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Abstract: Extending the Remaining Useful Life (RUL) of dynamic systems functioning in
closed loop in accordance with damage progression dynamics is a challenging task. Such target
combines the challenges emanating from the domain of Prognostic Health Management (PHM)
and engineering of the control theory. The main contribution of the paper consists in the
synthesis and the analysis of two control reconfiguration strategies in order to achieve such
objective.
This paper presents two control strategies, one reconfigures the controls input and the
other reconfigures the setpoint. The first structure modifies the controls input sent to the
system using a modulation parameter. The second structure proposes a modification to
the operational setpoint of the system’s control loop. These modulations are obtained from
an optimization algorithm making it possible to achieve a trade-off between the dynamic
performance requirement and the RUL criteria.
The optimization algorithm is based on the prediction of the RUL and on the estimation of the
deterioration. A numerical example illustrates the use of each of these two strategies, through
the results of estimating the deterioration, predicting RUL, and obtaining the modulation
parameter from the optimization. The RUL extension and its impact on performance trade-
off are illustrated to evaluate the performances of both strategies.
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1. INTRODUCTION

The extension of Remaining Useful Life (RUL) based on
prognosis results is an emerging topic in maintenance ac-
tivities. Today the number of complex systems is increas-
ingly important; among these, the extension of their re-
maining lifetime during their operation by maintenance ac-
tions cannot always be conducted due to non-accessibility
or non-availability (the mission of the system cannot be
interrupted). Extending the RUL of these systems can then
only be achieved with the help of a change in the mode
of operation. Moreover, damage to the actuators that are
directly related to the control inputs applied to the system,
require special attention. To extend the RUL, a general
solution lies in the modulation of the operating point to
slow down the rate of degradation.

Indeed, the growth in the complexity of industrial systems
and associated maintenance task lead to the increasing
use of the prognostics strategies on maintenance activi-
ties. Among these, there are model-based strategies us-
ing knowledge of the system model, data-based strate-
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gies driven including historical data, and hybrid strategies
which use both the data and system model.

Model-based strategies use the physical formalism or
stochastic or deterministic degradation model. We can
highlight in particular the work of (Luo et al., 2003) and
(Swanson, 2001) on the subject.

Data-based strategies concatenate a large set of obser-
vation data such as system output measurements and
operating mode. Works on given-based strategies include
(Roemer et al., 2001) and (Pecht, 2008).

Hybrid strategies combine model-based and data-based
strategies. They take advantage of the robustness given
by the system model and the precision provided by the
historical data. Among these works, publications are using
a Kalman filter ((Kan et al., 2015), (Bressel et al., 2016)
and (Pour et al., 2021)), or a particle filter ((Zio and
Peloni, 2011), (Jha et al., 2016a) and (Jha et al., 2016b))
for example.

There are several approaches in the literature, reliability
based wherein reliability is used as indicator of system
degradation incorporated into the control loop structure
((Khelassi et al., 2011a) and (Khelassi et al., 2011b)),
RUL based fault tolerant control and fault compensation



inspired strategies((Rodriguez et al., 2018) and (Obando
et al., 2021)). In the latter works, the choice of control
loop structure would have deserved to be justified. This
work, on the other hand, investigates two plausible control
strategies inspired from optimization control based relia-
bility framework and justifies their use for the extension
of RUL.

The main contribution of this paper is to provide a
real-time prognostic tool, combining optimization, RUL
prediction and control input regulation. An optimization
criteria is created between predicted RUL and an objective
defined sensitive to RUL, allowing an extension of RUL in
accordance with control modulation.

Section 2 is dedicated to the problem statement and RUL
prediction. Section 3 will be devoted to the synthesis of the
compensation structure and the associated optimization
in the context of compensation on the control signal.
Similarly, the synthesis of a second structure, whose com-
pensation is performed on the setpoint.

Section 4 focuses on the robustness of these methodologies.
An analysis of the impact of uncertainties on the prognos-
tics and the optimization is carried out, completed with
a numerical example by considering a forced uncertainty
on the degradation injected into the prognostics of RUL.
Finally, conclusions are presented and the perspectives are
given.

2. PROBLEM STATEMENT

In this paper, the effect of component degradation is
studied. Closed loop systems in accordance with damage
progression dynamics are highly influenced by controllers.
In addition, the RUL is then significantly impacted by the
control loop structure. The effect of the closed loop and
the degradation on the RUL can be generalized by:

RUL(k) = f(d(k), u(k)) (1)

with u(k) the input produced by the closed loop controller
and d(k) the actuator degradation with damage progres-
sion dynamics.

2.1 Closed loop system

Considering a Single Input Single Output (SISO) discrete
linear system noted P :

P (z) =
Y (x)

U(x)
(2)

A controller noted C is considered to drive the system
along the reference trajectory.

The tracking error is defined as: e(k) = y(k) − r(k), and
y(k) corresponds to the system output and r(k) is the
reference output trajectory.

2.2 Degradation

The degradation noted d(k) is defined as:

d(k) = d(k − 1).(1 + u(k)2.α) (3)

with α the degradation rate. Choice of the degradation’s
model is motivated by a sequential damage progression in
function of the system’s input (such as actuator degrada-
tion) (Letot and Dehombreux, 2009).

The degradation signal d(k) and its interaction with the
control signal from controller u(k) are depicted in Fig. 1.
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Fig. 1. System with degradation.

2.3 RUL prediction

From degradation dynamics, the degradation at an instant
n from a previous instant k (if n > k) can be described as:

d(n) = d(k).(1 + u(k)2.α)n−k (4)

with the assumption that the input is considered constant
during the prediction phase i.e. ∀i ∈ [k + 1, k + 2, ..., n] ,
u(i) = u(k).

The instant of failure (nf ) corresponds to the time instant
when the degradation magnitude exceeds a pre-defined
threshold S.

d(nf ) = d(k).(1 + u(k)2.α)nf−k ≥ S (5)

Taking a trivial logarithm in (5), we obtained:

nf ≥ log(1+u(k)2.α)

(
S

d(k)

)
+ k (6)

become as follows with a log10 base:

nf ≥
log10

(
S

d(k)

)
log10 (1 + u(k)2.α)

+ k (7)

Taking the smallest integer value of nf that satisfies the
inequality:

nf =


log10

(
S

d(k)

)
log10 (1 + u(k)2.α)

+ k

 (8)

where ⌈x⌉ correspond to the ceiling of the value.

Generally, RUL is defined as the estimated time in reserve
for a system between the instant of estimation and the
instant of failure. Considering (8), the instant of failure nf

is computable from an instant k. Substitute the instant of



prediction k of the instant of failure nf allows us to obtain
the RUL (noted RUL(k)):

RUL(k) = nf − k (9)

explicitly as:

RUL(k) =


log10

(
S

d(k)

)
log10 (1 + u(k)2.α)

 (10)

In the case of a known degradation model, we can deter-
mine analytically the RUL. As shown in Lall et al. (2012),
Singleton et al. (2014) and Lim and Mba (2015), health
state and degradation parameters can be estimated using a
stochastic signal estimators such as Kalman Filter/particle
filter.

As depicted in (10), RUL is impacted by d and u lead-
ing to the objective to find a optimal trade-off between
performance and RUL.

3. PROPOSED STRATEGIES

Two structures are proposed to extend the RUL of the
system. These structures modulate the input signal or
the setpoint signal. This modulation is provided by an
optimization based on RUL criteria and performance. The
following subsections will develop the two methodologies.

3.1 Strategy I

Similar to the principle of disturbance rejection (as in
(Commault et al., 1991) and (Huang and Xue, 2014)) and
fault compensation (Noura et al., 2009), a signal w(k) is
generated to modify the unom(k) generated by the con-
troller. w(k) is obtained from an optimization procedure
based on the extension of the RUL. The control structure
is depicted in Fig. 2.

y

Fig. 2. Structure of strategy I.

The optimization block provides a signal w(k) which is
added to unom(k) to obtain the ucomp(k) as:

ucomp(k) = unom(k) + ω(k) (11)

with the cost function defined at each sample time k as:

J(k) = L1.ω(k)+L2.
(
RULRef (k)− ˆRUL(upi(k), ω(t), d̂(k))

)
(12)

where RULRef (k) is the RUL objective at each sample

time and ˆRUL(unom(k), ω(k), d̂(k)) the RUL prediction
at time k.

ω∗ is the minimizer of the cost function J(unom(k), ω(k))
given as:

ω∗ = argmin J(unom(k), ω(k)) (13)

Based from (13), (10) is revised as follow:

ˆRUL(k) =


log10

(
S

d̂(k)

)
log10 (1 + (unom(k) + ω(k)) .α)

 (14)

3.2 Strategy II

The principle of this strategy is to modify the trajectory of
the system based on reference reconfiguration under fault
occurrences (Blanke et al., 2006). The strategy is depicted
in Fig. 3.

r(k) y

Fig. 3. Structure of strategy II.

In this case, the optimization provides a signal ω(k) which
is added to r(k) to obtain the e(k):

e(k) = [r(k) + ω(k)]− y(k) (15)

Injecting (15) in controller formulation, we obtain the
control input formulation:

unom(k) = F (r(k), ω(k), y(k)) (16)

As in previous subsection, ω∗ is the minimizer of the cost
function:

ω∗ = argmin J(unom(k), ω(k)) (17)

with the cost function defined as:

J(k) = L1.ω(k) + L2.
(
RULRef (k)− ˆRUL(unom(k), d̂(k))

)
(18)

From optimization, RUL prediction becomes:

ˆRUL(k) =


log10

(
S

d̂(k)

)
log10 (1 + u2

nom.α)

 (19)

4. NUMERICAL EXAMPLE

This section presents the simulation of a SISO transfer
function system control with a PI controller. First, strat-
egy I and strategy II under the assumption that degrada-
tion model is known, are simulated. Next, theses strategies
in the case of an uncertain degradation are simulated.

The linear (SISO) system used in the simulation is defined
below:

P (s) =
2

s2 + 10s+ 20.02
(20)

The system is associated to a PI controller with parameters
P = 47 and I = 17 with simulation rate Ts = 0.01s.



The choice of a PI controller is motivated by its ability
to reduce the steady-state error. Nevertheless, within the
framework of our study on a SISO system, the PI controller
is the chosen candidate owing to good overall performance.
A PID isn’t considered but results will be the same.

4.1 RUL and optimization - know degradation

In Fig. 4, the evolution of the reference trajectory (r(k)),
the output of the system and the degradation evolution are
shown. The reference trajectory switches between value
1.5 and value 2.5 for every 15 seconds. System control
allow the system to track the desire trajectory correctly
as shown. The system is considered in failure when the
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Fig. 4. Representation of trajectory, output and degrada-
tion of the system.
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Fig. 5. RUL of the system and RULRef evolution.

degradation exceeds a pre-established threshold set to the
value 0.25. Degradation is increasing and the slope is
function of time and setpoint (modification of the desired
trajectory). At time t = 110s the degradation exceeds the
failure threshold, indicating a faulty system.

RUL of the system (in yellow) and RULRef (in blue) are
shown in Fig. 5. RULRef objective extend the system
RUL, corresponding to a system EOL at 120s.

Strategy I:

Similar to Fig. 4, Fig. 6 contains also the output and the
degradation of a system resulting from application of the
strategy I.
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Fig. 6. Trajectory output and degradation of the system:
Strategy I.
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Fig. 7. ˆRUL without optimization and ˆRUL with strategy
I.

The optimization leads to input generation sent to the
system to reach the EOL objective. The strategy is re-
sulting in a decrease on system’s output to satisfy EOL.
The degradation slope is reduced, in order to make the
degradation not exceed the failure threshold at t = 120s.

RUL estimated, denoted as ˆRUL is shown in Fig. 7. Final
trajectory of estimated RUL satisfies RULRef objective.
The RMSE (Root Mean Square Error) between r(k) and
y(k) is given: RMSE = 0.4033.

Strategy II:

The numerical application of strategy II is presented in
this section. A PI controller is considered from 16, defined
as:



u(k) =Kp. ([r(k)− ω(k)]− y(k))

+Ki.

k∑
j=1

([r(j)− ω(j)]− y(j))
(21)

RUL prediction becomes:

ˆRUL(k) =


log10

(
S

d̂(k)

)
log10

(
1 +

[
Kp.e(k) +Ki.

∑k

1
e(k)

]2
.α

)
 (22)

System trajectory, output and degradation are shown in
Fig. 8 and ˆRUL with and without optimization in Fig. 9.
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Fig. 8. Trajectory output and degradation of the system:
Strategy II.
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Fig. 9. ˆRUL without optimization and ˆRUL with Refer-
ence trajectory modification strategy.

The modified trajectory (r(k)−ω) obtained from optimiza-
tion is shown Fig. 8. The output of the system is decreasing
and is following the new trajectory given to the system
(r(k) − ω). Also, objective of system’s EOL is achieved.
ˆRUL with and without optimization is presented in Fig.

9. Corresponding RMSE (between r(k) and y(k)) is given:
RMSE = 0.1820 .

Strategy II result in a better RMSE than the strategy I
due to structure of the input reconfiguration. Proposed
strategies are operating for all system with SISO process
and controller.

4.2 RUL and optimization - uncertain degradation

In previous section, the degradation is considered well-

known (d̂(k) and α(k)). Supposing that, the estimated
degradation given to the optimization block (used in RUL

prediction ˆRUL) is uncertain and bounded. In this case
three sets of simulation are chosen:

• case a: α̂ = α, is provided to the optimization block
- RUL is estimated correctly: ˆRUL(k) = RUL(k) .

• case b: α̂ = α + ∆α, is provided to the optimization
block - RUL is under-estimated: ˆRUL(k) < RUL(k).

• case c: α̂ = α −∆α, is provided to the optimization
block - RUL is over-estimated: ˆRUL(k) > RUL(k).

Degradation of the system is still defined as in (3).

Numerical results obtained from a, b and c sets of simula-
tion are shown for strategy I in Fig. 10 and for strategy II
in Fig. 11.

As expected for both strategies, if the RUL is under-
estimated (case b) the EOL is not reached. If the RUL
is over-estimated (case c), the EOL is reached, but the
criteria are too conservative.

Fig. 10. Uncertainty: strategy I.

Fig. 11. Uncertainty: strategy II.



5. CONCLUSION

Two control strategies to extend RUL have been proposed.
The formalism of theses strategies has been presented. The
optimization algorithm has achieved a balance (Trade-off)
between the performance requirement and the RUL crite-
ria in the numerical result section. Also, uncertainty in the
degradation model has also been studied. Both structures
give satisfying results however in terms of implementation
and integration, strategy II is more effective in terms of
RMSE. The two structures are fully operational for system
damage.

For a real system, the degradation model is often un-
known, and RUL prediction is stochastic.This work will
be extended to take into account the stochastic aspect in
prognostic and optimization. Extension in MIMO process
and controller is possible without difficulty.
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