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Prognostics
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Prognostics

Prognostics:
» Estimate (state of health) - identification of degradation model.

» Prediction of future health + Remaining Useful Life (RUL)

» Evaluate: Decision “when failure occurs 72?” “what maintenance strategy”
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Prognostics

* Prognostics:

« Estimate (state of health) - identification of degradation model.

» Prediction of future health + Remaining Useful Life (RUL)

» Evaluate: Decision “when failure occurs 72?” “what maintenance strategy”

Probability distrinution for Eol.
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Health Index (HI)

Indicator that estimates the true SOH of
the system studied. Can be built by
fusing multiple sensor signals

[Lei et al., 2018].

Remaining Useful Life (RUL)

Time remaining between current instant
tx and EOL [Gouriveau et al., 2017].

RUL(tk) = teor — tk (1)1




Degradation Data

Degradation:
* unknown, non-linear varying dynamics
» sensor data: non-stationary -> trend, seasonality, cyclic etc.
» depends on qualitative+ quantitative factors.
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Degradation Data

Degradation:

POLYTECH

NANCY

unknown, non-linear varying dynamics

sensor data: non-stationary - trend, seasonality, cyclic etc.

depends on qualitative+ quantitative factors.
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Degradation Data: Sequentially related Time Series
data

Degradation:
* unknown, non-linear varying dynamics
» sensor data: non-stationary -> trend, seasonality, cyclic etc.
» depends on qualitative+ quantitative factors.
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Degradation Data:
data

Degradation:
* unknown, non-linear varying dynamics
» sensor data: non-stationary -> trend, seasonality, cyclic etc.
» depends on qualitative+ quantitative factors.

Vibration valuel/g
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Degradation Data

» Degradation:
* unknown, non-linear varying dynamics

« sensor data: non-stationary process = trend,

» depends on qualitative+ quantitative factors.

seasonality, cyclic etc.

» Raw degradation data - Hidden features / representation:

+ Spatially varying
* Temporally varying
*  Multimodal characteristics
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Prognostics and Deep Learning
(Supervised Setting)

Convolutional Neural networks (CNNs)
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Degradation Data

» Degradation:
* unknown, non-linear varying dynamics

* sensor data: non-stationary process - trend, seasonality, cyclic etc.

» depends on qualitative+ quantitative factors.

» Raw degradation data > Hidden features / representation:
+ Spatially varying
* Temporally varying
*  Multimodal characteristics
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Time Steps

Samples

3D-

O

CNNs for Prognostics

Input
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Prognostics = 3D structured topology for sequence data

~N/

Pooling

——)
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CNNs - Traditionally, 2D-3D structured data for face/object recognition
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CNNs for Prognostics

« Automatically learn feature representation, hidden multimodal distributions
[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

&

» Efficient learning with multi-variate sequential (time series) data.

[Babu et al., 2016]

Deep CNN + Fully-Connected Layer for Regression
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Grourd truth

Sequence modelling : Motivations

ERD

Sequential data:

B
. . . = \ »J [_ YLX
 time series forecasting, g .\ \
* motion prediction (human, self driving cars) ‘ A,
» sensor data: machine health monitoring/prediction V\k : r\
» text processing/prediction 2013 2014 2015 2016 2017
° machine translation Actual Train Predict Test Pradict C%
®  Qutof-Sample Forecast
. Conditioning ground truth Prediction
Financial market prediction (Dixon et al.) Human Motion Prediction

Martinez et al., 2016

INDAC')\Ié_YY TEEH @ BEIIYDEIQQEI'ATIEIE rQAA JHA Mayank, Health Aware Control and Safe Control Learning
\ mavank-shekhar.jha@univ-lorraine.fr



Ground truth

Sequence modelling : Motivations
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» Sequential data: ‘. 1
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Deep (Stacked) LSTMs (Fernandez, Graves, & Schmidhuber,2007):

(L+1)-th recurrent layer

L-th recurrent layer

F=l
hr

(L-1)-th recurrent layer @
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Deep (Stacked) LSTMs (Fernandez, Graves, & Schmidhuber,2007):

LSTM Variants:

» Peephole connections
* Gated Recurrent Units (GRUs) (Cho et al. 2014), Bi-LSTMs.....

(L+1)-th recurrent layer

L-th recurrent layer

F=l
hr

(L-1)-th recurrent layer @
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LSTM Variants:

» Peephole connections
» Gated Recurrent Units (GRUs) (Cho et al. 2014)

* etc.

(L+1)-th recurrent layer

L-th recurrent layer

F=l
hr

(L-1)-th recurrent layer @

Image credits: Fernandez, Graves, & Schmidhuber,2007
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Data Preparation for RUL prediction

» Degradation data=>» Time Series sequence = segmented into sliding windows.

« Each sliding window is assigned a target RUL value [Zeng et al. 2017]
X = [Xl, Xz,..., Xt,...XT_l] to estimate RULT_1
X :[Xl,Xz’,,_,Xt,_,,XT_Z]toestimate RULT_2

EAC’)“CLYY TECH’ @ HEIIY(EIE{EI'\TIEIE r!?AA JHA Mayank, Health Aware Control and Safe Control Learning
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Data Preparation for RUL prediction

» Degradation data=>» Time Series sequence = segmented into sliding windows.

» Each sliding window is assigned a target RUL value [Zeng et al, 2017]

X =[X1, Xz,..., Xt,...XT_l] to estimate RULT_1
X =[X{, X,y Xy X, ] toestimate  RUL._, [RULr+2. RUL 111, RUL

[Xta Xl‘—la s . aXl—d+1]a ERd

Training tuples:

Many variants exist!
. . \([X[s Xl—la v Xl—d+1]7 RUL[+L)
Loss Calculation : Error based cost function $

R_ULrJrL = f,b(Xre Xi1y--., Xr—d+1)

est cale

J =Y |(RULL, — RUL. .|
t

Some issues:
* Independent Windows - to assure assumption of i.i.d

» Dependent windows - claim more realistic.
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Deep LSTMs for Prognostics

Basic Architecture

N/

Time Steps

Samples

3D- Input
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Deep LSTMs for RUL prediction

Basic Architecture
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Image credits: Fernandez, Graves, & Schmidhuber,2007

Samples Deep LSTM
3D- Input + dropout schemes
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Deep LSTMs for RUL prediction

Basic Architecture: LSTMs: Temporal features + FNNs: Map features in RULs
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Image credits: Fernandez, Graves, & Schmidhuber,2007 T
Deep LSTM
Samples
Fully connected Layer Target Vector
3D- Input + dropout schemes
POLYTECH' @”N“’E"s"é 'a JHA Mayank, Health i
DE LORRAINE yank, Health Aware Control and Safe Control Learning
AN \-:‘?l\A mavank-shekhar.jha@univ-lorraine fr



Degradation Data

» Degradation:
* unknown, non-linear varying dynamics
« sensor data: non-stationary process = trend, seasonality, cyclic etc. — Deep LSTMs
» depends on qualitative+ quantitative factors.

» Raw degradation data - Hidden features / representation: —
—
Spatially varying
Temporally varying
Multimodal characteristics — CNNs
[
EA?\!CLYY TECH’ @ LK r!?AA JHA Mayank, Health Aware Control and Safe Control Learning
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CNNs for Prognostics

* Prognostics - 3D structured topology for sequence data

Time Steps

Samples

3D-
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4 filters kernels 1
/ /
; \// |/
QY 4 Feature Map

y4
yAN

Input

rorvreen (@ (AN

CNNs - Traditionally, 2D-3D structured data for face/object recognition

JHA Mayank, Health Aware Control and Safe Control Learning
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CNNs+LSTMs for Prognostics

« Automatically learn feature representation, hidden multimodal distributions
[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

& Efficient learning with multi-variate sequential (time series) data.

[Babu et al., 2016]
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Deep Learning based Prognostics
(supervised)

Dr. Mayank JHA, Prof. Didier Theilliol
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System of Interest: Reusable Liquid Rocket Engine

Dome Lox Injecteurs H,

VCo
/ Injecteurs Ox

Chambre

Col

Divergent

Simulation Engine: CNES RT-NT-2510000-CNES

/ Dome H,

Entrée LH,

Circuit
Régénératif

VCH

Parais chambre

rorvreen (@ummme (AN
L4

Pompe LH2

Arbre pompe LH2

JHA Mayank, Health Aware Control and Safe Control Learning

LOX LH2 engine with 10 kN thrust
thrust with liquid propellant supply

Main components of a liquid ergol
engine the fuel system and a
combustion chamber

Typical engine life profiles :
a. flight engines

Variables controlled :
Chamber pressure
Mixing ratio
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Unsupervised Prognostics
through Physics Informed Data
Augumentation

Collaborators:

Dr. Martin Herve deBeaulieu (Phd @ CRAN/Dassault Av., Most Slides Credit)
Prof. Hugues Garnier (CRAN)

Dr. Farid Cerbah (Dassault Aviation)
FALCON 6X
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Challenges:

First challenge: RUL-labeled data limitation
o RUL-labeled data hardly available in real-life applications [Chaoub et al., 2022]
@ Limiting reliance on measured RUL-labeled data for model training.

Second challenge: A priori knowledge and physics integration

o Leverage existing system knowledge
@ Use physics of degradation
@ Strengthen the Al-based prognostics

POLYTECH @ HE',‘_{]?&T&E rlQAA/ JHA Mayank, Health Aware Control and Safe Control Learning

NANCY . . .
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Proposed approach:

Step 1: Data Augumentation
Step 2: Health Index Extraction

Step 3: Remaining Useful Life Prediction

v

Dassault Aviation data from Falcon 6X [Hervé de Beaulieu et al., 2023]
e New generation of aircraft with increased in-flight data collection capabilities (sensor time series
from all embedded systems)
e First test flight in 2021
e Only historical nominal data available (i.e. no measured degradation)
e Focus on the cockpit temperature control system

EACIJ\JCLYY TECH’ @ gg'&;‘ggh r!?AA JHA Mavyank, Health Aware Control and Safe Control Learning
o | ‘
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Global Schema:

Historical nominal data segments

_____________________

STEP 1 - Data

augmentation

Nominal data
augmentation
using system
identification

w

Physics-based
degraded data
augmentation

rorvreen (@ (A0

STEP 2 - Health Index
extraction based on
autoencoder reconstruction

error
Additional e -
generated

nominal data v

________________________________________________

STEP 3 - Long-term HI

Time-to-fail
'me-to-Taliire prediction for RUL estimation

trajectories

Figure: Overall proposed approach.
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Step 1: Data Augumentation



Step 1: Data Augumentation

Objective

e Compensate for the lack of data

@ Both nominal and degraded data augmentation

@ Generate more training samples from existing ones in order to improve the performance of a
prediction made by a neural network.
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Historical Data available. NOT Design of Experiment!!

S~ —
— Eﬂwf exw T
S
— A collectio

Only historical
data available

- l e
— Cholce of a model structure Prior knowledge "] EKPEI’iI’I"‘IEI’It deslgn Is not [JDSSIb'E
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Parameter estimation of the model
Model villdatlnn Validation
dataset

Model
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accepted ?

Yes
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O

Historical Data available. NOT Design of Experiment!!

Informative data segment selection

|

== Choice of a model structure

Prior knowledge

T

!

Parameter estimation of the model

|

@ Experiment design is not possible

@ Limited amount of data only from historical

Model validation

Model
-

Yes

rorvreen (@ CAn

Validation :
reeer flights.

@ Only a few and not sufficiently informative
changes of the setpoint.

JHA Mayank, Health Aware Control and Safe Control Learning
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Example: Historical Dataset

Setpoint Temperature vs Measured Temperature in the cockpit
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Figure: Recording of test flight of September 27, 2021.
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System: Cockpit Temperature Control System

i System G i
Temperature £ |controller| " ! | Actuator i
setpoint c - A | CockpitP = Y
r(°C) |
Vi Measurement
noise n
Measured temperature (°C) Sensor |
H

Figure: Block diagram of the cockpit temperature control system

@ C and G must be identified
@ Closed-loop system
@ Setpoint r mostly around 22°C

@ Continuous-time linear system identification

’ EACIJ\”I:_YY TECH’ @ H'E“'Q’UEI"‘&TIEE KQAA JHA Mayank, Health Aware Control and Safe Control Learning
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Step 1.1 : Identification of Plant model (G)

e

“Manual mode”
@ Open-loop behavior
@ Variation on command u

@ |dentification of G

Ym = Gu+n (2)
EACIJ\!(!“,-YY TECH’ @ iy rlQAA JHA Mayank, Health Aware Control and Safe Control Learning
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Step 1.1 : Identification of Plant model G

i Setpoint ‘I'-umpu'_ﬂ:.lru ve Measured 'I'ﬂ'ranl'h.n in H'ru-u_l:u:hﬂ'l.
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Figure: Flight of October 5, 2021, Aircraft 3.
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Step 1.2: ldentification of the controller C

£ u
C —
ymi'

@ Closed-loop behavior

“Auto mode”

@ Setpoint r remains constant
@ Identification of the inverse of the controller [MacGregor and Fogal, 1995, Huang and Kadali, 2008]

Ym =~ ©)

r
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Step 1.2: ldentification of the controller C

Setpoint Temperature vs Measured Temperaturs in the cockpit
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Figure: Flight of September 29, 2021, Aircraft 3.

’ EA?\ch:_YY TECH’ @ gg'ﬁ,‘gﬂﬁ}: rQAA/ JHA Mayank, Health Aware Control and Safe Control Learning

mavank-shekhar.jha@univ-lorraine fr



1.3 Validation: Replicate different - existing flights!
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Step 1.5: Nominal Data Augumentation

@ Nominal data augmentation

Temperature setpoint £ Identified . .| ldentified Y R
r (°C) selected by user Controller £ ! System G
. Measurement
] noise fi
:P m | Sensor |,
: | H=1
‘ ¢
Generated Generated command u (identical
temperature y,, to the valve position v)

Figure: Global air distribution system model used to generate additional nominal data.
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Step 1.6 Physics Based Degraded Data augumentation

Hybrid process: data-driven models supplemented by a physics-based degradation model.

Physics-based

degradation
model

Temperature ® | Identified | “ | Actuator
setpoint Controller € A
r(°C)
Ym
Measured temperature (°C) Sensor
H

Figure: Injection of non-linear effects of degradation in the actuator.
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Step 1.6 Physics Based Degraded Data augumentation: Valve Stiction

F
F
=] y
L= #
-: J_d'
-5 - '_.l' L 4
= # :
[ ,"F ...f'!
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M i
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A #fs
L - ‘_.r'S -

Figure: Valve stiction modeling
[He and Wang, 2010].

POLYTECH
NANCY

Controller Output (OP)

@ (A0

Stiction model [Siraskar, 2021, Choudhury et al., 2004]:

s = | -1+ (e — sign(edfo), ifled > fs
k — Xk—1, if|Ej¢| < fS

with e = up — xx_1, fs and fp the static and dynamic stiction
parameters.
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Step 1.6 Physics Based Degraded Data augumentation: Degradation Modelling

Simple failure mode: increasing the value of the parameter fs alone, following a time t-dependent
exponential degradation model.

f_g = ,ﬁ'ear (5}

— Command u {controller output)[]
e — Valve position v 1

Opening position
3
Valve position v

1 1 1 1 1 1 1 1
4 & 43 43 44 45 4.8 4.7 4.8 4.9 5 o 2 3 4 5 ] T B a 1

Time (h) Command, u (controller output)

(a) Command (from the controller) and valve position when fs = 0. (b) Valve characteristic when fs = 0.
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Step 1.6 Physics Based Degraded Data augumentation: Degradation Modelling

Simple failure mode: increasing the value of the parameter fs alone, following a time t-dependent
exponential degradation model.

fs = Be™* (5)

i — Command u (controller output)f
T — Valve position v

Opening position
Valve position v

1 1 ' Il 1
4 & 2 14 18 1&

S B ih i
Command, u (controller output)

4 4.1 4.2 43 4 4.7 LF. 4.8 5 i}

Time (h)

(c) Command (from the controller) and valve position when fs = 15. (d) Valve characteristic when fs = 15.
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Step 1.6 Physics Based Degraded Data augumentation: Time to Failure

Trajectory generation
Setpoint Temperature vs Temperature in the cockpit

aa | | I |
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Figure: Time to Failure (TTF) trajectory generation.
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Step 2: Health Index Extraction



Step 2: Health Index Extraction

Objective
e Extract Health Index (HI) from raw sensor data

@ Using nominal data only (i.e. without degradation)

@ Unsupervised method
@ Fusing multiple sensor signals into one variable

@ Autoencoders
» Unsupervised
» Very efficient at extracting features from raw sensor data [Gensler et al., 2016, Hu et al., 2016]
P> Data-related : Able to extract relevant features onlv from data within similar distribution to training

set
(Input) [ Encoder ) [Latent] [~ Decoder Y\ (Output)
space
z
ﬁ O Z= fee(x)
A P, % = g0,(2)
e —— A~ -
O . O 1O x = go,(fs.(x))
O Jag(0e,04) = > L(x, g0,(f3,(x)))
A ‘\ _/l . JN A o A
Figure: Autoencoder structure.
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Step 2: Health Index Extraction: Reconstruction Error

Consider a nominal training domain:

Dn = { X} } (10)

where each sample X}, belongs to a nominal feature space X.
Training on nominal data samples

E(tw) = || Xiu(tw) — g0, (fo. (Xiv(t)))|] (11)

where A
w(tw) = {X: 37 (12)

with t,, as the start time step of the window and A as its tntal duration.
Leading to optimal parameters ¢} and 6%
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Step 2: Health Index Extraction: Reconstruction Error

Consider now a system under degradation: X|, belongs to a degraded feature space Xp

Degraded feature space

The distribution of data samples in A'p drifts increasingly from the distribution of nominal samples as
the system approaches its EOL.

P(X}y) # P(Xp). (13)
With parameters derived from nominal data:
w4
Evotal(tw) = Y || Xb(t) — 803 (fo: (X (t0)) | (14)
k=w

Health Index

Due to the distribution shift in P(Xf:,), Eiota1 continues to grow until the system fails completely. This
time varying, certainly increasing reconstruction error is used as Hl.
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Step 2: Health Index Extraction: Autoencoder Structure

POLYTEGCH
NANCY

Autoencoder made of Fully Connected Layer (FCL)

1x240
1x180

160

L,

Figure: Autoencoder structure for signals reconstruction.

Training:
— e .
vec(Xjy(tw)) = go.(fs.(vec(Xy(tw))))
Erieqder Decoder
Input ;C T - —  Conv _ A -
OV =p 23x7 - 23x7
ety Con - @Rt Eell) (ReLU)
23 x 28 e 23 x 28 (ReLU) :
(ReLU) Conv (RELU) (RCLU) Conv (ReLU)
23 X 56 Nepeol
(ReLU) (ReLU)

Figure 2. Proposed deep CNN autoencoder structure for VHI extraction.
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Step 2: Health Index Extraction

/  TRAINING N\
Window of
w_lnduw of reconstructed
nominal signals nominal signals
vec (Kf.;l[tw]) - vec (ﬂ;(tw})

Autoencod éfﬁ

NS
Reconstruction error
E(ty) to be
minimized

J

4 Health Index based on TESTING )
reconstruction error
HI[E“.} = EtutnI(Iw}
o

vec (}{Iﬂ [tw}) w8 8; |— wvec (ﬂ,{tw])

Window of signals ) Window of
under degradation Trained reconstructed signals

autoencoder

-

under degradation

Figure: Extracting HI from sensor data using the reconstruction error of an autoencoder.
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Step 2: Health Index Extraction:

Sensor signals

Canspr values
e
i

— sptpoint
command

—— walwe_positian

1 —— mRasured_ouwtput

Corresponding extracted HI based on reconstruction error

]
=
i

oI
=

i
[=]

Heslth index

=
=
i

a 254 00 750 1000 12540 15400 1750 2000
Tirme in minutas

Figure: Example of HI extraction based on reconstruction for one TTF trajectory.
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Step 2: Health Index Extraction: Consclusions

2 —— Median Hl
il
- 351 STD
s
|
-
c 30 A
E . .
S Contribution to research challenges
U 25 7
- @ Training based exclusively on
O .
B 5 | nominal data
uy
i
3 @ Fully unsupervised
=
15 A — _
ﬁ @ Excellent generalization capabilities
£ 10 as it only relies on the nominal
@ system behavior (potential to detect
I .
‘ ' 1 ' ‘ ‘ any degradation
0.0 0.2 0.4 0.6 0.8 1.0 y deg ) y

Fraction of total life passed

Figure: Median HI trajectory based on reconstruction error, w.r.t.
fraction of total life passed.
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Step 3:RUL Prediction



Step 3: RUL Prediction

Objective

Predicting Remaining Useful Life (RUL) without using RUL-labeled data

Using degraded augmented data (Step 1)

Long-term HI prediction

Until End of Life (EOL) detection

&
o
e Extrapolation - Cumulative prediction error
"
@ Leading to RUL deduction
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Step 3: RUL Prediction: A Sequence to Sequence Prediction Problem

@ Sequence prediction [Sun and Giles, 2001]:

b1y ey Xty n (17)

[x

@ Sequence-to-sequence prediction [Brownlee, 2017]:

) )

[Xf;c=1:' sesy th:ﬂ- = [ka=ﬂ,-npur+1:' sy ka:ﬂ,-npm+ﬂmd:| {18}

input

@ Chained sequence-to-sequence prediction:

. .
X vy X — | X ey X
[ tp—11 b t‘;":ﬂiﬂput tk:ﬂfnput"'l 3 1 tk:ﬁfﬂpﬂf-'-ﬂp.red

Sopiro Kaaon, | 7 [ Ko, (19)

=ﬂfnput+ﬂp.red +17 ! ==input +24

ete.

with Ajpput, Apred the lengths of input and output sequences and — the mapping model (which can
typically be an RNN or its variants).
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Step 3: RUL Prediction: A Sequence to Sequence Prediction Problem

@ Reusing previous predicted output sequences as input for future predictions
e Cumulative prediction error

@ Overlapping concept proposed to improve continuity between windows

e Careful selection of hyperparameters Aj,put, Apred and d.

0.35 4 —— input
- == target
0.30 - /
-
0.25 ,—f‘j
g A V
2 0.20 4
™ f
=] ]
0.15 4 /\,F
0.10 1
0.05
0 10 20 30 40 50

time (5]

Figure: Overlapping sequences.
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Step 3: RUL Prediction: A Sequence to Sequence Prediction Problem

— prediction
1.50 4 —— ground truth 124 — prediction
—— input window —— ground truth
1.25 4 10d — input window
1.00 0.8 -
0.75 - 06 -
0.50 1
0.4 -
0.25 4
0.2 -
0.00 4
T T T T T T T T IJ.I] T
0 25 50 75 100 125 150 175 . . . . . . . T
time 0 25 50 75 100 125 150 175

time

Fi : With lapping 4.
Figure: Without overlapping. igure: VVith overlapping
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Step 3: RUL Prediction: Deep LSTM Structure

Fully connected layer

T
Fully connected Layer
T
Flattening of all hidden states
'h-?i Ihﬁg Ih?ﬁ!upu.:_] h[i'ﬁlnpul:
c?l {_.r32 - r'?-llmpur-l__
LSTM | LSTM J LSTM [ _____ Ll LSTM | LSTM
hi hi hi,
A 1 2 r 1 imput r
hl‘zi Ihgl P‘fﬁ!upu:_] ﬂta'ﬁlnpu:
I::i-:‘:ll EEE vas ctz“impm_"
. B @ Emmm-- + >
LSTM J LSTM J LSTM | L LST™M J LSTM
htz hrz hf.: -1
F 1 2 F Y input 1
h}]_ Ih:3 Pl%ﬂmput'l h:]'d'l.ﬂ]:lﬂl‘
Ei'll . c’-}z . I '}ﬂmpm-l._
LSTM | LSTM J LSTM | . | LSTM | LSTM
hEll h%E Llnput"‘

Figure: 3-layered stacked-LSTM network.
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Step 3: RUL Prediction: EOL Detection

Input window of Health

Index Falues EOL detection
= [ Prediction model J- | FOL Threshold
- 1 S o
2 e Predicted HI !
=9 window ; _
@B | : T Output length
BB i p
| 9 End Of Life : x | Aona
! # o Detector i z .
- E g chained
! S EoL : = . prediction
] detected ; o Owverlapping | 8 windows until
M, o Measured data reaching EOL
T T S threshold
Recursive RUL *
deduction . Deduced RUL

l Input length A, Time ¢t
RUL estimation

Figure: Overview of step 3 - prediction. Figure: EOL detection by threshold overshooting strategy.
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Step 3: RUL Prediction: HI Prediction

| = Prediction
10| — Ground truth
Initial input window
0.8
ks
_E
& D6
.
T 04
0.2 1
s
M‘!M'I'W
0.0
0 200 200 B0 3oa Lago 1200 14040

Time i minutes

Figure: HI prediction for one TTF test trajectory,
starting from tx_sg0 minutes.
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Time in minutes

Figure: HI prediction for one TTF test trajectory,
starting from t,_ggo minutes

Accumulation of prediction error leading to lower accuracy for early predictions.
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Step 3: RUL Prediction: RUL Prediction

- True RUL
—— Estimated RUL

1200 1

1000 4

500 -

600 A

400 A

Remaining Useful Life (RUL)

200

0 200 400 600 800 1000 1200
Time {in minutes)

Figure: One complete predicted RUL trajectory for one TTF test trajectory.
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Step 3: RUL Prediction

Sequence-to-sequence prediction:
o Key parameters: Ajnpyt, Dpred and 6

e Overlapping always improves the performance of RUL prediction (all other hyperparameters being
equal)

o ﬁ'JI'J':r,::u'..-r = ‘&pned

@ Avoid excessive extrapolation

Stacked-LSTM model:

o Key parameters: Number of layers L size of the hidden state |h,, |

@ Model complexity

Contribution to research challenges

@ No use of RUL-labeled data

@ Increase in prediction performance as EOL approaches
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Conclusions

« Deep NNs based Prognostics
« Powerful approach under supervised condtions

» Excellent generalisation capability under diverse, rich conditons.

» Good capacity in presence of qualitative, quantitative data (non stationanry, nonlinear dynamics etc.)

 Availibility of True Labelled target (output) a problem in real Industrial contexts

» Unsuperivised Prognostics =» still in nascent stage

 First contributions in this direction using system identification + deep autoencoders + LSTMS.
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