
Adiabatic Quantum Linear Optimal Control for Discrete Time
Dynamical Systems

Mayank-Shekhar Jha
CNRS, CRAN

Universite de Lorraine
Nancy F-54000, France

mayank-shekhar.jha@univ-lorraine.fr

Prasanna Date
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge 37830, USA

datepa@ornl.gov

Abstract—This paper presents a novel approach for solving
finite-horizon linear optimal control based on block-Toeplitz
least-squares problem, by recasting the latter as Quadratic
Unconstrained Binary Optimization (QUBO) suitable for adia-
batic quantum computing (AQC). Classical block-Toeplitz least-
squares problem, scales as O((N m)3) for horizon length N
and control dimension m. We demonstrate that this Toeplitz-
structured least-squares cost can be transformed into a QUBO
formulation by introducing binary precision vectors that en-
code each continuous control parameter into finite number of
bits. We establish the general case in mathematically rigorous
manner wherein the total number of binary decision variables
remain dependent on N. To respect current quantum annealer
capabilities, we propose a basis-function parametrization that
approximates the full control sequence with a small set of basis
coefficients, reducing the total number of binary-variables and
rendering the latter independent of N. Through simulation study,
we show that, for large datasets, the QUBO pipeline, comprising
of hardware-constant anneal step outperforms classical least
square based solvers by several factors whilst demonstrating
acceptable accuracy.

Index Terms—adiabatic quantum computing, optimal control,
quantum control, least squares

I. INTRODUCTION

Optimal control theory is a fundamental aspect of automatic
control, focusing on designing control strategies that guide
dynamic systems toward desired objectives by optimizing
specified performance criterion(s), indispensable across vari-
ous engineering fields [8, 10] . Such formulations enable lever-
aging well-established mathematical optimization methods,
including linear algebra and least squares optimization [2]. For
linear discrete-time systems, the control task typically involves
determining an action sequence that minimizes a quadratic
cost reflecting penalties on state deviations and control inputs
[10]. Traditionally, this problem is formulated and solved as a
least squares optimization problem, leveraging linear algebraic
methods such as matrix pseudo-inverses and direct solvers [2].
However, classical computation of these solutions, particularly
for large-scale or infinite-horizon problems, remains compu-
tationally expensive, often suffering from high computational
complexity, specifically scaling cubically with the size of data
involved, thus becoming prohibitive for large-scale or real-time
control tasks [7]. This scaling issue limits their applicability in
contemporary scenarios involving highly sampled dynamical
systems, frequently encountered in real-time applications that

generate substantial amounts of data, demanding rapid and
computationally efficient algorithms. Classical computational
methods often scale cubically with data size[10], rendering
them impractical in many contemporary engineering scenarios
that require swift computation and real-time responsiveness.

In recent years, quantum computing, particularly adiabatic
quantum computing (AQC)[1], has emerged as a promising
paradim for tackling complex optimization problems [6]. AQC
exploits quantum mechanical phenomena to approximate so-
lutions to optimization tasks, promising enhanced computa-
tional efficiency over classical counterparts. Central to the
implementation of AQC is the Quadratic Unconstrained Binary
Optimization (QUBO) formulation, known for encapsulating
a broad class of combinatorial and continuous optimization
problems effectively [9]. Using AQC via QUBO formula-
tions, have demonstrated considerable promise in accelerating
machine learning tasks such as linear regression [5, 11].
Recent empirical studies validate significant computational
speedups for linear regression tasks when reformulated as
QUBO problems solved on quantum annealers like the D-
Wave quantum computer [4, 5]. This approach involves en-
coding continuous optimization problems into binary variables
through a precision vector mechanism, significantly enhancing
scalability and efficiency [5].

However, optimal control problems, have yet to be explored
within this quantum computing framework. Addressing this
scientific gap, the current paper proposes, for the first time, a
reformulation of finite-horizon linear optimal control problem
as QUBO problems solvable via AQC. By capitalizing on
the efficiency and scalability of QUBO formulations within
quantum computational architectures, this work aims to pro-
vide a novel and computationally advantageous method for
solving control problems traditionally limited by classical
computational constraints.

Thus, main contribution of this paper lies in proposition of
a novel QUBO-based formulation suitable for AQC, for linear
finite-horizon optimal control problem that is traditionally
based on least square approach. In particular, we consider
the Toeplitz-matrix-based least square approach and map the
quadratic cost function and system dynamics into a binary
optimization framework, thus enabling the use of AQC to
solve these problems. We establish the novel formulation in
a mathematically rigorous manner. We evaluate the proposed

308

2025 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3315-5736-2/25/$31.00 ©2025 IEEE
DOI 10.1109/QCE65121.2025.10341

method’s theoretical advantages in terms of computational
complexity, emphasizing its scalability and potential speed-
ups over classical least squares-based methods. The findings
presented herein serve not only as a pioneering step in
integrating AQC approaches into control theory but also as
a practical guide for future implementations of quantum-
enhanced optimal control algorithms.

Following this section, Section 2 covers background on
Toeplitz-based optimal control, QUBO formulation, and prob-
lem statement. Section 3 presents the QUBO formulation for
finite-horizon control followed by Section 4 that describes
basis-function parametrization and provides mathematically
rigorous theorems. Section 5 analyzes computational complex-
ity and Section 6 shows shows simulation study followed by
Section 7 that concludes and outlines future work.

II. BACKGROUND AND PROBLEM STATEMENT

We consider a linear discrete-time linear system in time
invariant state-space form as:

xk+1 = Axk + Buk (1)

where k ∈ Z+ is the discrete time step, xk ∈ Rn is the state
vector at time k, uk ∈ Rm is the control input. A ∈ Rn×n and
B ∈ Rn×m are known constant matrices. It is assumed that
(A,B) is stabilizable, i.e., there exists a feedback control law
or policy such that system in closed loop is stable. Moreover,
the system is considered fully observable.

A. Finite horizon Optimal Control as a Least Square Problem

In the classic finite horizon optimal control setting, the goal
is to find a sequence of control inputs {u0, . . . ,uN−1} that
minimizes the finite-horizon quadratic cost:

J(x0,{uk}) = xT
NQ f xN +

N−1

∑
k=0

(
xT

k Qxk +uT
k Ruk

)
, (2)

where Q,Q f ⪰ 0 and R ≻ 0. The horizon length is N. The final
state cost xT

NQ f xN captures terminal penalties, and Q,R weight
state and input penalties at each stage. Consider the system
variables along a trajectory consisting of N time steps and
define the stacked vectors as U =

[
u0 u1 · · · uN−1

]⊤ ∈
RNm and X =

[
x0 x1 · · · xN

]⊤ ∈R(N+1)n. Then, from (1),
it follows that:

X = H x0 +GU, (3)

where H ∈ R(N+1)n×n models the evolution due to the initial
condition, and G ∈ R(N+1)n×Nm is a block-Toeplitz matrix
captures how control inputs affect all future states, with

H =
[
I A A2 · · · AN

]⊤
, (4)

G =


0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B

 . (5)

In other words, each block-subdiagonal of G is Ai−1B, making
G block-Toeplitz. Rewriting the cost (2) as J(U) in a block-
matrix form gives:

J(U) = ∥diag(Q1/2, . . . ,Q1/2,Q1/2
f) ·X∥2

2

+∥diag(R1/2, . . . ,R1/2) ·U∥2
2,

(6)

with X = Hx0 +GU . Let

Qblock = blockdiag(Q, . . . ,Q, Q f), Rblock = blockdiag(R, . . . ,R),
(7)

Then, substituting X from (3) into (6) leads to the typical least
squares form:

J(U)=UT (GT Qblock G+Rblock)︸ ︷︷ ︸
=:M

U + 2UT (GT Qblock H x0)︸ ︷︷ ︸
=: f

+ δ .

(8)
where δ is a real constant. The optimal control inputs U∗ can
be obtained by solving:

U∗ = argmin
u∈U

(
UT MU +2UT f

)
. (9)

Computing first gradient of J(U) with respect to U and
equating it to zero, reduces the optimal control to solving the
following equation:

MU∗ =− f , where M ∈ RNm×Nm. (10)

Because G is block-Toeplitz, this “Toeplitz-matrix-based” for-
mulation reduces the linear-quadratic optimal control on a
finite horizon, fundamentally, to a least squares problem in Nm
dimensions. Solving MU = − f by dense inversion typically
costs O((N m)3).

B. Quadratic Unconstrained Binary Optimization (QUBO)
Problem

A Quadratic Unconstrained Binary Optimization (QUBO)
problem is defined as:

min
ẑ∈{0,1}Nqb

ẑT A ẑ + BT ẑ, (11)

where A ∈ RNqb×Nqb is a symmetric matrix and B ∈ RNqb

where Nqb is the number of binary decision variables. Each
decision variable is binary ẑi ∈ {0,1}. An optimization prob-
lem with decision variables restricted to {0,1} and objective
function quadratic can be cast in this form. A critical step is
mapping each real variable (for instance, control inputs) to a
finite set of binary variables. To that end, a precision vector
P ∈RL [5] with pi, i= 1,2, ...L as real elements, is considered
as:

P = [p1, p2, . . . , pL]
T . (12)

P is generally chosen to reflect a desired numeric range

and resolution. For example:P = [−1, −1
2
,

1
2
, 1] can be

used to represent signed increments from −1.5 to +1.5 in
increments of 0.5. In general, a precision vector P allows

309

for encoding of a real continuous variable(s) wi using binary
variables ŵik ∈ {0,1} as

wi ≈
L

∑
t=1

pt ŵit , ŵit ∈ {0,1}. (13)

where {p1, . . . , pL} are chosen to achieve the desired precision
(e.g., pt = 2t−1 or any scaled version). It is noted that for
Nm real control variables, the total number of binary variables
becomes Nqb = N m L.

C. Adiabatic Quantum Computing

In AQC, one encodes the QUBO cost (11) as a Hamiltonian:

H (ẑ) = ẑT A ẑ + BT ẑ. (14)

The quantum system is initiated in the ground state of a sim-
pler Hamiltonian [9] and then evolved slowly towards (14)[6].
Under the adiabatic theorem [3], if the evolution is sufficiently
slow, the system remains in the lowest-energy configuration,
which ideally corresponds to the global optimum of the QUBO
[1].

The following sections present the contributions of the
paper.

III. QUBO BASED FINITE HORIZON OPTIMAL CONTROL

Consider the finite horizon optimal control problem as
presented in (2)-(10). In this section, we show how such a
problem can be transformed to a QUBO one, suitable for AQC.
From (8), let M = GT Qblock G+Rblock and f = GT Qblock H x0.
Then,

J(U) =UT MU + 2 f TU +δ . (15)

To encode the ith control input ui, we introduce corresponding
binary variables {ûi1, ûi2, . . . , ûiL} each in {0,1} where ∀t ∈
[0,L], ûit corresponds to the binary encoding of the i-th entry
of U with L precision bits. Then, ui is approximated by:

ui ≈
L

∑
t=1

pt ûit , ûit ∈ {0,1}. (16)

Hence, each real variable ui is replaced by L binary variables.
Considering (17), Nm real control input variables lead to Nqb
binary decision variables where Nqb = L×Nm. Now consider a
single binary vector Û ∈ {0,1}Nqb that stacks, ∀ui ∈U ∈RNm,
all the binary variables ûit as:

Û =
[
û11 û12 . . . û1L û21 . . . ûNmL

]T
, (17)

Next, consider a block-diagonal matrix Pblock ∈RNm×Nqb such
that Pblock = diag(P,P, . . . ,P)∈RNm×Nqb , constructed by repli-
cating P for each entry of U , we have:

U ≈ Pblock Û (18)

As such, the approximation U ≈ Pblock Û allows mapping
binary variables Û to real values U .

Theorem 1 (Finite-Horizon Optimal Control as QUBO)
Let the finite-horizon least-squares optimal control problem
be obtained by minimizing (8) where U ∈ RNm. Suppose U

is encoded into a binary vector Û ∈ {0,1}Nqb with U = PÛ
where P ∈ RNm×Nqb is a (block) matrix. If there exists a
matrix A ∈RNqb×Nqb and a vector B ∈RNqb then, the classic
finite horizon optimal control problem (9) can be expressed
in canonical QUBO form as:

min
Û ∈{0,1}Nqb

ÛT A Û + B
T

Û , (19)

From (8) we have J(U) = UT MU + 2 f TU + δ where
M ∈ RNm×Nm and f ∈ RNm. Using the binary encoding as
shown in (17), we have U = PÛ ,Û ∈ {0,1}Nqb . Substituting
U in the expression for J yields,

UT MU = (ÛT PT)M (PÛ) = ÛT (PT M P) Û . (20)

Similarly, for the linear term,

2 f TU = 2 f T (PÛ) = (2PT f)TÛ . (21)

Dropping constant terms that do not affect the minimizer, the
cost can be written as

ÛT (PT M P)Û + (2PT f)TÛ . (22)

Hence, defining A = PT M P and B = 2PT f transforms
the minimization problem of J(U) over continuous U into a
canonical QUBO form (11) as:

min
Û ∈{0,1}Nqb

ÛT AÛ + B
T

Û . (23)

Consequently, the original finite-horizon least-squares optimal
control problem is reformulated as a QUBO problem.

IV. BASIS-FUNCTION PARAMETERIZATION FOR
QUBO-BASED CONTROL

In the fully parameterized QUBO approach of Section
III, each scalar control uk,i at time k (for i = 1, . . . ,m, k =
0, . . . ,N−1) was encoded by L binary bits. As a result, the total
binary-variable count become Nqb = N × m × L, dependent
on the number of data N. The typical D-Wave based hardware
limit remains at 64 binary variables [5] i.e. N × m × L < 64,.
The latter poses a great challenge to the proposed formulation
restricting maximum value of N to 64.

To mitigate this, we now propose a reduced-dimensional
parameterization that uses r basis functions (with r ≪ N). By
expressing the entire control sequence through these r basis
vectors, we reduce and binary-encode only r m continuous
variables, thereby decoupling dependence of total binary vari-
ables on N. The approach is formalized as follows.

A. Basic Setup

Consider each uk,i encoded by L bits, that would require
Nqb = N mL binary variables. To mitigate dependency on N,
we choose a set of r scalar basis functions {φ j(k)}r

j=1, k =
0, . . . ,N −1, and propose:

uk =
r

∑
j=1

α j φ j(k), k = 0,1, . . . ,N −1, (24)

310

where each α j ∈ Rm is an m-vector of basis coefficients
(independent of k). We then stack those coefficient-vectors into
a single vector Θ =

[
α1 α2 · · · αr

]⊤ ∈ Rr m. To relate Θ

back to the full control stack U ∈ RN m, define the time-basis
matrix

Φ =


φ1(0) φ2(0) · · · φr(0)

φ1(1) φ2(1) · · · φr(1)
...

...
. . .

...
φ1(N −1) φ2(N −1) · · · φr(N −1)

 ∈ RN×r,

and set Ψ = Φ ⊗ Im ∈ R(N m)× (r m). Then by stacking all
uk, one gets:

U =
[
u0 u1 · · · uN−1

]⊤
= ΨΘ. (25)

with U ∈ RN m, Θ ∈ Rr m. Hence, instead of minimizing
J(U) over U ∈ RN m, one minimizes

J(ΨΘ) = (ΨΘ)T M (ΨΘ) + 2 f T (ΨΘ) + const.

over Θ ∈ Rr m. Substituting U = ΨΘ into the original cost
and defining M̃ = ΨT M Ψ ∈ Rr m×r m and f̃ = ΨT f ∈ Rr m

leads to

J(ΨΘ) = Θ
⊤(Ψ⊤MΨ)Θ+2(Ψ⊤ f)⊤Θ+ constant

= Θ
⊤ M̃ Θ+2 f̃⊤Θ+ const.

(26)

reducing the problem to

min
Θ∈Rr m

Jred(Θ) = Θ
⊤ M̃ Θ+2 f̃⊤ Θ+ c1 (27)

where c1 is any constant. Setting ∇ΘJred = 0 yields

M̃ Θ
∗ =− f̃ , M̃ ∈ Rr m×r m, f̃ ∈ Rr m.

Now, Θ∗ can be obtained by solving the standard r m-
dimensional linear-solve/least-squares problem.

B. Binary Encoding of the Coefficient Vector
To transform this into a QUBO, we now encode each

of the r m real entries of Θ using L bits. Fix a precision-
vector P =

[
p1 p2 · · · pL

]⊤ ∈ RL, so that each scalar
component (α j)i (the i-th entry of α j ∈ Rm) is approximated
by

(α j)i ≈
L

∑
t=1

pt α̂ i j t , α̂ i j t ∈ {0,1}. (28)

Since Θ stacks {α1, . . . ,αr}, there are r m scalar
entries to encode, each requiring L bits. We then
stack all these bits into a single binary vector as Θ̂ =[
α̂111 · · · α̂11L α̂211 · · · α̂21L · · · α̂mr 1 · · · α̂mr L

]⊤ ∈
{0,1}r mL.

Let us define the block-diagonal “precision matrix” as

Pparam = diag(P, P, . . . , P) ∈ Rr m × (r mL), (29)

where each diagonal block P ∈Rm×(mL) is itself structured so
that α j =

[
(α j)1 (α j)2 · · · (α j)m

]⊤ . Then, consider

α j ≈ P
[
α̂1 j 1 · · · α̂1 j L α̂2 j 1 · · · α̂2 j L · · · α̂m j L

]⊤
,

(30)

with P = Im ⊗P⊤. Finally, stacking over j = 1, . . . ,r,

Θ ≈ Pparam Θ̂, Θ̂ ∈ {0,1}r mL. (31)

We now state and prove the main theorem: under the basis-
function parametrization (24), minimizing the original finite-
horizon cost is equivalent to a QUBO in Θ̂ ∈ {0,1}r mL.

Theorem 2 (Basis-Function Parameterized QUBO problem)
Let

J(U) =U⊤MU +2 f⊤U +δ ,

with M = G⊤QblockG+Rblock,

f = G⊤QblockH x0.

(32)

Suppose the control sequence is approximated by U = ΨΘ

with Ψ = Φ ⊗ Im and Θ ∈ Rr m. Define M̃ = ΨT M Ψ ∈
Rr m×r m, f̃ = ΨT f ∈ Rr m. If each entry of Θ is then
encoded via Θ̂ ∈ {0,1}r mL as in (31), then minimizing J(U)
can be formulated as a QUBO problem :

min
Θ̂∈{0,1}r mL

[
Θ̂

T A Θ̂ + B
T

Θ̂

]
, (33)

where

A = P⊤
param M̃ Pparam = P⊤

param (Ψ⊤MΨ)Pparam,

B = 2P⊤
param f̃ = 2P⊤

param (Ψ⊤ f).
(34)

Starting from the reduced cost:

Jred(Θ) = Θ
T M̃ Θ + 2 f̃ T

Θ + δ .

Substitute Θ = Pparam Θ̂. Then

Θ
T M̃ Θ = (Pparam Θ̂)T M̃ (Pparam Θ̂) = Θ̂

T (PT
param M̃ Pparam)Θ̂,

and
2 f̃ T

Θ = 2 f̃ T (Pparam Θ̂) = (2PT
param f̃)T

Θ̂.

Dropping the constant δ does not affect the minimizer. It
follows that

J(Θ̂) = Θ̂
T (PT

param M̃ Pparam)Θ̂ + (2PT
param f̃)T

Θ̂ + constant.

Defining A = PT
param M̃ Pparam and B = 2PT

param f̃ , we see
immediately that minimizing J(U) is equivalent to minimizing
the QUBO

Θ̂
T A Θ̂ + B

T
Θ̂, Θ̂ ∈ {0,1}r mL.

Remark 1 In original proposition (see Section III), NmL
binary variables are required. With a basis expansion of order
r, this reduces to rmL binary variables. Thus, if r mL ≤ 64,
the QUBO defined by Theorem 2 fits current D-Wave AQC
devices.

Remark 2 If r = 1, then uk =α1 φ1(k) is a time-scaled version
of a single m-vector α1. In particular, if φ1(k) ≡ 1 for all k,
then all time steps share the same m-vector α1. In general,
increasing r allows for better approximation of the control
law, but also increases the product r mL. In practice, one picks
the smallest r that captures the dominant time-variation while
respecting r mL ≤ 64.

311

C. State Variables are basis functions

The classical optimal control theory guarantees that
(sub)optimal control law is a state-feedback of the form
u∗k = K∗ xk with K∗ ∈ Rm×n being the optimal gain obtained
from solving a Discrete Algebraic Riccati Equation (DARE)
[10]. The latter being is time-invariant and linear in the
current state. This inspires the use the system state variables
themselves as basis functions.

We posit that the control has the form uk = K xk,
with K ∈ Rm×n and we propose each coordinate of xk (at
time k) as a “basis function” φℓ(k). Concretely, since xk =[
x(1)k x(2)k · · · x(n)k

]⊤
, we treat the scalar φℓ(k) = x(ℓ)k as

the ℓ-th basis function. Then, the m-dimensional control is

uk = K xk =
n

∑
ℓ=1

x(ℓ)k αℓ, αℓ ∈ Rm, ℓ= 1, . . . ,n,

where α
(i)
ℓ = Ki,ℓ, is the ℓ-th column of K. By picking n ≪ N,

we shrink the continuous-decision dimension from N m to nm.
After binary-encoding those nm real coefficients with L bits
each, the QUBO uses only nmL binary decision variables,
independent of N. Each real scalar Ki,ℓ is represented in fixed-
point form using L bits:

Ki,ℓ =
L−1

∑
b=0

2−b z(b)i,ℓ , z(b)i,ℓ ∈ {0,1}, i = 1, . . . ,m, ℓ= 1, . . . ,n.

(35)
Collecting all nm entries into vec(K) ∈ Rnm, we build an
offset a ∈ Rnm and precision matrix P ∈ R(nm)×(nmL) so that
vec(K) = a+Pz, z ∈ {0,1}nmL, leading to total number of
binary (decision) variables as n m L instead of N mL.

Remark 3 Given optimal control law is exactly uk = K⋆xk,
then setting φℓ(k) = x(ℓ)k , αℓ = K·,ℓ incurs zero basis-
approximation error by construction. The only discrepancy
arises from finite-bit quantization. We typically scales each
state coordinate to [−1,1] or imposes box constraints so that
multiplications by bits 2−b remain numerically well-behaved.

V. TIME COMPLEXITY ANALYSIS

For the classical least-squares solver, building cost matrices
and solving via dense inversion of size Nm (see the steps
(8),(9)) scales as O((Nm)3)≈O(N3). By contrast, fixing r,m,L
so that r mL ≤ 64, the QUBO pipeline constructs the reduced
Hessian in O(N), executes the quantum anneal in O(1), and
reconstructs trajectories in O(N2 n), greatly outperforming
O(N3).

VI. SIMULATION AND RESULTS

We consider the controllable multi input multi out-
put (MIMO) system (1) with A = diag(0.9, 0.8, 0.7) ∈

R3×3 and B =

1 0
0 1
1 1

 ∈ R3×2 so that n = 3, m = 2,

and rank([B, AB, A2 B]) = 3. We fix Q = 100 I3, R =
1 I2, Q f = 100 I3.The initial state is x0 = [1, 1, 1]⊤. State
trajectory X and control U follow from X = H x0 +GU∗ (see

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e

Classical Closed-Loop P ofiles (N = 100)
x1
x2
x3

0 20 40 60 80 100
Time step k

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Co
nt

 o
l

u1
u2

Fig. 1. closed loop action under classical least square based optimal control

Section II-A). The state and control trajectories for data points
N = 100 is shown in Fig. 1 wherein all system states as well
as control inputs converge to the system’s zero confirming that
the expected optimal performance is obtained.

For the QUBO approach, we use the state variables
as basis functions, so that r = n = 3 functions. Each of
the r m = 6 coefficients is encoded with L = 8 bits on
[−3,3], so that r mL = 3 × 2 × 8 = 48 ≤ 64. We sweep
N ∈ {100,300,600,1024,3200,6400,12800,
25600,30000} on a computer with Intel Xeon W-2245: 8 cores,
16 threads, 3.9 GHz base. For each N, we time the solve step.

Preprocessing (matrix assembly) is identical for both meth-
ods and costs O(N2), so we exclude it and report only
core solver times—dense inversion for LQR vs. quantum an-
neal—highlighting substantial performance gains. Further, for
QUBO control problem, we compute the classical trajectory
Xcl(N) and QUBO trajectory Xqubo(N), and report Relative
Error = ∥Xqubo −Xcl∥2 and QUBO solve time (500 reads).
For QUBO problem simulation, we use the neal library which
is D-Wave’s open-source, pure-Python implementation of a
simulated-annealing sampler for QUBO and Ising problems.

The solve times for both LS approach and QUBO formu-
lation based approach is shown in Fig. 2. In the plot, for
small N (e.g. N = 500, 1000), both methods solve almost
instantaneously. As N increases to a few thousand, the classical
approach begins to exhibit its cubic growth: at N = 6000, the
least-squares time is already on the order of several seconds,
and by N = 12000 it exceeds tens of seconds. Meanwhile,
the QUBO-based solve time remains nearly flat—on the or-
der of milliseconds—because its quantum annealing step is
effectively constant (hardware-limited to 64 binary (decision)
variable), and its pre-processing costs grow only like O(N2).
Once N reaches 25 000 and 30 000, the classical solver’s time
soars to hundreds and then over a thousand seconds, whereas
the QUBO time stays under a few seconds. This dramatic
divergence underscores the predicted asymptotic crossover: for
large horizons, the O(N2)-like QUBO approach (with fixed
r,m,L) dramatically outperforms the O(N3) classical method,

312

0 5000 10000 15000 20000 25000 30000
Horizon N

0

50

100

150

200

250

300

So
lv

e
Ti

m
e

(s
)

Solve Time vs. Horizon N: Least Squares vs. QUBO-based
Least Squares
QUBO-based

Fig. 2. Solve times for classical least square based formulation and QUBO
based control

0 5000 10000 15000 20000 25000 30000
Horizon N

0.37

0.38

0.39

0.40

0.41

Re
la

tiv
e

Er
ro

r

Relative Error vs. Horizon N (QUBO-based)
Relative Error

Fig. 3. Relative error between the QUBO-recovered trajectory and the exact
least-squares trajectory

validating our theoretical scaling claims.
Fig. 3 plots the relative error between the QUBO-recovered

trajectory and the exact least-squares trajectory as the horizon
N grows from a few hundred to 3×104. Despite this ten-fold
increase, the error remains tightly clustered around 0.38–0.41.
Two main factors explain this relative error. First, the state-
feedback basis φℓ(k) = x(ℓ)k spans the true control law yet
suffers finite-precision noise. Second, encoding r m coefficients
in L = 8 bits over [a,b] causes quantization error; rounding
yields discrepancy ∥Θ∗ − (a + PΘ̂)∥. In an ideal scenario,
raising L (finer bit-grid) or adaptively scaling [a,b] around ex-
pected coefficient magnitudes would reduce quantization error
toward zero. The D-Wave 64-qubit limit (r mL ≤ 64) prevents
increasing L or r. Future annealers with more qubits will
support finer bit-grids or larger bases, reducing quantization
error and enhancing accuracy for larger MIMO systems.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work we have introduced a novel QUBO-based refor-
mulation of finite-horizon linear optimal control by exploiting
the block-Toeplitz least-squares structure. We show how any
Toeplitz-matrix least-squares problem can be converted into
a binary-quadratic form whose size depends only on the
number of basis coefficients times the chosen bit-precision. By
selecting a small basis dimension r (e.g., using state-feedback

or spline bases) and encoding each coefficient with L bits,
the total number of binary (decision) variable becomes r mL,
which can be kept below the current D-Wave limit of 64.
Empirical scalability studies confirm that for horizons N ≥ 103,
the QUBO pipeline comprising of classical overhead plus most
importantly, a hardware-constant anneal time outperforms a
classical least square solve. By capping the binary-variable
count at 64, today’s quantum annealers can handle moderately
sized MIMO examples (e.g., n = 3,m = 2) with acceptable
error; as annealers scale to hundreds of binary (decision)
variable, larger systems and finer precision will be feasible,
reducing quantization error. It is noted that linear optimal
control also is often addressed by solving a sequence of Al-
gebraic Riccati Equations (AREs), yielding efficient feedback
gains that scale linearly with data. However, this is not the
point of investigation in this work. Future work will extend
these ideas to Riccati-based infinite-horizon control, exploring
how discrete AREs may be embedded into QUBO form.
As quantum hardware evolves, QUBO-driven optimal control
promises to become a competitive, scalable alternative for real-
time, high-dimensional control tasks.

VIII. ACKNOWLEDGMENT

The first author would like to thank the good Costa Brava
beaches, sangria and Ludwig Göransson for the music in the
movie Oppenheimer.

REFERENCES
[1] Tameem Albash and Daniel A Lidar. “Adiabatic quantum computa-

tion”. In: Reviews of Modern Physics 90.1 (2018), p. 015002.
[2] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.

Cambridge university press, 2004.
[3] Bernard d’Espagnat. Conceptual foundations of quantum mechanics.

CRC Press, 2018.
[4] Prasanna Date, Robert Patton, Catherine Schuman, and Thomas Potok.

“Efficiently embedding QUBO problems on adiabatic quantum com-
puters”. In: Quantum Information Processing 18 (2019), pp. 1–31.

[5] Prasanna Date and Thomas Potok. “Adiabatic quantum linear regres-
sion”. In: Scientific reports 11.1 (2021), p. 21905.

[6] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
“Quantum computation by adiabatic evolution”. In: arXiv preprint
quant-ph/0001106 (2000).

[7] Gene H Golub and Charles F Van Loan. “Matrix computations, 4th”.
In: Johns Hopkins (2013).

[8] Mayank Shekhar Jha, Didier Theilliol, and Philippe Weber. “Model-
free optimal tracking over finite horizon using adaptive dynamic
programming”. In: Optimal Control Applications and Methods ().

[9] Andrew Lucas. “Ising formulations of many NP problems”. In: Fron-
tiers in physics 2 (2014), p. 5.

[10] Robert F Stengel. Optimal control and estimation. Courier Corporation,
1994.

[11] Dong Jun Woun, Kathleen Hamilton, Eduardo A Coello Perez,
Mayanka Chandra Shekhar, Francisco Rios, John Gounley, In-Saeng
Suh, Travis Humble, Georgia Tourassi, et al. “Adiabatic quantum
support vector machines”. In: Quantum Machine Intelligence 7.1
(2025), pp. 1–14.

313

