bm

8>>>><>>>>: ð11Þ
The objective remains in elimination of x1 from system (11) and deduction of upper–lower bounds over certain interval of

x1 using x2; x3; � � � ; xn. For each row i, where ai1–0, the ith inequality
Pn

j¼1aij � xj 6 bi is multiplied by 1
jai1 j.

Hence, system (1) leads to an equivalent system as follows:
x1 þ a0i2 � x2 þ � � � þ a0in � xn 6 b0
i for i 2 Iþ

ai2 � x2 þ � � � þ ain � xn 6 bi for i 2 I0

�x1 þ a0i2 � x2 þ � � � þ a0in 6 b0
i for i 2 I�

8><>: ð12Þ
It follows that x2; x3; . . . ; xn are the solution of the original system (11) if and only if x2; x3; . . . ; xn satisfy [42]:
Xn
j¼2

aij � xj 6 bi for i 2 I0

Xn
j¼2

a0kj � xj � b0
k 6 x1 6 a0i �

Xn
j¼2

a0
ij � xj for i 2 Iþ and k 2 I�

8>>>><>>>>: ð13Þ
Hence, with respect to system (12), it can be deduced that x1 satisfies:
max
ðk2I�Þ

Xn
j¼2

a0kj � xj � b0
k

 !
6 x1 6 min

ði2IþÞ
b0
i �
Xn
j¼2

a0ij � xj
 !

ð14Þ
The same procedure is iterated in order to obtain existential condition for upper and lower bound of x2; x3; . . . ; xn.

The complexity of calculation for each iteration is of the order of k2=4 where k is the number of constraints in the system
of inequalities. An illustrative example is considered.

Example 2. Consider the two linear equations as shown in (15) with variables xi, (i = 1, . . .,3) such that their upper and lower
limits are known. The latter are considered in (16) and (17). Each of the variables are also bound by a set of constraints (18),
(19) and (20).
r1 ¼ a1x1 þ b1x2 þ c1
r2 ¼ a2x2 þ b2x3 þ c2

ð15Þ
where a1; b1; c1; a2; b2; c2 > 0.
Consider the upper and lower bounds on the linear system as,
q1 6 r1 6 q2 ð16Þ

l1 6 r2 6 l2 ð17Þ

i1 6 x1 6 i2 ð18Þ

j1 6 x2 6 j2 ð19Þ
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k1 6 x3 6 k2 ð20Þ

Step 1: Elimination of x1Using (15) and adding (16) and (17),
q1 þ l1 6 a1x1 þ ðb1 þ a2Þx2 þ b2x3 þ c1 þ c2 6 q2 þ l2 ð21Þ

Eqs. (18) and (21) imply,
max i1;
ðq1 þ l1Þ � ðb1 þ a2Þx2 � b2x3 � c1 � c2

ða1Þ
� �

6 x1 6 min i2;
ðq2 þ l2Þ � ðb1 þ a2Þx2 � b2x3 � c1 � c2

ða1Þ
� �

ð22Þ
Eq. (22) implies,
i1 6 i2
q1 þ l1 6 q2 þ l2

ð23Þ

i1 6 ðq2 þ l2Þ � ðb1 þ a2Þx2 � b2x3 � c1 � c2
ða1Þ

� �
ð24Þ

ðq1 þ l1Þ � ðb1 þ a2Þx2 � b2x3 � c1 � c2
ða1Þ

� �
6 i2 ð25Þ
Step 2: Elimination of x2
While (23) is a redundant information, (24), (25) and (19) lead to,
max j1;
ðq1 þ l1Þ � b2x3 � c1 � c2 � a1i2

ðb1 þ a2Þ
� �

6 x2 6 min j2;
ðq2 þ l2Þ � b2x3 � c1 � c2 � a1i1

ðb1 þ a2Þ
� �

ð26Þ
Eq. (26) implies,
j1 6 j2
q1 þ l1 6 q2 þ l2

ð27Þ

j1 6 ðq2 þ l2Þ � b2x3 � c1 � c2 � a1i1
ðb1 þ a2Þ

� �
ð28Þ

ðq1 þ l1Þ � b2x3 � c1 � c2 � a1i2
ðb1 þ a2Þ

� �
6 j2 ð29Þ
Step 3: Elimination of x3
Similar to the previous step, (27) gives redundant information and (28), (29) and (20) lead to,
max k1;
ðq1 þ l1Þ � j2ðb1 þ a2Þ � c1 � c2 � a1i2

ðb2Þ
� �

6 x3 6 min k2;
ðq2 þ l2Þ � j1ðb1 þ a2Þ � c1 � c2 � a1i1

ðb2Þ
� �

ð30Þ
For notational simplicity, (30) is represented as,
x3;FME 6 x3 6 x3;FME ð31Þ

Eq. (30) leads to following conditions,
k1 6 ðq2þl2Þ�j1ðb1þa2Þ�c1�c2�a1 i1
ðb2Þ

ðq1þl1Þ�j2ðb1þa2Þ�c1�c2�a1 i2
ðb2Þ 6 k2

ð32Þ
Eq. (32) is a necessary condition for the existence of a feasible set of solution(s) in terms of known constants (coefficients
sensitive to linear inequalities (16) and (17)). Moreover, x3 can be found bounded in (30) by known constants. However,
unlike (30), (22) and (26) generate bounds in terms of unknown variables. The unknown variables must be eliminated to
generate the limits in terms of known constants. To this end, backward propagation by substitution of known constants
is executed as discussed below.

Step 5: Starting from (26), specific sequences of operations are executed in order to eliminate unknown variables as:

1. [�ðb2Þ�Eq. (30) + ðb1 þ a2Þ�Eq. (26)]/ðb1 þ a2Þ gives:
maxðj1; ðq1�q2Þþðl1�l2Þþa1ði1�i2Þþj1ðb1þa2Þ
b1þa2

Þ 6 x2 6 minðj2; ðq2�q1Þþðl2�l1Þþa1ði2�i1Þþj2ðb1þa2Þ
b1þa2

Þ
	 x2;FME 6 x2 6 x2;FME

ð33Þ
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2. [�ðb2Þ�Eq. (30) + ðb1 þ a2Þ�Eq. (33) + ða1Þ�Eq. (22)]/ða1Þ gives:	 
 	 


max i1;

2ðq1�q2Þþ2ðl1�l2Þþ2a1 i1�a1 i2þðj1�j2Þðb1þa2Þ
a1

6 x1 6 min i2;
2ðq2�q1Þþ2ðl2�l1Þþ2a1 i2�a1 i1þðj2�j1Þðb1þa2Þ

a1

	 x1;FME 6 x1 6 x1;FME

ð34Þ
Thus, given that existential condition (32) is obeyed, upper and lower bounds on each of the variables can be found in
terms of known constants given in (30), (33) and (34). Clearly, FME leads to optimal boundaries over the system variables.
In the FD context, such variables xi, (i = 1, . . .,3) are analogous to a dynamical-system measurements and constants
a1; b1; c1; a2; b2; c2 are analogous to dynamical system parameters.

2.2.2. Numerical differentiator
To enable optimal estimation of the bounds on derivatives of noisy signals that are inevitably involved in evaluation of

residuals, a first-order sliding mode differentiator is proposed.

2.2.2.1. Sliding mode differentiator. Let y be a signal to be differentiated, z0 be an estimate of the signal to be derived and
z1; . . . ; zn be the estimated derivatives. Note that y ¼ y0 þ e where e is a bounded Lebesgue-measurable noise with unknown
Lipschitz constant and y0 is an unknown base signal with nth derivative having a known Lipschitz constant L > 0, which
satisfies:
yðnÞ0 ðtÞ � yðnÞ0 ðt � 1Þ
��� ��� 6 L � Dt ð35Þ
The equations of the 1st order differentiator (given in Fig. 4) can be written as follows:
_z0 ¼ �a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0 � yðtÞj jp

signðz0 � yðtÞÞ þ z1
_z1 ¼ �a1 � signðz0 � yðtÞÞ

(
ð36Þ
where z1 and z0 are the states of the differentiator, y is the signal to be differentiated. a0 and a1 are the parameters that must
be tuned. The latter depend on the Lipschitz’s constant L as [43],
a0 ¼
ffiffiffi
L

p

a1 ¼ 1 � 1L ð37Þ
The variable z0 serves as an estimate for y while z1 converges towards the required derivative _y. The advantage of using
this sliding mode differentiator is that it also assesses the accuracy of estimated derivative of the measured signal. This
accuracy denoted as e1, can be calculated as follows [44]:
Fig. 4. Simulation block of the proposed sliding mode differentiator.



502 M.S. Jha et al. /Mechanical Systems and Signal Processing 93 (2017) 494–514
e1 ¼ l1 �
ffiffiffi
L

p
� ð�eÞð�1

2Þ ð38Þ

where l1 P 1 (depends only on a0 and a1) and �e is the maximum value of the noise. Hence the derivative interval is deduced
as follows:
_y 2 _yest � e1; _yest þ e1½ � ð39Þ

where _yest ¼ z1 is the estimate of the first derivative of y.

Proposition. Let us consider e0 as the error between the estimated variable z0 and its measured value y. If a second order sliding
motion is induced forcing e0 ¼ _e0 ¼ 0, then z1 provides an estimate of _y according to the first order sliding mode differentiator.
Proof. Let us consider the scalar differential equation _xðtÞ ¼ gðt; xÞ where the measured output yðtÞ ¼ xðtÞ in fault free con-
ditions. Let us define a variable e0ðtÞ ¼ z0 � yðtÞ, the equations can be rewritten as follows:
_e0 ¼ �a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðtÞj jp � signðe0ðtÞÞ þ z1 � gðt; xÞ

_z1 ¼ �a1signðe0ðtÞÞ

(
ð40Þ
Let us define a new variable e1ðtÞ ¼ z1ðtÞ � gðt; xÞ. Then, (40) can be rewritten as:
_e0 ¼ �a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðtÞj jp � signðe0ðtÞÞ þ e1ðtÞ

_e1 ¼ �a1signðe0ðtÞÞ � _gðt; xÞ

(
ð41Þ
If a second order sliding motion is induced forcing e0ðtÞ ¼ _e0ðtÞ ¼ 0, then the first equation implies e1ðtÞ ¼ 0 ) z1ðtÞ ¼ gðt; xÞ.
Consequently, z1 provides an estimate of _xðtÞ i.e. _yðtÞ. h
2.3. Comparative study

In this paper, a comparison study between three differentiators is performed. The three differentiation methods are as
follows:Moving average differentiator, the proposed differentiator described above and the Super-Twisting (ST) differentiator pro-
posed by Levant. The latter are not described in this paper and the readers can refer: [43] for the ST differentiator and [49] for
the description of moving average differentiator.

2.3.1. Performance indicators
A range of model validation statistical indicators have been used to provide a numerical description of goodness of the

derivative estimates. The first performance-indicator chosen is Index of Agreement (IoA) which was developed as a standard-
ized measure of the degree of model prediction error and varies between 0 and 1. A value of 1 indicates a perfect match, and
0 indicates no agreement at all. The index of agreement can detect additive and proportional differences in the observed and
simulated means and variances. The IoA is presented under two ratios d1 and d2 calculated as follows:
d1 ¼ 1�
PN

i¼1 Pi � Oij jPN
i¼1 Pi � Oj j � Oi � Oj jð Þ ; d2 ¼ 1�

PN
i¼1 Pi � Oij j2PN

i¼1 Pi � Oj j � Oi � Oj jð Þ2
ð42Þ
where N is the number of data points, Oi the observed data points, Pi the predicted data points and O the average of observed
data.

Another performance indicator is exploited, namely the Percentage Variance Accounted For (VAF). The VAF verifies the
correctness of a model by comparing the real output (derivative signal) with the estimated output of the model (derivative
estimate). The VAF is calculated as follows:
VAF ¼ 1�
1
N

PN
i¼1 Oi � Pi½ �2

1
N

PN
i¼1 Oi½ �2

 !
� 100 ð43Þ
2.3.2. Performance study
In order to assess the accuracy of each differentiator, a sinusoidal signal is used as an input and the results given by the

aforementioned indicators are assessed. Different simulations with different noise magnitudes have been performed in order
to determine the best differentiator among the three considered ones. In the simulation tests, a reference signal is used as in
[49]. The reference signal is a sinusoidal signal yref ¼ 1:5 sinð2pf eqtÞ. The frequency is fixed to be f eq ¼ 0:8 Hz and the sam-

pling time is fixed at T ¼ 10�3 s. The analytic time derivative of yref is used as the standard to compare with the estimations.
In order to get the best performance, the differentiator parameters have been tuned after a series of simulations. Fig. 5 shows
the reference signal with a noise magnitude e = 0.1 and its derivative using the sliding mode differentiator described in
Section 2.2.2.1, the Levant differentiator and the moving average differentiator. Moreover, Table 1 summarizes the



Table 2
Performance indicators for non-noisy signal simulation in Fig. 6.

Performance indicators

Levant differentiator VAF = 71.1222; (d1 = 0.7252 and d2 = 0.6783)
Proposed differentiator VAF = 81,8376; (d1 = 0.8112 and d2 = 0.7889)
Moving average differentiator VAF = 92.5148; (d1 = 0.9894 and d2 = 0.9218)

Fig. 6. Given a non-noisy reference signal (not shown), comparative study between Moving Average differentiator (MA diff, green curve), the derivative
using Levant sliding mode differentiator (Levant diff, blue curve) and our proposed sliding mode differentiator (Proposed diff, red curve). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Given a noisy reference signal (not shown), comparison study between Moving Average differentiator (MA diff, green curve), the derivative using
Levant sliding mode differentiator (Levant diff, blue curve) and our proposed sliding mode differentiator (Proposed diff, red curve). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Performance indicators for noisy signal simulations.

Performance indicators

Levant differentiator VAF = 67.6333; (d1 = 0.8452 and d2 = 0.8883)
Proposed differentiator VAF = 69.4685; (d1 = 0.9389 and d2 = 0.9855)
Moving average differentiator VAF = 32.6269; (d1 = 0.6694 and d2 = 0.5918)
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performance indicators for each differentiation method for N = 100 simulations with various noise magnitudes (e takes val-
ues from 0.01 to 0.2) while Table 2 gives the performance indicators when dealing with a non-noisy signal. It is worth noting
that the moving average differentiator gives the best results when dealing with non-noisy signal (see Fig. 6). However, in the
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presence of the signal noise, the proposed sliding mode differentiator gives better performance (see Fig. 5). Hence, latter is
the most suitable differentiator for real applications.
3. Fault detection methodology

Let control/input vector be UðtÞ 2 ½SeðtÞ; Sf ðtÞ�T with SeðtÞ 2 RNSe and Sf ðtÞ 2 RNSf as the source of effort and source of flow
vectors respectively. Also, nominal system parameter vector h 2 RNh and uncertain parameter vector ½h; h� 2 RNm (Nm 6 Nh)
are defined. Consider uncertain measurements: uncertain dualized effort detector vector as ½SSe; SSe� 2 RNSSe and uncertain

dualized flow detector vector as ½SSf; SSf� 2 RNSSf .

3.1. FD with respect to uncertain system parameters: I-ARR derivation

First, only uncertain system parameters are considered for I-ARR enabled passive diagnosis (generation of nominal resid-
ual and thresholds). Here, the proposed differentiator (see Section 2) is used for signal differentiation and the subsequent
residual evaluation. It should be noted that at this stage, measurement uncertainties are not taken into account for threshold
generation. Following steps are taken:

i. Preferred derivative causality is assigned to the nominal model.
ii. Parametric uncertainties are modelled in interval form and represented on the nominal BG, (see [33]) to obtain uncer-

tain BG.
iii. The candidate ARRs are generated from 1(0) junction, such that sum of efforts (flows), respectively, is equal to zero, as

shown in (44) and (45), where s is the sign of the bond according to energy convention.

 for 0-junction:
X
s � ½f ; f � þ

X
Sf þ

Xi6Nm

i¼0

si �MSf : ½wi� ¼ 0 ð44Þ

 for 1-junction:
i6N
X

s � ½e; e� þ
X

Seþ
Xm

i¼0

si �MSe : ½wi� ¼ 0 ð45Þ
iv. The unknown effort or flow variables are then eliminated using covering causal paths (following the causal relation-
ships) from unknown variables to known (measured) variables (dualized detectors), to obtain ith I-ARR, ½Ri;l;Ri;u�. The
latter contains only known variables and their derivatives (c.f. (46)).X X

½Ri;l;Ri;u� : Wihn; ½h; h�; ½wi�; Se; Sf ð; SSeðtÞ; ;SS _eðtÞ; SS€eðtÞ; . . . SSf ðtÞ; SS _f ðtÞ; SS€f ðtÞ; . . .Þ ð46Þ
v. I-ARR ½Ri;l;Ri;u� is composed of point valued function Wi;1 and interval valued part identified as interval function Wi;2 as
shown in (47)–(49).
½Ri;lðtÞ;Ri;uðtÞ� : Iri;nðtÞ þ ½Bi;lðtÞ; Bi;uðtÞ� ð47Þ

Iri;nðtÞ ¼ Wi;1ðhn; SSeðtÞ; SSf ðtÞ;
X

Se;
X

Sf ; dSS _eðtÞ; dSS _f ðtÞÞ ð48Þ

½Bi;lðtÞ;Bi;uðtÞ� ¼ Wi;2 ½h; h�; ½dh; dh�; SSeðtÞ; SSf ðtÞ; ½�e; e�
� � ð49Þ
vi. As seen in (48), the nominal part is formed by point valued function Wi;1, which is sensitive to nominal values of the
parameters, measurements, and estimate of the measurement derivatives. The proposed sliding mode differentiator
(Section 2.2.2) is exploited for estimation of the flow (or effort) derivative as (c.f. (38) and (39)),
 �

SS _f jðtÞ 2 dSS _f jðtÞ � eSSfj ;

dSS _f jðtÞ þ eSSfj

SS _f jðtÞ 2 dSS _f jðtÞ þ ½�eSSfj ; þeSSfj �
ð50Þ
The interval valued part identified as interval function Wi;2 sensitive to interval valued uncertainties, measurements and
vector of derivative uncertainty intervals ½�e; e� (cf. (49)).
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3.1.1. Evaluation of URIF range

vii. Point valued arguments and arithmetic operators of URIF Wi;2 are replaced by the corresponding interval arguments
and interval arithmetic operators [29,33]. URIF Wi;2 is expressed as finite sequence of interval arithmetic operations.

viii. URIF range ½Bi;lðtÞ;Bi;uðtÞ� is obtained using Interval Arithmetic and following conditions are achieved [29,33]:

 Under nominal conditions (see [33] for proof),
�Iri;nðtÞ 2 ½Bi;lðtÞ;Bi;uðtÞ� ð51Þ

 Under Parametric Fault:
�Iri;nðtÞ R ½Bi;lðtÞ;Bi;uðtÞ� ð52Þ
3.2. FD with respect to uncertain system measurements: derivation of feasible conditions

While the previous section considered uncertain parameters, this section exploits FME to develop FDmethod with respect
to uncertain measurements. To that end, nominal residuals associated with each of the I-ARRs derived previously, are con-
sidered bounded between the interval limits provided by their respective URIF range (see Section 3.1).

ix. The set of nominal residuals Iri;nðtÞ for i ¼ 1;2 . . .NIARR where NIARR are the total number of I-ARRs (c.f. (53)), are consid-
ered as a system of linear inequalities: System S1 (see (53)), bounded by interval limits given by URIF range evaluation,
as obtained previously in (51).

x. Moreover, each of the uncertain measurements are considered bounded: System S2 (54).
System S0

System S1 :

B1;lðtÞ 6 �Ir1;nðtÞ 6 B1;uðtÞ
B2;lðtÞ 6 �Ir2;nðtÞ 6 B2;uðtÞ
..
.

BNIARR ;lðtÞ 6 �IrNIARR ;nðtÞ 6 BNIARR ;uðtÞ

8>>>>><>>>>>:
ð53Þ

System 2 :

SSe1;lðtÞ 6 SSe1ðtÞ 6 SSe1;uðtÞ
SSe1;lðtÞ 6 SSe1ðtÞ 6 SSe1;uðtÞ
..
.

SSeNSSe ;lðtÞ 6 SSeNSSe ðtÞ 6 SSeNSSe ;uðtÞ

8>>>>><>>>>>:
;

SSf1;lðtÞ 6 SSf1ðtÞ 6 SSf1;uðtÞ
SSf1;lðtÞ 6 SSf1ðtÞ 6 SSf1;uðtÞ
..
.

SSfNSSf ;lðtÞ 6 SSfNSSf ðtÞ 6 SSfNSSf ;uðtÞ

8>>>>><>>>>>:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð54Þ
FME method is applied over System S0, such that upper and lower bounds over each of the measurements are found in
terms of known system parameters and measurement uncertainties.

v. The parametric faults are assessed with respect to System S1 by verifying the contentment of nominal residual inside
the interval limits (thresholds) provided by the respective URIF ranges.

vi. Measurement faults are assessed using the conditions provided by FME over system S0.

4. Study on mechatronic system

The mechatronic Torsion Bar 1.0 system has already been the subject of simulation-experimental study in [33], where
only uncertain parameters are taken into consideration. Therein, measurement uncertainties have not been taken into
account. In this paper, in order to maintain coherence with previous work, authors have maintained the same notations
and system variable designations. This paper does not detail the system functioning and BG models. Instead readers are
referred to [33,45,46] for description of the latter. The schematic model of the system and nominal BG model is presented
in Appendix A. Table 3 provides the details of various system parameters and variables.

Moreover, in this paper, it has been assumed that elastic force (spring action) manifesting in the torsion bar is measured
by a force sensor. In reality, this translates to the usage of force sensors (like strain gauges) for stress/strain measurement.
This is done to prevent the problems arising due to initial conditions and presence of an integral term. This assumption of the
presence of a force sensor (Df: F, see Fig. A.2) is made to demonstrate the method successfully. MATLAB 2011a� and Simu-
link2011a� have been used for simulation purposes. The interval valued functions have been written inMatlab Function Block
in Simulink and integrated with INTLAB� [47] to execute interval calculations during simulation.

Fig. 7 shows the system response obtained by simulation of nominal BG (see Fig. A.2) under nominal conditions. The
system is considered operating in feedback closed loop (Proportional-Integral (PI) control). The motor velocity xm is



Fig. 7. System response under nominal conditions (a) motor velocity measurement, (b) load disk velocity and (c) elastic force in torsion bar.

Table 3
System parameters and variables.

Parameter h Designation Nominal value hn Multiplicative uncertainty dh ; dh
� �

ks Spring constant of the shaft 1.786 N�m/rad [�0.1,0.1]
bs Damping coefficient of shaft 5:11� 10�4 N�m/rad [�0.1,0.1]

km Torque constant 3:89� 10�4 N�m/A –

kbelt Teeth ratio (motor disk and motor shaft) 3.75 –
La Rotor inductance 1:34� 10�3 H –

Ra Rotor resistance 1.23 X –
Jm Rotor inertia 6.76 � 10�6 kg�m2/rad [�0.2,0.2]
f m Motor friction coefficient 2 � 10�6 N�m�s/rad [0,0.2]
JMd Motor disk rotational inertia 9.07 � 10�4 kg�m2/rad [�0.1,0.1]
bMd Viscous friction in motor disk 5.025 � 10�3 N�m�s/rad [�0.2,0.2]
JLd Load disk rotational inertia 1.37 � 10�3 kg�m2/rad [�0.2,0.2]
bLd Viscous friction in load disk 2.5 � 10�5 N�m�s/rad [�0.2,0.2]
SSf1:xm Motor velocity measurement – –
SSf2:xLd Load disk velocity measurement – –
SSe:F Measurement of Elastic Force in the Torsion Bar – –
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controlled at reference xm;ref ¼ 112:5rad=s so that motor disk velocity xMd is regulated to xMd;ref ¼ xm;ref =kbelt ¼ 30 rad=s.
Zero mean Gaussian noise is added to sensor (measurement) outputs.

4.1. Parametric FD module: I-ARRs and Robust thresholds

The parametric faults are detected using I-ARRs which generate nominal residuals and interval valued thresholds. The
methodology detailed in Section 3.1 is followed.

i. Taking uncertain system parameters into consideration, the uncertain BG of the monitorable part of the system is
constructed in preferred derivative causality (see Fig. A.3). All the sensors are dualized and impose corresponding
flows/efforts as SSf1 : xm; SSf2 : xLd; SSe : F.

ii. Two I-ARRs are derived from the junctions 11 and 12 (see Fig. A.3) as given in (55) and (59) respectively.

From Junction 11:
R;R
� �

1 ¼ sPI � ðJm;n _xm þ dJm ; dJm

h i
Jm;n _xmÞ � ðf m;nxm þ dfm ; df m

h i
f m;n �xmÞ � ð1=kbeltÞððJMd;nð _xm=kbeltÞ

þ dJMd
; dJMd

h i
JMd;nð _xm=kbeltÞÞ þ ðbMd;nðxm=kbeltÞ þ dbMd;

; dbMd;

h i
bMd;n � ðxm=kbeltÞÞ þ SSe : FÞ ð55Þ
The first I-ARR is sensitive to measurements SSf: xm and their first order derivatives. The latter is estimated using the
proposed sliding mode differentiator (see Section 2.2.2) as,
_xm 2 d_xm � exm ;
d_xm þ exm

h i
_xm ¼ d_xm þ exm�;þexm½ �

ð56Þ
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Then, the nominal part Ir1 and interval valued part (URIF) can be obtained as,
Ir1;nðtÞ ¼ sin � Jm;n
d_xm � f m;nxm � 1

kbelt
JMd;n

d_xm

kbelt
þ bMd;n

xm

kbelt
þ SSe : F

 !
ð57Þ

½BðtÞ1;l;BðtÞ1;u� ¼ dJm ; dJm

h i
Jm;n

d_xm

	 

� ½Jm; Jm�½�exm ;þexm � � ð df m ; df m

h i
f m;n �xmÞ

� 1
kbelt

dJMd
; dJMd

h i
JMd;n

d_xm

kbelt
þ ½JMd; JMd�JMd;n

½�exm ;þexm �
kbelt

þ dbMd;
; dbMd;

h i
bMd;n

xm

kbelt

 !
ð58Þ
Similarly, energetic assessment at Junction 12 gives:
R;R
� �

2 ¼ F � JLd;n _xLd � bLd;nxLd � dJLd ; dJLd

h i
JLd;n _xLd � dbLd; ; dbLd;

h i
bLd;nxLd ð59Þ
The load disk velocity is differentiated using the sliding mode differentiator and the derivative is estimated as,
_xLd 2 d_xLd � exLd
;d_xLd þ exLd

h i
or; _xLd ¼ d_xLd þ �exLd

;þexLd

� � ð60Þ
Then, the nominal part Ir2 and associated URIF can be obtained as,
Ir2;nðtÞ ¼ F � JLd;nd_xLd � bLd;nxLd ð61Þ

½BðtÞ2;l;BðtÞ2;u� ¼ � dJLd ; dJLd

h i
JLd;nd_xLd � ½JLd; JLd�½�exLd

;þexLd
� � dbLd; ; dbLd;

h i
bLd;nxLd ð62Þ
It should be noted that electrical torque MSe : sPI is a PI controlled input to the monitorable part of the system; it is given
as:
MSe : sPI ¼ km � im ¼ km � ðUPI � km �xmÞ
Ra

1� e�ðRa=LaÞ�t
� � ð63Þ
where UPI is the PI controlled voltage input and im is the motor-stator current.
4.2. Measurement FD module

A measurement signal is inevitably corrupted with noise. The noise manifesting in the signal often masks the measure-
ment deviation/fault. Detection of abrupt changes in sensor measurements, modelling sensor drift and measurement bias/
tolerance-intervals are some of the significant issues that invoke the need for modelling measurement uncertainties.

4.2.1. Modelling system measurement uncertainty
Consider a measurement signal y(t) at time t. The noise is assumed to be normally-distributed Gaussian in nature, or
pðyðtÞÞ ¼ 1
ryðtÞ

ffiffiffiffiffiffiffi
2p

p exp �ðyðtÞ � �yðtÞÞ2=2r2
yðtÞ

	 

ð64Þ
where p denotes the probability density function, ryðtÞ is the standard deviation and �yðtÞ is the smoothed mean of the signal

in a running window of previous W signals. Common methods for signal smoothening include usage of moving median
filters, Finite Impulse Response (FIR) filters, etc. In this paper, a sliding window of previous W estimates is considered for
generation of smoothed (mean) signal as,
yðtÞ ¼
1

Wþ1

Xl¼W

w¼0

yðt �wÞ if t P W

yðt �wÞ if t < W

8><>: ð65Þ
In this paper, uncertainty interval over a measurement is modelled by taking into account the noise variance over the
mean measurement. The measurement signal is bounded as shown in (66) which accounts for 99.7% of signal values around
the smoothed mean yðtÞ. Denoting �yðtÞ � 3ryðtÞ 	 yðtÞl and �yðtÞ þ 3ryðtÞ 	 yðtÞu, the signal is bounded as shown in (67).
�yðtÞ � 3ryðtÞ < yðtÞ < �yðtÞ þ 3ryðtÞ ð66Þ

ylðtÞ < yðtÞ < yuðtÞ ð67Þ
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Thus, following the same notation, the speed and force measurements from the sensors are considered as,
xm;lðtÞ < xmðtÞ < xm;uðtÞ
xLd;lðtÞ < xLdðtÞ < xLd;uðtÞ
FlðtÞ < FðtÞ < FuðtÞ

ð68Þ
It should be noted that sensor-tolerance intervals can also be treated in the similar fashion to model the associated
uncertainty.

4.2.2. Determination of feasible conditions on uncertain measurements
The measurement bounds considered in (68) do not take into account the influence of parametric faults over sensor mea-

surements. In other words, the measurement bounds considered in (68) are sensitive to changes in measurements only; as
such, they remain sensitive to false alarms caused by changes in measurements due to parametric faults/deviations. Then, as
discussed in Section 3.2, FME technique is employed to obtain feasible conditions (bounds) over measurements while the
parametric deviations/faults are also taken into account.

System S0 considered for application of FME is shown in (69). System S1 is constituted by two nominal residuals derived in
(57) and (61), which remain bounded by their respective URIF ranges (58) and (62), under null parametric faults (nominal
conditions). System S2 comprises of set of constraints formed by relations considered in (68).
System S0

System S1
B1;lðtÞ 6 sin � Jm;n

d_xm � f m;nxm � 1
kbelt

JMd;n
c_xm
kbelt

þ bMd;n
xm
kbelta

þ SSe : F
� �� �

6 B1;uðtÞ

B2;lðtÞ 6 ðF � JLd;nd_xLd � bLd;nxLdÞ 6 B2;uðtÞ

8>><>>:
System S2

xm;lðtÞ < xmðtÞ < xm;uðtÞ
xLd;lðtÞ < xLdðtÞ < xLd;uðtÞ
FlðtÞ < FðtÞ < FuðtÞ

8>><>>:

8>>>>>>>>>>><>>>>>>>>>>>:
ð69Þ
FME method (see Section 2.2.1) is applied over System S0. In fact it can be observed that the set of inequalities described
here in (69) are analogous to the one considered in Example 2 (c.f. (15)–(20)). The correspondence is clear from the relations
given in (70) and (71).
r1 ¼ �Ir1;n;

r2 ¼ �Ir2;n;

� x1 ¼ SSe : xmðtÞ
x2 ¼ SSe : FðtÞ
x3 ¼ SSf : xLdðtÞ

8><>:
a2 ¼ �1;
b2 ¼ bLd;nxLd;

c2 ¼ JLd;nd_xLd

8><>:
a1 ¼ f m;n þ bMd;n

k2belt
;

b1 ¼ 1
kbelt

;

c1 ¼ sin � Jm;n
d_xm � JMd;n

c_xm

k2belt

8>>>><>>>>: ð70Þ

q1 ¼ B1;lðtÞ; q2 ¼ B1;uðtÞ
l1 ¼ B2;lðtÞ; l2 ¼ B2;uðtÞ

( i1 ¼ xm;lðtÞ; i2 ¼ xm;uðtÞ
j1 ¼ FlðtÞ; j2 ¼ FuðtÞ
k1 ¼ xLd;lðtÞ; k2 ¼ xLd;uðtÞ

8>><>>: ð71Þ
Thus, FME can be applied in a manner similar to the one shown for Example 2, with the values of coefficients and vari-
ables as shown in (70) and (71). The latter leads to a feasible condition and set of upper and lower bounds on measurements,
as obtained in (31), (33) and (34). Here, the feasible conditions have not been derived explicitly due to their obvious
correspondence with Example 2; instead, they are denoted as:
xm;FME 6 xm 6 xm;FME

xLd;FME 6 xLd 6 xLd;FME

FFME 6 F 6 FFME ð72Þ
4.3. Fault detection

A step input voltage of 220 V is given to the system. Fig. 8 shows the nominal residuals and interval valued thresholds
under nominal system conditions (without parametric, measurement faults). Evaluation of I-ARRs involves the usage of
proposed sliding-mode differentiator, such that derivatives _xm and _xLd are estimated as shown in (56) and (60) respectively.
As seen in Fig. 8, the nominal residuals are well contained within respective URIF bounds (thresholds). Here, the Lipschitz’s



Fig. 9. I-ARRs under nominal conditions without sliding mode differentiator (a) the nominal part Ir1 and associated URIF and (b) nominal part Ir2 and
associated URIF.

Fig. 8. I-ARRs under nominal conditions with sliding mode differentiator (a) the nominal part Ir1 and associated URIF and (b) nominal part Ir2 and
associated URIF.
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constants Lxm , LxLd
are chosen in such a way that signal derivatives are estimated with maximum VAP (c.f. (43)) and exm , exLd

are the maximum value of the Gaussian noise added to the xm and xLd measurements respectively.
exm ¼ lxm

ffiffiffiffiffiffiffiffi
Lxm

p � ðexm Þð�
1
2Þ; lxm

¼ 1; Lxm ¼ 0:0025; exm ¼ 0:001

exLd
¼ lxLd

ffiffiffiffiffiffiffiffiffi
LxLd

p � ðexLd
Þð�1

2Þ; lxLd
¼ 1; LxLd

¼ 0:0031; exLd
¼ 0:0001

ð73Þ
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Fig. 9 shows the nominal residuals without sliding mode differentiator. Clearly, it is corrupted with noise due to signal
differentiation which subsequently leads to an increased risk of false alarms or missed alarms. Fig. 10 shows the sensor mea-
surements bounded by their respective FME derived limits (c.f. (72)). The width of the sliding windows (c.f. (65)) W is 100
samples.
4.3.1. Parametric faults
In this section, only parametric faults are introduced in the system. Fig. 11 shows a 20% deviation of motor disk friction

coefficient over its nominal value. The URIF bounds consider 10% parametric deviation as uncertainty (see Table 3). Thus, the
injected deviation is detected as a fault. Similarly, Fig. 12 considers 30% deviation on load disk friction. The URIFs consider
20% parametric deviation as inherent uncertainty. As seen in Figs. 11 and 12, the injected deviations are detected as fault
when the nominal residual(s) go outside their thresholds (URIF bounds).
Fig. 10. Measurements under nominal conditions bounded by FME enabled bounds (a) motor velocity measurement, (b) elastic force in torsion bar and (c)
load disk velocity.

Fig. 11. I-ARR under parametric fault (a) the nominal part Ir1 and associated URIF and (b) deviation (fault) injected in motor disk friction.



Fig. 13. System measurements with parametric faults bounded by FME derived bounds (a) motor velocity measurement, (b) elastic force in torsion bar and
(c) load disk velocity.

Fig. 12. I-ARR under parametric fault (a) the nominal part Ir2 and associated URIF and (b) deviation (fault) injected in load disk friction.
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It should be noted that there have been no measurement faults injections yet. As such, it is interesting to observe the sys-
tem measurement(s) profile(s). Fig. 13 shows the sensor measurements bounded by FME derived bounds (envelopes). With
only parametric faults, system S1 (c.f. (69) has no solution in faulty regime. Therein, FME bounds (c.f. (72)) on measurements
are influenced by �3r bounds (c.f. (68)).
4.3.2. Measurement faults
Abrupt change in speed measurements are introduced in form of short pulses as shown in Fig. 14. Such faults can be of

various types. In this paper, only abrupt changes are considered. As seen in Fig. 14, abrupt faults are successfully detected
when the measurement signal goes out of the FME derived bounds. Sliding window length (W = 100 samples here) directly
influences the smoothed signal quality. LargerW implies larger lag introduced into the smoothed signal. While a larger lag is
helpful in detection of abrupt changes, it may lead to non-containment of signal within FME bounds during transient



Fig. 14. System measurements with abrupt faults (a) motor velocity measurement and (b) load disk velocity.
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regimes. Moreover, W determines the moving variance and �3r bounds. Thus, a trade-off must be achieved between fault
detection and the transient regime performance.

An abrupt change can be distinguished against gradual degradation using qualitative/quantitative trend analysis
techniques [40], hypothesis testing, outlier identification [9,48], etc. These methods will be applied in future works.
5. Conclusions

1. The FD method presented in this paper shows that the proposed first-order sliding mode differentiator can be success-
fully integrated within the framework of I-ARRs based fault diagnosis. Optimal estimations of measurement signal deriva-
tives sensitive to I-ARRs, lead to noise reduction in nominal residual evaluations. This is helpful in insuring their
appropriate containment within the interval valued thresholds. This considerably reduces the possibilities of false alarms
and missed alarms. Moreover, the associated interval-valued accuracy bounds can be used for threshold generation by
including it as an interval variable. The latter lead to successful detection of parametric faults. Sensitivity analysis is
usually helpful in quantitative assessment of parametric deviation over residual change. The latter has not been studied
in this paper and can be referred in [26]. Moreover, residual based fault isolability problem [14] has not been studied in
the context of I-ARR enabled diagnosis. This will be explored in future works.

2. The comparative study has shown that our differentiator leads to better estimation performance when compared with
existing differentiators. Moreover, a better performance can be obtained with tunable Lipschitz’s constant.

3. In future, this framework will be used as FD module for diagnostics and fault prognostics. As such, this work along with
work presented in [33] shall form the basic building block of integrated health monitoring architecture (diagnostics and
prognostics).

4. The FME technique has been integrated suitably within the I-ARR based diagnosis such that measurement faults can be
detected successfully. In this paper, only abrupt sensor faults are considered. In future, various other phenomena like
sensor drift, sensor bias will be considered exploiting the same framework.

5. Exploitation of FME technique for FD purposes creates the possibilities for other powerful optimization techniques such
as advanced convex optimization methods and set membership based techniques for similar objectives. Authors are
enthusiastic to integrate such advanced techniques for integrated system supervision.
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Appendix A

See Figs. A.1–A.3.



Fig. A.2. Bond graph model (preferred integral causality) of the nominal system.

Fig. A.1. Schematic model of the mechatronic system.

Fig. A.3. Bond graph model of monitorable part in preferred derivative causality with parametric uncertainties as intervals.
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ymssp.
2017.02.022.
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