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Abstract— This paper develops a novel off-policy safe Rein-
forcement Learning (RL) approach for optimal tracking of
continuous-time nonlinear systems affine in control. The main
contribution consists in the synthesis of an optimal tracker
under safety guarantees enabling optimal tracking while satis-
fying state based safety constraints. To ensure safety during the
exploration phase, even in the presence of model uncertainty,
control inputs are dynamically adjusted. These adjustments,
determined as solutions to a quadratic programming (QP)
problem, incorporate tunable input-to-state safe control bar-
rier function (TISSf-CBF) conditions. Additionally, the safety
during exploitation (operational phase) of the learned policy is
guaranteed by integrating a reciprocal control barrier function
(RCBF) into the cost function, leading to an effective trade-off
between safety and system performance. Novel mathematically
rigorous proofs are developed to guarantee the safety, the
stability and the convergence towards optimality. Finally, the
effectiveness of the approach is assessed using a simulation
example.

I. INTRODUCTION

The safe tracking problem, a prevalent optimal control prob-
lem calls for design of controllers that guide a system to
follow a specified trajectory or reference signal while adher-
ing to safety constraints. Reinforcement Learning (RL) has
emerged as a powerful learning paradigm for synthesizing
optimal controllers in uncertain systems through iterative
real-time interactions with the environment [1].
To ensure safety in regulation problems for safety-critical
systems, several safe RL approaches have been developed.
For example, [2] combines policy-gradient RL with control
barrier functions (CBF) to achieve safety, albeit typically
requiring nominal models. In [3], a barrier function-based
system transformation converts full-state constrained systems
into equivalent unconstrained ones, enabling standard control
and optimization techniques. Similarly, [4] employs model-
based RL with CBF for safe exploration, while [5] leverages
a Lyapunov-like barrier function to design a partially model-
free safeguarding controller that supports online value func-
tion learning. Furthermore, [6] introduces a safe Q-learning
algorithm for uncertain systems by framing the task as a
constrained optimal control problem using reciprocal CBFs,
and [7] presents a barrier-Lyapunov actor-critic framework
that integrates CBF and control Lyapunov functions (CLF)
with actor-critic RL to ensure both safety and stability. More
recently, [8] proposed an end-to-end safe learning approach
based on CBF and CLF conditions, which guarantees safety
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from initialization through exploration and exploitation. Col-
lectively, these approaches illustrate a range of strategies
designed to achieve safe RL in systems subject to strict state
constraints.
Few notable works have addressed safe tracking in RL. For
instance, [9] proposed a safe model-based RL algorithm for
collision-free model-reference trajectory tracking of uncer-
tain autonomous vehicles, using a robust CBF condition and
Gaussian process regression to estimate model uncertainties.
In contrast, our paper ensures safety during exploration
despite unknown noise or model uncertainty by integrating
input-to-state safe control barrier functions (ISSf-CBF) [10].
Although ISSf-CBFs can be inflexible and lead to conserva-
tive data collection, we adopt a generalized version—Tunable
ISSf-CBF (TISSf-CBF) [11]—to enable richer exploration
while guaranteeing input-to-state safety (ISSf) [12]. Addi-
tionally, we introduce an innovative approach that augments
system states with tracking errors to address safe tracking in
nonlinear systems during both exploration and operational
phases.
The contributions of this work are as follows:

• a novel tracking formulation that integrates system
states with tracking errors to enhance state tracking;

• safety during exploration is ensured in the presence of
unknown probing noise or model uncertainty by satis-
fying the TISSf-CBF condition, which enables relaxed
exploration within the safe set and more conservative
actions near its boundaries;

• safety and optimality of the learned operational policy
are secured by augmenting the reward function with an
RCBF acompanied with rigorous mathematical proofs.

This section is followed by Section 2, which formulates
the safe tracking problem. Section 3 introduces a safe pol-
icy iteration approach with convergence proofs. Section 4
develops the off-policy algorithm, and Section 5 evaluates
its effectiveness on an academic application. Finally, the
conclusion highlights the key advances of this work.
Notations. The interior of set C is denoted as IntC and ∂C
stands for its boundary. For a differentiable function V (x) and
a vector f (x), the notation L fV (x) corresponds to ∂V

∂x f (x).
The symbol ⊗ denotes the Kronecker product. C1 refers to
the class of continuously differentiable functions.

II. SAFE OPTIMAL TRACKING CONTROL
PROBLEM

In this section, the formulation of nonlinear optimal tracker
is presented. Consider nonlinear systems affine in control



input in continuous-time
ẋ = f (x)+g(x)u, (1)

where x ∈ X ⊆ Rn represents the state of the system, u ∈
U ⊆ Rm is the control input. f (.): X → Rn and g(.): X
→ Rn×m are Lipschitz continuous and f (0) = 0. The sets
X and U are compact. U denotes the set of all admissible
inputs that ensure stability of the system. C ⊆ X denotes
the set of safe states in which these later must evolve to
ensure a safe operation. The mathematical definition of C is
as follows

C = {x| h(x)≥ 0}, (2)
for a smooth (continuously differentiable) function h: X →
R.
The objective in this work is to design a safe infinite-horizon
tracker for the system (1). The controller must force the state
x(t) to optimally follow the reference trajectory xr(t) while
adhering to safety boundaries and constraints.

Assumption 1 [13] The command generator model of the
reference trajectory is defined by

ẋr = z(xr), (3)
where z(xr) is a Lipschitz continuous function with z(0) = 0
and xr ∈ Rp is bounded.

The error is formulated as
er(t) =Crx(t)− xr(t), (4)

where er ∈ Rp and Cr ∈ Rp×n refers to the states to be
tracked, since the target in this paper is to track specific
states. Moreover, all the states are assumed to be measurable.
The dynamics of the tracking error can be expressed in terms
of the control input u as follows

ėr =Cr( f (x)+g(x)u)− z(Crx− er). (5)
Based on (1) and (5), an augmented system is described in
terms of the system states x and the tracking error er as
follows. Let X ∈ C ×Rp ⊂ Rn+p be defined as

X =

[
x
er

]
.

Then, the augmented system is represented as follows

Ẋ =

[
ẋ
ėr

]
= F̃(X)+ G̃(X)u, (6)

with F̃(X) =

[
f (x)

Cr f (x)− z(Crx− er)

]
and G̃(X) =

[
g(x)

Crg(x)

]
.

The general reward function, which is often referred to as
the stage cost or immediate cost, is usually considered in the
following manner for tracking problem

r = eT
r Qer +uT Ru, (7)

where Q and R are symmetric and positive definite. However,
this reward function does not take into account any safety
considerations. To this end, in this paper, based on the
augmented system (6), a modified reward function that is
sensitive to the system safety is introduced as

r̃(X ,u) = XT Q̃X +uT Ru+Bϑ (ρX), (8)

with Q̃=

[
0 0
0 Q

]
, ρ =

[
In×n 0n×p

]
∈ Rn×(n+p) and Bϑ a

reciprocal control barrier function (RCBF) defined as follows
with ϑ > 0

Bϑ (ρX) =− log(
ϑh(ρX)

ϑh(ρX)+1
). (9)

Definition 1 [14] A function B : IntC → R is a reciprocal
control barrier function for the set C if there exists class κ

functions α1, α2 and α3 such that
1

α1(h(x))
≤ B(x)≤ 1

α2(h(x))
(10)

inf
u∈U

[L f B(x)+LgB(x)u−α3(h(x))]≤ 0 ∀x ∈ IntC . (11)

Definition 2 (Control Policy). A control policy is defined as
a function from the state space to the control space, typically
denoted as π : C ×Rp → U . In other words, given a state
X, the policy determines a control input by:

u = π(X) (12)

Based on the safe reward function (8) and the control
policy (12), the following discounted performance function
is introduced

V (X(t)) =
∫

∞

t
e−γ(τ−t)r̃ (X(τ),π (X(τ)))dτ (13)

where γ > 0 is the discount factor. Using a discounted
performance function is crucial in the proposed formulation
since, for the tracking problems, the system states follows
a trajectory generated by the command generator model. As
such, without the discount factor, the performance function
becomes infinite because the control input incorporates a feed
forward component preventing it from converging to zero as
t → ∞ [15].
The objective then becomes to learn a safe and optimal
control policy that minimizes (13) while ensuring the forward
invariance of the safe set C .
Before addressing the problem of safe tracking, the following
definition and assumption are made.

Definition 3 The set of safe and admissible inputs, denoted
as Us, for the current state x is defined as follows

Us = {u ∈ U |xu ∈ IntC }, (14)
where IntC is the interior of the set defined in (2) and the
state of the system evolved by the input u is represented as
xu.

Assumption 2 There exists a safe feedback control policy
u0: C ×Rp → Us that stabilizes the augmented system (6)
and the cost defined in (13) is finite.

The primary objective of this paper is to minimize the value
function as defined in (13), which serves as a key measure of
performance and effectiveness in achieving safe and optimal
tracking control. In the following section, the solution that
enables to tackle this objective effectively is developed.

III. SAFE TRACKING PROBLEM

A. Safe HJB for tracking problem

Applying Leibniz’s rule to (13), the following safe tracking
Bellman equation is defined by

V̇ =−r̃(X ,u)+
∫

∞

t

∂

∂ t
e−γ(τ−t)r̃

(
X(τ),π(X(τ))

)
dτ. (15)

Since the second term on the right hand side of (15) is equal
to γV (X), it gives

V̇ (X) =−r̃(X ,u)+ γV (X). (16)
This leads to a safe tracking Lyapunov equation.



Definition 4 The safe tracking Lyapunov equation (STLE),
for nonlinear tracking problem, is defined by
ST LE(V,u) = ∇V T (F̃(X)+ G̃(X)u)+ r̃(X ,u)− γV (X) = 0,

(17)
with ∇V denotes the gradient of the function V , which can
be expressed as ∇V = ∂V

∂X .

The optimal policy, minimizing (13), is obtained by

u∗ = argmin
u

[ST LE(V,u)] =−1
2

R−1G̃T (X)∇V ∗(X) (18)

where V ∗(X) the optimal cost function defined by

V ∗(X) = min
π(.)

∫
∞

t
e−γ(τ−t)r̃

(
X(τ),π(X(τ))

)
dτ. (19)

By substituting the optimal control (18) in STLE, (17)
becomes the safe tracking Hamilton–Jacobi–Bellman (safe-
THJB) equation

Hsa f e(V ∗(X))
∆
=

∇V ∗T (X)F̃(X)+XT (τ)Q̃X(τ)+Bϑ (ρX)− γV ∗(X)

− 1
4

∇V ∗T (X)G̃(X)R−1G̃T (X)∇V ∗(X) = 0. (20)
Assuming that there exists an optimal safe control policy,
it implies the existence of an optimal safe value function
satisfying the safe-THJB equation

Hsa f e(V ∗(X)) = 0, (21)
where V ∗(X) is a safe Lyapunov function (19) for the closed-
loop augmented system (6).

Assumption 3 There exists V ∗ ∈ P , where P is the set of
all functions in C1 that are also positive definite and radially
unbounded, such that the safe-THJB equation (21) holds.

In the next section, policy iteration (PI) algorithm is intro-
duced to solve the optimal safe tracking problem.

B. Safe tracking policy iteration algorithm

Given the analytical challenges to solve the nonlinear safe-
HJB equation (21), the problem can be tackled by using the
following safe tracking PI algorithm 1.

Algorithm 1 Safe Tracking Policy Iteration Algorithm
Initialization. Initialize u0 with a safe and admissible policy
such as u0 ∈ Us.
Policy Evaluation. Update the value using ST LE(Vi,ui)

∇V T
i (X)(F̃(X)+ G̃(X)πi(X))+ r̃(X ,πi(X))− γVi(X) = 0

(22)
Policy Improvement. The control policy is improved by

πi+1(X) =−1
2

R−1G̃T (X)∇Vi(X) (23)

The algorithm iteratively computes policy evaluation and
policy improvement steps until the convergence to the op-
timal value V ∗ and its associated optimal policy u∗. The
following theorem establishes the convergence property of
the proposed safe tracking PI algorithm. To simplify the
notation, let u∗ = π∗(X), ui = πi(X) and ui+1 = πi+1(X).

Theorem 1 Suppose Assumptions 2 and 3 hold, and the
solution Vi(X) ∈ C1 satisfying (22) exists for i = 0,1, . . . .
Then, the following properties hold ∀i = 0,1, . . ..

1) V ∗(X)≤Vi+1(X)≤Vi(X) ∀X ∈ C ×Rp.
2) Let lim

i→∞
Vi(X0) =V (X0) and lim

i→∞
ui(X0) = u(X0), ∀X0 ∈

C ×Rp. Then X∗ = X and u∗ = u, if V ∈C1.
3) ui stabilizes the error dynamics.
4) ui is a safe policy, ui ∈ Us.

Due to space limitations, the proof of Theorem 1 is not
included in this paper and will be provided in an extended
version. Safe tracking PI algorithm is an effective method
that allows to learn an optimal policy while ensuring safety.
However, it does present some challenges that need to be
addressed. One of the main challenges arises during the
stage of data collection, where the state space is explored by
adding exploration noise to the policy. While probing noise
can provide important information about the system, it can
also lead to violation of safety constraints. In the following
section, this problem is addressed.

IV. SAFE OFF-POLICY FOR TRACKING PROBLEM

Off-policy methods rely on the incorporation of probing
noise for exploration, and introducing such noise during the
exploration phase carries inherent risks, particularly when its
characteristics are unknown. This uncertainty can potentially
lead to exploratory actions that result in undesired or unsafe
system states.

A. Safe Exploration

For systems subject to bounded probing noise eu, consider
Ẋ = F̃(X)+ G̃(X)unoisy. (24)

with unoisy = u0 + eu. The probing noise is assumed to not
destabilize the system as denoted in the following assump-
tion.

Assumption 4 The closed-loop system (24) is input-to-state
stable (ISS) when eu is considered as input.

The first family of CBFs (RCBFs), introduced in section
2, are unsuitable here since they are undefined and non-
differentiable outside the safe set, failing to guarantee the
ISSf condition under uncertainty. Therefore, we use TISSf-
CBF (derived from Zeroing CBF [14]) to ensure system
safety in the presence of unknown exploration noise. TISSf-
CBFs also effectively handle model uncertainty by enforcing
safety constraints even when the exact system dynamics are
not fully known.

Definition 5 [16] Let a,b∈R>0. A function α : (−b,a)→R
that is continuous on (−b,a) is said to be extended class-κ , if
α(0) = 0 and α(r1)<α(r2) for all r1,r2 ∈ (−b,a) satisfying
r1 < r2. The function α is said to be extended class-κ∞, if
a = ∞, b = ∞, limr→∞ α(r) = ∞, and limr→−∞ α(r) =−∞.

Definition 6 [11] Let C ⊆ X be the 0-superlevel set of a
function h : X → R that is continuously differentiable on X
with ∂h

∂x (x) = 0n when h(x) = 0. The function h is said to be
a TISSf-CBF for the system (1) on C if there exist extended
class-κ∞ function α with α−1 continuously differentiable on
R and ε : R → R>0 that is continuously differentiable on



R such that:
L f h(x)+Lgh(x)u0 −

1
ε(h(x))

Lgh(x)Lgh(x)T ≥−α(h(x))

(25)
for all x ∈ X , and

∂ε

∂ r
(r)≥ 0 (26)

for all r ∈ X .

By satisfying the condition of the TISSf-CBF, the safety
of the policy can be assured by marginally modifying the
unsafe policy. Thus, the exploration policy unoisy can be
adjusted by adding the solution usa f e of the following QP
problem.
QP Problem: Find the additive control input usa f e that
satisfies

min
usa f e

1
2

uT
sa f eusa f e

LF h(ρX)+LGh(ρX)(u0 +usa f e)

− 1
ε(h(ρX))

LGh(ρX)LGh(ρX)T ≥−α(h(ρX))

(27)

The solution of the QP problem usa f e is crucial for ensuring
policy safety within the off-policy algorithm. It allows for
data collection not only within the safe set but also near
the boundaries, improving the performance of the algorithm.
Moreover, it is essential to note that the functions f and g
must be explicitly known for the solution of the QP problem
which render the approach model-based.

Remark 1 To differentiate TISSf-CBF from ISSf-CBF, con-
sider the role of ε . In ISSf-CBF, ε is constant, and small
values lead to conservative exploration that may limit data
collection near system boundaries. In contrast, TISSf-CBF
makes ε a function of h(.): as h(.) approaches zero near
boundaries, ε decreases to enforce safety, while within the
safe set, larger h(.) values increase ε , promoting broader
exploration. This dynamic ensures both safety and effective
exploration, as demonstrated in the simulation example.

B. Safe Learning

The following system is considered subject to probing noise
eu

Ẋ = F̃(X)+ G̃(X)us, (28)
with us = unoisy +usa f e. Then, (28) can be expressed as

Ẋ = F̃(X)+ G̃(X)ui + G̃(X)νi (29)
with νi = us −ui.
From (23), one has

∇V T
i (X)G̃(X) =−2uT

i+1R. (30)
Thus, for all i ≥ 0, the time derivative of Vi(X) along the
solutions of (28) is obtained by

(31)V̇i = ∇V T
i (X)(F̃(X) + G̃(X)ui + G̃(X)νi)

= −r̃(X ,ui) + γVi(X)− 2uT
i+1Rνi.

Integrating both sides of (31) over any time interval [t, t+T ]
yields to

Vi(X(t +T ))−Vi(X(t))

=−
∫ t+T

t
r̃(X ,ui)− γVi(X)+2uT

i+1Rνidt.
(32)

Considering Ω ⊆ Rn+p as a compact set, the value function
Vi (corresponding to the critic neural network) and the control
policy ui+1 (corresponding to the actor neural network) are
approximated using the representation of basis function:

Ṽi(X) =WiΦ̃(X) (33)
ũi+1(X) =UiΨ̃(X) (34)

with Φ̃ = [φ̃1, φ̃2 . . . φ̃N1 ]
T and Ψ̃ = [ψ̃1, ψ̃2 . . . ψ̃N2 ]

T , are the
vectors of linearly independent smooth basis functions on Ω.
Wi ∈ R1×N1 and Ui ∈ Rm×N2 are the matrices weights to be
determined.
The weights Wi and Ui can be obtained by solving the
following least-squares (LS) equation

Θ̃
N
i

[
vec(Wi)
vec(UT

i )

]
= ẼN

i (35)

for N > N1 +mN2 and
Θ̃

N
i = [Θ̃i(t1), . . . ,Θ̃i(tN)]T

ẼN
i = [Ẽi(t1), . . . , Ẽi(tN)]T

(36)

where

(37)
Ẽi(t) = −I

Ψ̃Ψ̃
(UT

i−1 ⊗UT
i−1)vec(R)

−
∫ t+T

t
(XT Q̃X + Bϑ (ρX))dt

Θ̃i(t) =

[(
Φ̃(X(t +T ))− Φ̃(X(t))

)T
− γI

Φ̃

2IuΨ̃
(R⊗ IN2)−2I

Ψ̃Ψ̃
(UT

i−1R⊗ IN2)

]T

(38)

with I
Ψ̃Ψ̃

=
∫ t+T

t [Ψ̃T (X)⊗ Ψ̃T (X)]dt, I
Φ̃
=

∫ t+T
t (Φ̃T (X)⊗

IN1)dt and IuΨ̃
=

∫ t+T
t (uT

s ⊗ Ψ̃T (X))dt.

The approach proposed encapsulates three major aspects:
• Safe Exploration: Probing noise is added to the initial

policy to explore the state space and collect rich data.
The exploration policy is adjusted by adding the solution
of the QP problem (27) in order to assure the safety of
the system;

• Safe Policy Iteration: After collecting data, the LS
equation (35) is solved and the policy evaluation and
improvement steps are computed iteratively until the
convergence of the critic weights;

• Safe Operation: The learned safe and optimal policy
is used to generate the control input of the augmented
system (6).

Remark 2 The off-policy algorithm works in a model-free
learning framework but relies on a model during exploration
to enforce safety constraints. Any model uncertainty can risk
safety boundary violations. By assuming unknown probing
noise—equivalent to matched disturbances—the approach
accommodates model uncertainty, ensuring safe exploration
even without an accurate system model.

To assess effectiveness the algorithm, simulation study over
an academic system has been done leading to a thorough
evaluation of the capabilities and suitability.

V. SIMULATION STUDY

Consider a nonlinear system described by the following
differential equations

ẋ1 = x2

ẋ2 =−x3
1 −0.5x2 +u

(39)



Fig. 1. Trajectory of x2 during exploration.

A sinusoidal reference trajectory is generated by
ẋr = 0.5

√
5cos(

√
5t) (40)

Now, considering that only the states x1 will be tracked, the
error er, is defined as

er = x1 − xr (41)
The safe set is described by C = {x| −2 < x2 < 2}. The
reward function (8) is considered with Q = 8, R = 0.00001
and γ = 0.1. The augmented state vector is defined as:

X = [X1 X2 X3]
T = [x1 x2 er]

T

The CBF Bϑ is given by
Bϑ (ρX) = B1,ϑ (ρX)+B2,ϑ (ρX), (42)

with
B1,ϑ (ρX) =− log

(
ϑh1(ρX)

ϑh1(ρX)+1

)
,

B2,ϑ (ρX) =− log
(

ϑh2(ρX)

ϑh2(ρX)+1

)
,

where ϑ = 80, ρ =
[
0 1 0

]
, h1(ρX) = −Xmin

2 +X2 and
h2(ρX) = Xmax

2 −X2. From t = 0s to t = 5s, the exploration
noise eu(t) is injected into the initial policy, with eu(t) being
set to

eu(t) =
12

∑
k=1

10sin((2k−1)t) (43)

The activation functions are considered, respectively, as
Φ̃(X)= [X2

1 , X2
2 , X2

3 , X1X2, X1X3, X2X3, X4
1 , X4

2 , X4
3 , X2

1 X2
2 ,

X2
1 X2

3 , X2
2 X2

3 , X3
1 X2, X3

1 X3, X3
2 X1, X3

2 X3, X3
3 X1, X3

3 X2 ]T

Ψ̃(X) =
[
X1,X2,X3

]T
.

The weights of the critic and actor are trained by finding
the solution of (35) for N = 250. The input and state data are
collected over each interval of T = 0.02s. The initial weights
of the actor are set to U0 = [−2 −16 −60].
Based on equation (27), the TISSf-CBF criteria is formulated
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Fig. 2. Trajectory of x1 during the operational phase under the learned
policy.
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Fig. 3. Trajectory of x2 during the operational phase under the learned
policy.

as

(44)

LF h1(ρX) + LGh1(ρX)(u0 + usa f e) + α1(h1(ρX))

− 1
ε1(h1(ρX))

LGh1(ρX)LGh1(ρX)T ≥ 0

LF h2(ρX) + LGh2(ρX)(u0 + usa f e) + α2(h2(ρX))

− 1
ε2(h2(ρX))

LGh2(ρX)LGh2(ρX)T ≥ 0



with α1 = 180h1(ρX), α2 = 120h2(ρX). These values are
fixed to ensure that the data are collected from both the safe
region and from the vicinity of the safety boundary.
Fig.1 presents the trajectories of the state x2 during the
exploration phase. It displays four curves:

• the blue curve, where TISSf-CBF condition is satisfied
for ε1 =

1
0.015eh1

,ε2 =
1

0.01eh2
;

• the green curve, where high constants are assigned to
ε1 and ε2;

• the black curve where small constants are assigned to
ε1 and ε2;

• the red curve is the case where no safety guarantees are
taken into consideration, thus the exploration policy is
not adjusted by the solution of the QP problem.

In this figure (Fig.1), two zones are also highlighted:
• Zone A illustrates scenarios where the exploration

policy is unsafe when no safety consideration are taken
into account. It can be seen that when ε is a function of
h, data collection extends beyond the safe set to include
the vicinity of its boundaries. In contrast, a high constant
value of ε leads to violation of the safe set as x2 crosses
the boundaries of the set. However, with ε set to small
values, the exploration is more conservative and data
are collected from the safe set but they do not capture
information from the vicinity of the boundaries.

• Zone B shows the scenario where x2 is within the safe
set and no policy adjustments are required. However,
in the case where ε is a small constant, the policy is
modified, pushing x2 further within the safe set.

Figures 2 and 3 illustrate the trajectories of x1 and x2
during the exploration (0–5s) and operational phases. During
exploration, an input is applied to gather data, after which
the trained actor governs the system. As shown in Fig. 2, x1
successfully tracks the reference, demonstrating the learned
policy’s efficacy. In Fig. 3, x2 remains within the safe set
during exploitation when the TISSf-CBF condition is met
(blue curve), thanks to the boundary-penalizing Bϑ . In
contrast, with a small fixed ε (black curve), x2 exceeds the
safe boundaries, indicating an unsafe policy.
Discussion The exploration phase is critical because data
quality directly influences the learned policy. Safety is en-
sured by collecting informative data both within the safe set
and near its boundaries. As shown, the parameter ε governs
exploration: a small constant value results in conservative
exploration (confined to the safe set), while a large value
can cause boundary violations. In TISSf-CBF, where ε is a
function of h, near-boundary states (with small h) yield a
reduced ε for safe exploration, whereas within the safe set
(with large h) ε increases to allow broader exploration.

VI. CONCLUSION

This paper develops a novel approach for safe and optimal
tracking control learning using an off-policy RL method.
The approach guarantees safety during both exploration
and exploitation phases. During exploration, probing noise
is introduced to collect diverse, informative data while a

QP problem is solved to enforce safety constraints via the
TISSf-CBF condition. The safe tracking PI algorithm is
iteratively computed to learn a policy that balances safety and
optimality. Simulation results demonstrate that the algorithm
generates safe policies even in the presence of probing noise,
significantly reducing the error between the reference and
the state. Although the proposed algorithm shows promising
results in ensuring safety for tracking problems, future work
will address the challenge of relying on a system model to
solve the QP problem.
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