Solution TD 3, Exo 4, 5. iay 28 March 2025 08:23

TD 4 Exercise 12: Grouped complete data

We consider all the failures since 1985, according to the table given. The data are considered as grouped complete data.

	Year	Number of failures	Number of surviving	Relability	R	Density function $(PDF = \hat{f}(c))$	Hazard rate function $\hat{\lambda}(t)$
0	1584	0	300	1	0	0,05	0,05
1	1585	15	285	0,95	0,1	0,06666667	0,070175435
2	1985	20	265	0,8833333	0,2	0,06	0,067924528
3	1987	18	247	0,8233333	0,3	0,09	0,109311741
4	1568	27	220	0,7333333	0,4	0,11666667	0,159090906
5	1989	35	185	0,6166667	0,5	0,10333333	0,167567568
6	1990	31	154	0,5133333	0,6	0,15	0,292207792
	1991	45	109	0,3633533	0,7	0,14333333	0,394495413
8	1992	43	66	0,22	0,8	0,22	1
2	1993	66	0	0	0.9		

The formulas we used are:

F	$i(t) = 1 - \frac{\sum_{\max \ of \ follows}^{\max \ of \ follows}(i)}{namber \ of \ units}$
	$\mathcal{R} = \frac{n_i}{n}$
	$f(t) = -\frac{n_{t+1} - n_{t+1}}{(t_{t+1} - t_t) * n}$
	$\hat{\lambda}(t) = \frac{\hat{f}(t)}{\hat{R}(t)}$

We want to determine the MTTF and the standard deviation for those data. The formulas are: $MTTFF = \sum_{n=0}^{k-1} \tilde{t}_{i} + \frac{\theta_{i} - \theta_{int}}{n} \quad \text{and} \quad s^{2} = \sum_{n=0}^{k-1} \frac{1}{r_{i}} + \frac{s_{i} - s_{int}}{n} - (RTTF)^{2}$

The calculation details are present below:

t bar	tbart	(ni-ni+1)/n	t bar * (ni-ni+1)/n	t bart * (ni-ni+1)/r
0,5	0,25	0,05	0,025	0,0125
1,5	2,25	0,068666867	0,1	0,15
2,5	6,25	0,06	0,15	0,375
3,5	12,25	0,09	0,315	1,1025
4,5	20,25	0,116666667	0,525	2,3625
5,5	30,25	0,103333333	0,568333333	3,125833333
6,5	42,25	0,15	0,975	6,3375
7.5	56.25	0,1433333333	1,075	8,0625
8,5	72,25	0,22	1,87	15,895

We can then compute:

MTTF = 5,6033333 years $s^2 = 6,025988889 \text{ years}$ Standard deviation = $\sqrt{s^2} = 2,45478897 \text{ years}$

TD 5

We want to estimate the reliability function with the product limit method and rank adjustment method. a- If we have 12 units at risk.

n	Failure time	R(t)	F(t)	rank Increment	adjusted rank	Adjusted Reliability
0	0	1	0		0	1
1	5	0,92307692	0,07692308	1	1	0,94354835
2	12	0,84615385	0,15384615	1	2	0,86290323
3	15+	0,84615385	0,15384615			
4	22	0,76153846	0,23846154	1,1	3,1	0,77419355
5	27	0,67692308	0,32307692	1,1	4,2	0,68548383
6	35+	0,67692308	0,32307692			
7	49	0,58021978	0,41978022	1,25714286	5,45714286	0,58410138
8	71+	0,58021978	0,41978022			
9	73	0,46417582	0,53582418	1,50857143	6,96571429	0,4624424
10	81	0,34813187	0,65186813	1,50857143	8,47428571	0,34078341
11	112+	0,34813187	0,65186813			
12	117	0.17406593	0.82593407	2.26285714	10.7371429	0.15829493

First, we can calculate the reliability R() using the formula $R(1) \frac{((n_1, \dots, n_l))}{n_1(n_2, \dots, n_l)} R(n_1)$ With a being 1 if the value is uncensioned and 0 if the value is consoled. Then we can compute: F(t) = 1 - R(t)To get the adjusted reliability we calculate the rank intervent for each value after a consoled data we are:

 $Rank\ increment = \frac{(n + 1 - n_{i-2})}{(1 + n - n_{i-1})}$

Once we have the rank incomment, we can compute the adjusted next kalling the given rank for the uncommon distance and the transmission of the second data. The second data is the second relativity here $\hat{H}(t) = 1 - \frac{(adjusted rank - 0.3)}{(n+0.4)}$ We can see that the adjusted relativity signify different from the first relativity because it takes more in account for account data.