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Research focus

▶ Integration of data-driven prognostics into dynamic
maintenance planning→ predictive maintenance.



Agenda

▶ Predictive maintenance planning - a control problem
▶ Model-based approaches (batteries, wind turbines)
▶ Model-free approaches (aircraft engines)
▶ Open questions



Predictive maintenance nowadays

Large volumes of data as a result of continuous monitoring of
cyber-physical assets.

- For a A350, 50,000 sensors collect 2.5 terabytes of data per day*.
- Supervisory Control and Data Acquisition (SCADA) systems record
hundreds of parameters every second for one wind turbine.

*Data revolution in aviation, 2020. airbus.com



Opportunities

Continuous monitoring enables data acquisition and processing
for knowledge acquisitions, forecasting and planning.

Sensor measurements enable:
▶ monitoring of the health of the components
▶ identification of abnormal behavior
▶ anticipation of failure times
▶ decision-making for maintenance planning.

Goals: reduce costs, ensure safety, etc.



Predictive maintenance planning - a control problem

▶ Input: control policies π, measurements xt , operating
constraints ct .

▶ A: prognostics p(xt) of Remaining-Useful-Life(RUL) /
State-of-Health(SOH) and maintenance planning decisions
yt(p(xt),ct).

▶ Output: optimal timing of maintenance (t ∗). Tension
between continuing operation while risking failure -
preventive replacement of asset and wasting life.

▶ B: feedback on optimal maintenance timing vs current
moment and reaction time, uncertainty of prognostics,
consistency of maintenance decisions.



Maintenance planning - a dynamic process

▶ B: feedback on optimal maintenance timing vs current
moment (d0 ∈ {0,7}) and reaction time (7 days),
uncertainty of prognostics (variance of estimated RUL
distribution), consistent ”Do nothing”/”Immediate action”.



Adaptation

Given measurements xt , operating constraints ct and
periodically updated RUL prognostics p(xt):

- adjust maintenance timing t ∗ such that an asset failure is
avoided (high cost), while the wasted life of the asset due to
preventive replacements (decreasing cost) is minimized.



Today

Examples of predictive maintenance planning for:
▶ RUL prognostics of Lithium-ion batteries and maintenance

- feedback: the shape of the estimated RUL distribution;
tension risk of failure vs. wasted life

▶ RUL prognostics and maintenance for wind turbines
- feedback: the consistency of the maintenance decision

▶ RUL prognostics and maintenance for aircraft engines
- feedback: shape RUL distribution, optimal timing vs.
current moment

[1] Mihaela, M., Leo, J., Zhiguo, Z., & David, C. (2024). Predictive Maintenance Planning For Batteries Of Electric
Take-Off And Landing (eVTOL) Aircraft Using State-of-Health Prognostics. In the 34th European Safety and
Reliability Conference (p. 117).

[2] Manna, D., Mitici, M., & Dalla Vedova, M. D. L. (2024). System-level Probabilistic Remaining Useful Life
Prognostics and Predictive Inspection Planning for Wind Turbines. In PHM Society European Conference (Vol. 8).

[3] Lee, J., & Mitici, M. (2023). Deep reinforcement learning for predictive aircraft maintenance using probabilistic
remaining-useful-life prognostics. Reliability Engineering & System Safety, 230, 108908.



Example1: Predictive maintenance - Lithium-ion
batteries



eVTOL aircraft

▶ Electric Vertical Takeoff and Landing (eVTOL) aircraft [1]:
- short ranges (50-100km), average speed 200km/hr
- payload up to 500-800kg, 1-5 persons
- urban traffic, remote areas.

▶ Battery management - critical for safe operations, but
should also not waste its life due to costly replacement.

BBC News, 14th November 2024

[4] Polaczyk, N., Enzo, T., Wei, P., Mitici, M. 2019. A review of current technology and research in urban on-demand
air mobility applications. 8th Biennial Autonomous VTOL meeting & 6th Annual Electric VTOL Symposium, 333-343

[5] Mitici, M., Hennink, B., Pavel, M., & Dong, J. (2023). Prognostics for Lithium-ion batteries for electric Vertical
Take-off and Landing aircraft using data-driven machine learning. Energy and AI, 12, 100233.



Missions

▶ A sequence of missions for each eVTOL:
Constant Current (CC) battery Charging, Constant Voltage
(CV) battery Charging, Rest period, Takeoff at given power,
Cruise at given duration & power, Landing at given power.

Example of a single mission - eVTOL VAH01



Measurements

▶ Measurements every second:
- cell voltage (V), cell current (mA), energy supplied to the
cell during charge (Wh), charge supplied to the cell during
charge (mAh), energy extracted from the cell during
discharge (Wh), charge extracted from the battery cell
during discharge (mAh), cell surface temperature (◦C),
cycle number (-) and cycle segment (-).



Mission profiles

Mission profiles (a total of 22)
▶ Baseline

- CC battery charging phase: 1C-rate
- CV battery charging phase: 4.2 V
- Rest until cell temperature 35 ◦C.
- Takeoff: 75s, 5C-rate; Cruise: 800s, 1.48C-rate; Landing:
105s, 5C-rate.

▶ Perturbed parameters: duration cruise , power during
take-off, cruise, and landing, CC current, CV voltage,
temperature.



Prognostics for battery RUL

End-of-Life (EOL): battery reaches EOL as soon as its capacity
reaches 85% of the initially measured battery capacity.

Goal: estimate the distribution of the Remaining-Useful-Life
(RUL).

RULtc = TEOL − Tc ,

with TEOL the cycle number when the battery capacity drops for
the first time below the EOL-threshold, and Tc the current cycle
number.



Feature engineering

Based on the measurements available - 32 features:
▶ Charging-related features: duration CC/CV charging phase

(∆CC ,∆CV ), duration Rest after charging (∆Rest )

▶ Discharge-related features: max, min, mean, variance of
voltage/discharge capacity during flight segments take-off,
cruise, landing (Vsegment

max , Vsegment
min , Vsegment

mean , Vsegment
var ,

Qdissegment
max , Qdissegment

min , Qdissegment
mean , Qdissegment

var ), duration
discharge ∆segment .

▶ Temperature-related features: max temperature during segment
take-off, cruise, landing (T segment

max )



Feature selection

Feature Importance

V take−off
min 95.4

V take−off
mean 94.7

Cmeasure 93.4
V take−off

var 92.4
Vcruise

max 87.8
Qcrg 87.1
∆CV 86.5
Vcruise

min 78.8
Vcruise

mean 63.8
V landing

var 59.3
V landing

mean 57.4
V take−off

max 57.2
V landing

min 51.6
Qdistake−off

var 47.7
Qdistake−off

mean 46.5
Qdistake−off

max 45.9

Feature Importance

Qdiscruise
max 45.9

Tcruise
max 45.4

T landing
max 41.1

T take−off
max 38.8

∆rest 36.5
V landing

max 35.5
∆take−off 23.4
∆cruise 19.7
∆landing 19.4
∆CC 12.9
Qdiscruise

var 3.5
Qdis landing

max 2.4
Qdiscruise

mean 2.3
Vcruise

var 2.2
Qdis landing

var 1.4
Qdis landing

mean 1.2

Table: SHAP values (importance) for the 32 considered features; top
50% of the features are selected for RUL prognostics (in bold).



Prognostics for RUL - Mixed Density Networks

Figure: MDN neural network used to generate probabilistic RUL
prognostics.



Results - RUL prognostics



Probabilistic RUL prognostics

(a) VAH09, Capacity test 1. (b) VAH09, Capacity test 9.



Predictive maintenance planning

Based on the RUL prognostics, at current day d0 decide whether to
plan a battery replacement at some day d in the planning window
[d0 + 1,d0 + k ], or to postpone the decision for the next window
[d0 + 1 + l,d0 + k + l].

Cost of replacing within [d0 + 1,d0 + k ]

cvd = cearly(d∗v − d)+ + clate(d − d∗v)
+. (1)

Cost of postponing to [d0 + 1 + l,d0 + k + l]:

cpostpone
v = clate(d0 + k + l − d∗v)

+, (2)

with d∗v a function of the prognostic P[RULv
d0
≤ d].



Results



Results



Results

Figure: Average number of batteries used per year, given the Oracle,
the RUL point estimate (RUL point) and Our (RUL distribution)
planning - 10 years simulation, 50 eVTOLs, 10 missions/day/eVTOL.



Example2: System-level prognostics for Wind Turbines

Manna, D., Mitici, M., Dalla Vedova, M. (2024). System-level Probabilistic Remaining Useful Life Prognostics for
Wind Turbines. European Conference of Prognostics and Health Management (PHMe) 2024.



Prognostics and Health Management for wind turbines

▶ Wind energy - crucial role in the energy transition.

▶ Goal: by 2030, no less than 20% of worldwide electricity
demand satisfied by wind energy (Global Wind Energy Council).

▶ Wind energy - unreliable source of energy, also due to system
malfunction and failures.

▶ High costs with maintenance, particularly for offshore wind
turbines (remote areas).



Prognostics development

Monitoring a Wind Turbine at time step d (dth day), with
available measurements:

xd = {x1,d , x2,d , . . . , xm,d},

with m the total number of features, xj,ds the measurement
corresponding to feature j,1 ≤ j ≤ m recorded on day d.

Then, the actual system-level RUL of the WT at time d is:

RULa(WT) = min{τ(c1) − d, τ(c2) − d, . . . , τ(cn) − d},

with τ(cj),1 ≤ j ≤ n the time of failure of component c i
j of WT i,

n the total number of components of the WT.



Data Description

▶ 4 offshore Wind Turbines, 1st January 2017 - 31st
December 2017.

▶ Supervisory Control and Data Acquisition (SCADA)
measurements, meteorological recordings every 10min,
and the logs of the WT component failures,

▶ SCADA measurements are recorded for: gearbox, gearbox
bearing, generator, generator bearing, transformer, grid,
rotor, blades, nacelle, controller, spinner, hydraulic group.

SCADA measurements:Max/Min/Average/STD Generator RPM (rpm), Max /Min/Average Rotor RPM (rpm), Average
Temperature Generator Bearing (◦C), Average Temperature Generator Phase 1/2/3 (◦C), Average Temperature
Hydraulic Group Oil (◦C), Average Temperature Gearbox Oil (◦C), Average Temperature Gearbox Bearing (◦C),
Average Temperature Nacelle (◦C), Average Temperature High Volt Transformer Phase 1/2/3 (◦C), Average
Temperature Grid Inverter Phase1 (◦C), Average Temperature Controller Top/Hub, VCP (◦C), Average Temperature
Generator Slip Ring (◦C), Average Temperature Spinner (◦C), Max/Min/Average/STD Blades Pitch Angle (degree),
Average Temperature Controller VCP Chokcoil (◦C), Average Temperature Grid Rotor Inverter Phase1/2/3 (◦C),
Average Temperature Controller Cooling Water (◦C), Average Nacelle Direction (degree), Average Temperature Grid
Busbar (◦C), Average Temperature Generator Bearing (◦C).



Cases

▶ Constructing training, testing and valisation sets - four case
studies.

Case 1 Case 2 Case 3 Case 4
Testing WT06 WT07 WT11 WT01
Training WT01, WT07 WT01, WT06 WT06, WT07 WT06, WT07
Validation WT11 WT11 WT01 WT11
First fault Hydraulic Group Hydraulic Group Hydraulic Group Transformer
Actual Lifetime 8 months 6 months 4 months 8 months



Probabilistic RUL prognostics

Long-short term memory (LSTM) with Monte Carlo dropout.



Results - Probabilistic RUL prognostics

MAE RMSE CRPS CRPSW

β = 1.9
Case 1: WT06 12.72 15.52 9.98 2.51
Case 2: WT07 11.30 13.65 7.86 9.16
Case 3: WT11 9.40 11.08 6.93 6.88
Case 4: WT01 19.35 22.42 14.68 3.11



Prognostics over time

Case 1 - RUL estimation, WT06.

Case 2 - RUL estimation, WT07.



Prognostics over time

Case 3 - RUL estimation, WT11.

Case 4 - RUL estimation, WT01.



Probabilistic RUL prognostics over time - WT06



Optimal Replacement time

At current time k , interested in the optimal time to inspect t ∗k , i.e.,

t ∗k = argmintk
E[C(k , tk )]
E[L(k , tk )]

,

where

E[C(k , tk )] = cf

tk−1∑
i=0

ϕk (i) + ci

1 − tk−1∑
i=0

ϕk (i)

 ,
and

E[L(k , tk )] =k +

tk−1∑
i=0

i · ϕk (i) + tk

1 − tk−1∑
i=0

ϕk (i)

 .



Results - Inspection Planning

(a) WT06 (b) WT07

(c) WT11 (d) WT01



Results - Inspection planning

▶ Overall, conservative planning of inspections.
▶ The timing of the inspections reflects the insights obtained

using CRPS and CRPSW scores - WT for which the
prognostics obtain low CRPS scores also have timely
inspections planned (WT06, WT01), i.e. the failures of the
WT are well anticipated.

▶ In the last phase of the life of the WT, the inspections are
consistently planned within a short period of time.



Example 3: Deep reinforcement learning for
maintenance

What if the maintenance planning of engines does not follow
the renewal theory?
More general optimisation frameworks are needed→
Reinforcement Learning

Deep Reinforcement Learning for Predictive Aircraft Maintenance
using Probabilistic Remaining-Useful-Life Prognostics. J. Lee, M.
Mitici. Reliability Engineering & Safety Systems, 108908, 2023



Measurements

Aircraft turbofan engines - the degradation of engines is simulated
using the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) program developed by NASA.

Abhinav Saxena and Kai Goebel. Turbofan engine degradation simulation data set. NASA Ames Prognostics Data
Repository.Moffett Field, CA: NASA Ames Research Center; 2008.



Reinforcement learning for maintenance planning



Assumptions

▶ Maintenance schedule updated every D ≥ 1 flight cycles.
▶ Need to decide to replace/ not an engine during the next D

cycles (a decision step).
▶ At start of decision epoch t , available prognostic

pk ,t = P(Rt ≤ k | xt), for k ∈ {1, ...,D},

with xt measurements available at decision step t .



RL formulation

▶ State:
st =

[
p1,t , ... , pD,t

]
,

with pk ,t the probability that the RUL is less than k cycles.
▶ Action:

at =

k , 0 < k ≤ D Schedule replacement at cycle k ,
M, M > D Do nothing

.



RL formulation

▶ Reward:

rt =


−csch(k ) if (k − 1) < at ≤ k and ρt > k
−cuns if (k − 1) < at ≤ k and ρt ≤ k
−cuns if at > D and ρt ≤ D
0 if at > D and ρt > D

,

where
csch(k ) = c0 − c1k , (3)

with c0 a fixed cost of replacement (c0 > 0), c1 a penalty for
an early replacement (c1 > 0), ρt the hidden state, i.e., the
true RUL.



RL formulation



DRL approach

DRL agent chooses action at (maintenance decision) given
state st (estimated distribution of RUL) based on a policy
π(at |st) : S ×A → [0,1].

An optimal policy π∗ maximizes:

J(π) =
∑

t

E(st ,at )∼ρπ

[
γt rt(st ,at)

]
,

where ρπ is the state–action trajectory distribution induced by a
policy π.



Results

RUL prognostics, every D = 30 flight cycles.

Decision step t = 80, replacement is not scheduled. At
previous steps, consistently not scheduling a replacement.



Results

Decision step t = 81, replacement is scheduled after 7 cycles.
From this step, consistent decision to replace asset.



Results



Conclusion & Outlook

▶ Prognostics successfully integrated into maintenance
planning, leading to fewer failures, less wasted life of
assets.

▶ Beneficial to use probabilistic RUL prognostics instead of a
point/mean estimate of RUL, and dynamic assessment of
maintenance decision.

Remaining challenges:
▶ Formulate degradation models that are reacting to control

strategies while continuous measurement collection is
enabled.

▶ Dynamic adaptation of the control strategies directly
connected to the degradation models.

▶ Safety assessment framework that includes data-driven
methods.



Thank you for the invitation!

Mihaela Mitici, Utrecht University
m.a.mitici@uu.nl



Open Positions

▶ Postdoc - Reinforcement Learning for energy strategies in
the nexus of electric vehicles - photovoltaic panels -
buildings.

▶ PhD - Optimisation models (linear programming) for
energy usage balancing and battery degradation in
low-voltage medium-voltage networks.
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