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Prognostics

Prognostics: 

• Estimate (state of health) → identification of degradation model. 

• Prediction of future health + Remaining Useful Life (RUL)

• Evaluate: Decision  “when failure occurs ???” “what maintenance strategy”
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Degradation Data

Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary  → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 
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PEM Fuel Cell  degradation (Jha et al. 2016)



Degradation Data:  Sequentially related Time Series
 data

Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary  → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 
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Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 

• Raw degradation data → Hidden features / representation:
• Spatially varying

• Temporally varying

• Multimodal characteristics  
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Roller bearing degradation (PRONOSTIA platform)



Prognostics and Deep Learning
(Supervised Setting)
Convolutional Neural networks (CNNs)
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CNNs for Prognostics 

• CNNs → Traditionally, 2D-3D structured data for face/object recognition

• Prognostics →  3D structured topology for sequence data 
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tRUL

Deep CNNs



CNNs for Prognostics 

•  Automatically learn feature representation, hidden multimodal distributions

[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

 &  

• Efficient learning with multi-variate sequential (time series) data. 

[Babu et al., 2016]
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[Liu et al., 2017]



Sequence modelling : Motivations

• Sequential data:  
• time series forecasting, 

• motion prediction (human, self driving cars)

• sensor data:  machine health monitoring/prediction

• text processing/prediction

• machine translation 
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Financial market prediction (Dixon et al.) Human Motion Prediction

Martinez et al., 2016 
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Component Failure Prediction 
(Yoo et al., 2018)
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Deep (Stacked) LSTMs (Fernández, Graves, & Schmidhuber,2007): 



LSTM Variants: 

• Peephole connections 

• Gated Recurrent Units (GRUs) (Cho et al. 2014), Bi-LSTMs…..

JHA Mayank, Health Aware Control and Safe Control Learning
mayank-shekhar.jha@univ-lorraine.fr

Deep (Stacked) LSTMs (Fernández, Graves, & Schmidhuber,2007): 



LSTM Variants: 

• Peephole connections 

• Gated Recurrent Units (GRUs) (Cho et al. 2014)

• etc. 
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Unroll

Image credits: Fernández, Graves, & Schmidhuber,2007 



Data Preparation for RUL prediction
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• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al. 2017]
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Data Preparation for RUL prediction
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• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

Some issues:

• Independent Windows → to assure assumption of i.i.d 

• Dependent windows → claim more realistic. 
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Many variants exist!
Training tuples: 

Loss Calculation : Error based cost function 



Deep LSTMs for Prognostics

Basic Architecture
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Deep LSTMs for RUL prediction

Basic Architecture
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Deep LSTMs for RUL prediction

Basic Architecture:       LSTMs: Temporal features  + FNNs: Map features in RULs
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Deep LSTM 
+ dropout schemes

Image credits: Fernández, Graves, & Schmidhuber,2007 

Fully connected Layer
3D- Input

Target Vector

tRUL



Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 

• Raw degradation data → Hidden features / representation:
• Spatially varying

• Temporally varying

• Multimodal characteristics  
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Deep LSTMs

CNNs



CNNs for Prognostics 

• CNNs → Traditionally, 2D-3D structured data for face/object recognition

• Prognostics →  3D structured topology for sequence data 
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tRUL

Stacked LSTMsDeep CNNs



CNNs+LSTMs for Prognostics 

•  Automatically learn feature representation, hidden multimodal distributions

[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

 &  Efficient learning with multi-variate sequential (time series) data. 

[Babu et al., 2016]

Hybrid structure
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[Kong et al. 2019]



Deep Learning based Prognostics
(supervised)
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System of Interest: Reusable Liquid Rocket Engine 
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Simulation Engine: CNES RT-NT-2510000-CNES

01
LOX LH2 engine with 10 kN thrust

thrust with liquid propellant supply

02

Main components of a liquid ergol 

engine the fuel system and a 

combustion chamber

03
Typical engine life profiles :

a. flight engines

Simulation Engine: CNES RT-NT-2510000-CNES 04

Variables controlled :

Chamber pressure

Mixing ratio



Unsupervised Prognostics 
through Physics Informed Data 

Augumentation
Collaborators:

 

Dr. Martin Herve deBeaulieu (Phd @ CRAN/Dassault Av., Most Slides Credit)

Prof. Hugues Garnier (CRAN)

Dr. Farid Cerbah (Dassault Aviation)



Challenges:
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Proposed approach: 

Step 1: Data Augumentation

Step 2:  Health Index Extraction

Step 3:  Remaining Useful Life Prediction 
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Global Schema: 
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Step 1: Data Augumentation



Step 1: Data Augumentation
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Historical Data available. NOT Design of Experiment!!
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Historical Data available. NOT Design of Experiment!!



Example: Historical Dataset
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System: Cockpit Temperature Control System
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Step 1.1 : Identification of Plant model (G)
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Step 1.2: Identification of the controller C
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Step 1.2: Identification of the controller C
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1.3 Validation: Replicate different - existing flights!
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Step 1.5: Nominal Data Augumentation
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Step 1.6 Physics Based Degraded Data augumentation
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Step 1.6 Physics Based Degraded Data augumentation: Valve Stiction
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Step 1.6 Physics Based Degraded Data augumentation:  Degradation Modelling
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Step 1.6 Physics Based Degraded Data augumentation:  Degradation Modelling
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Step 1.6 Physics Based Degraded Data augumentation: Time to Failure 
Trajectory generation
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Step 2: Health Index Extraction



Step 2: Health Index Extraction
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Step 2: Health Index Extraction: Reconstruction Error
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Step 2: Health Index Extraction: Reconstruction Error
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Step 2: Health Index Extraction: Autoencoder Structure



Step 2: Health Index Extraction
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Step 2: Health Index Extraction: 
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Step 2: Health Index Extraction: Consclusions
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Step 3:RUL Prediction



Step 3: RUL Prediction 
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Step 3: RUL Prediction:  A Sequence to Sequence Prediction Problem 
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Step 3: RUL Prediction:  A Sequence to Sequence Prediction Problem 
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Step 3: RUL Prediction:  Deep LSTM Structure 
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Step 3: RUL Prediction: EOL Detection 
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Step 3: RUL Prediction:  HI Prediction 
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Step 3: RUL Prediction: RUL Prediction   
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Step 3: RUL Prediction 
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Conclusions

• Deep NNs based Prognostics 

• Powerful approach under supervised condtions

• Excellent generalisation capability under diverse, rich conditons.

• Good capacity in presence of qualitative, quantitative data (non stationanry, nonlinear dynamics etc.)

• Availibility of True Labelled target (output) a problem in real Industrial contexts 

• Unsuperivised Prognostics ➔ still in nascent stage

• First contributions in this direction using system identification + deep autoencoders + LSTMS. 
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