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Research focus

» Integration of data-driven prognostics into dynamic
maintenance planning — predictive maintenance.
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Agenda

» Predictive maintenance planning - a control problem
» Model-based approaches (batteries, wind turbines)
» Model-free approaches (aircraft engines)

» Open questions



Predictive maintenance nowadays

Large volumes of data as a result of continuous monitoring of
cyber-physical assets.

- For a A350, 50,000 sensors collect 2.5 terabytes of data per day*.

- Supervisory Control and Data Acquisition (SCADA) systems record
hundreds of parameters every second for one wind turbine.

Data revolution in aviation, 2020. airbus.com



Opportunities

Continuous monitoring enables data acquisition and processing
for knowledge acquisitions, forecasting and planning.

Sensor measurements enable:
» monitoring of the health of the components
» identification of abnormal behavior
» anticipation of failure times
» decision-making for maintenance planning.

Goals: reduce costs, ensure safety, etc.



Predictive maintenance planning - a control problem

Input Output
e

A

B

» Input: control policies T, measurements x;, operating
constraints c;.

» A: prognostics p(x;) of Remaining-Useful-Life(RUL) /
State-of-Health(SOH) and maintenance planning decisions
Yi(p(xt), t).

» Output: optimal timing of maintenance (t*). Tension
between continuing operation while risking failure -
preventive replacement of asset and wasting life.

» B: feedback on optimal maintenance timing vs current
moment and reaction time, uncertainty of prognostics,
consistency of maintenance decisions.



Maintenance planning - a dynamic process
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» B: feedback on optimal maintenance timing vs current
moment (dy € {0, 7}) and reaction time (7 days),
uncertainty of prognostics (variance of estimated RUL
distribution), consistent "Do nothing”/’Immediate action”.



Adaptation

Given measurements Xx;, operating constraints ¢; and
periodically updated RUL prognostics p(x;):

- adjust maintenance timing t* such that an asset failure is
avoided (high cost), while the wasted life of the asset due to
preventive replacements (decreasing cost) is minimized.



Today

Examples of predictive maintenance planning for:

» RUL prognostics of Lithium-ion batteries and maintenance
- feedback: the shape of the estimated RUL distribution;
tension risk of failure vs. wasted life

» RUL prognostics and maintenance for wind turbines
- feedback: the consistency of the maintenance decision

» RUL prognostics and maintenance for aircraft engines
- feedback: shape RUL distribution, optimal timing vs.
current moment

[1] Mihaela, M., Leo, J., Zhiguo, Z., & David, C. (2024). Predictive Maintenance Planning For Batteries Of Electric
Take-Off And Landing (eVTOL) Aircraft Using State-of-Health Prognostics. In the 34th European Safety and
Reliability Conference (p. 117).

[2] Manna, D., Mitici, M., & Dalla Vedova, M. D. L. (2024). System-level Probabilistic Remaining Useful Life
Prognostics and Predictive Inspection Planning for Wind Turbines. In PHM Society European Conference (Vol. 8).
[3] Lee, J., & Mitici, M. (2023). Deep reinforcement learning for predictive aircraft maintenance using probabilistic
remaining-useful-life prognostics. Reliability Engineering & System Safety, 230, 108908.
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eVTOL aircraft

» Electric Vertical Takeoff and Landing (eVTOL) aircraft [1]:
- short ranges (50-100km), average speed 200km/hr
- payload up to 500-800kg, 1-5 persons
- urban traffic, remote areas.

> Battery management - critical for safe operations, but
should also not waste its life due to costly replacement.

BlBJC

Home News Sport Business Innovation Culture Arts Travel Earth Video Live

"The biggest problem area when it comes to the cost of operation is the pilot and the
batteries. You need to change the batteries a couple of times per year "

BBC News, 14th November 2024

[4] Polaczyk, N., Enzo, T., Wei, P., Mitici, M. 2019. A review of current technology and research in urban on-demand
air mobility applications. 8th Biennial Autonomous VTOL meeting & 6th Annual Electric VTOL Symposium, 333-343

[5] Mitici, M., Hennink, B., Pavel, M., & Dong, J. (2023). Prognostics for Lithium-ion batteries for electric Vertical
Take-off and Landing aircraft using data-driven machine learning. Energy and Al, 12, 100233.



Missions

» A sequence of missions for each eVTOL.:
Constant Current (CC) battery Charging, Constant Voltage
(CV) battery Charging, Rest period, Takeoff at given power,
Cruise at given duration & power, Landing at given power.

Example of a single mission - eVTOL VAHO1

Voltage (V)

0 20 40 60 80
Time (min)



Measurements

» Measurements every second:
- cell voltage (V), cell current (mA), energy supplied to the
cell during charge (Wh), charge supplied to the cell during
charge (mAh), energy extracted from the cell during
discharge (Wh), charge extracted from the battery cell
during discharge (mAh), cell surface temperature (°C),
cycle number (-) and cycle segment (-).



Mission profiles

Mission profiles (a total of 22)

» Baseline
- CC battery charging phase: 1C-rate
- CV battery charging phase: 4.2 V
- Rest until cell temperature 35 °C.
- Takeoff: 75s, 5C-rate; Cruise: 800s, 1.48C-rate; Landing:
105s, 5C-rate.

» Perturbed parameters: duration cruise , power during
take-off, cruise, and landing, CC current, CV voltage,
temperature.



Prognostics for battery RUL

End-of-Life (EOL): battery reaches EOL as soon as its capacity
reaches 85% of the initially measured battery capacity.

Goal: estimate the distribution of the Remaining-Useful-Life
(RUL).

RULi, = TeoL — T,

with Tgo, the cycle number when the battery capacity drops for
the first time below the EOL-threshold, and T the current cycle
number.



Feature engineering

Based on the measurements available - 32 features:

» Charging-related features: duration CC/CV charging phase
(ACC, ACY), duration Rest after charging (ARest)

» Discharge-related features: max, min, mean, variance of

voltage/discharge capacity during flight segments take-off,
cruise, landing (VSegme™, vseoment ysegnent y/seomen,

Qdisyed™™, Qdis> 9™ Qdispean™ , Qdisged™*™), duration

discharge Asegment,

» Temperature-related features: max temperature during segment

take-off, cruise, landing (T359me™)



Feature selection

Feature Importance  Feature Importance
Viake-ofl 954 Qdisgiuse  45.9
Vike—ot 947 Tewse 454
(Cmeasure 93.4 -I—Iandmg 411
" max N
Vtake—off 92.4 Ttake—off 38.8
Veiise 87.8 arest 36.5
Qrgia 87.1 \/fanding 355
cv take—off
A 86.5 A 234
V;ri(;ise 78.8 \Cruise 19.7
Ve 63.8 planding 19 4
v/anding 59.3 ACC 12.9
vandng 57.4 Qdisgys 3.5
Vi o 57.2 Qs 2.4
landing iacruise
me 51.6 Qg’fisrgean 2.3
Qdistake-oft  47.7 Virse 22
Qisiake-off 46,5 Qis ™™ 1.4
Quisfake=o  45.9 Qais2ndng 4 2

Table: SHAP values (importance) for the 32 considered features; top
50% of the features are selected for RUL prognostics (in bold).



Prognostics for RUL - Mixed Density Networks
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Figure: MDN neural network used to generate probabilistic RUL

prognostics.



Results - RUL prognostics

Fold 1 Fold 2 Fold 3
VAH# MAE RMSE CRPS VAH# MAE RMSE CRPS VAH# MAE RMSE CRPS
VAHO1 63.69 68.15 4729 VAHO1 56.1 6242 432 VAHIO 104 1233 718
VAHO2 3541 3737 2492 VAHO5 294 370 19.65 VAH11 669 7507 53.55
VAH13 17.06 2081 13.02  VAHO6 6121 6488 4726 VAH17 3445 3883 2411
VAH20 35606 59.04 4251 VAH13 3278 3606 2236 VAH22 0.62 13.74 B33
VAH28 2201 2547 18.12  VAHI5 2254 242 1479  VAH23 987 12589  72.87
VAH30 175 2147 12.1 VAHI6 2032 2234 14.41 VAH25 51.79 7478 3748
ALL 3529 3872 2633 ALL 37.06 41.15 2694 ALL 4531 5677 3392

Fold 4 Fold 5 Fold 6
VAH# MAE RMSE CRPS VAH# MAE RMSE CRPS VAH# MAE RMSE CRPS
VAHOZ 2021 27.1 18.22  VAHO5 23.88 28.56 16.24  VAHI0 559 735 6.41
VAHO6 2936 33.22 19.54  VAHIZ 5209 5995 3932 VAHI2Z 6123 66.06 48.09
VAHI7 23.04 2771 1599  VAHI5S 1131 1389 825 VAH22 11.77 1498 844
VAH20 57.5 5924 4248 VAHI6 1753 21.85 13.57 VAH24 2093 2528 14.27
VAH26 21.85 2741 17.86 VAH24 1184 1603 98 VAH25 39.64 5091 28.39
VAH30 759 946 7.85 VAH27 268  34.61 21.95 VAH27 36.84 40.62 2411
ALL 26.59 30.69 2032 ALL 2391 29.15 18.19 ALL 2933 342 21.62




Probabilistic RUL prognostics
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Predictive maintenance planning

Based on the RUL prognostics, at current day dy decide whether to
plan a battery replacement at some day d in the planning window
[do + 1, do + K], or to postpone the decision for the next window
[do+1+41do+k+1].

Cost of replacing within [do + 1, do + K]
Cvd = Cearly(dy — d)™ + Ciate(d — d)) ™. (1)
Cost of postponing to [dp + 1+ 1, do + k + 1]:
0P = Cpate(do + k + 1 — o)), 2)

with d;, a function of the prognostic IP[RUL; < d].
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Results
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Example2: System-level prognostics for Wind Turbines

Manna, D., Mitici, M., Dalla Vedova, M. (2024). System-level Probabilistic Remaining Useful Life Prognostics for
Wind Turbines. European Conference of Prognostics and Health Management (PHMe) 2024.



Prognostics and Health Management for wind turbines

» Wind energy - crucial role in the energy transition.

» Goal: by 2030, no less than 20% of worldwide electricity
demand satisfied by wind energy (Global Wind Energy Council).

» Wind energy - unreliable source of energy, also due to system
malfunction and failures.

» High costs with maintenance, particularly for offshore wind
turbines (remote areas).




Prognostics development

Monitoring a Wind Turbine at time step d (dth day), with
available measurements:

Xd = {X1,d, X2,d, - - -, Xm,a},

with m the total number of features, x;4s the measurement
corresponding to feature j, 1 <j < mrecorded on day d.

Then, the actual system-level RUL of the WT at time d is:
RULZ(WT) = min{t(ci) —d,t(c2) — d,...,t(cy) — d},

with 7(cj), 1 < j < n the time of failure of component clf of WT |,
n the total number of components of the WT.



Data Description

» 4 offshore Wind Turbines, 1st January 2017 - 31st
December 2017.

» Supervisory Control and Data Acquisition (SCADA)
measurements, meteorological recordings every 10min,
and the logs of the WT component failures,

» SCADA measurements are recorded for: gearbox, gearbox
bearing, generator, generator bearing, transformer, grid,
rotor, blades, nacelle, controller, spinner, hydraulic group.

SCADA measurements:Max/Min/Average/STD Generator RPM (rpm), Max /Min/Average Rotor RPM (rpm), Average
Temperature Generator Bearing (°C), Average Temperature Generator Phase 1/2/3 (°C), Average Temperature
Hydraulic Group Oil (°C), Average Temperature Gearbox Qil (°C), Average Temperature Gearbox Bearing (°C),
Average Temperature Nacelle (°C), Average Temperature High Volt Transformer Phase 1/2/3 (°C), Average
Temperature Grid Inverter Phase1 (°C), Average Temperature Controller Top/Hub, VCP (°C), Average Temperature
Generator Slip Ring (°C), Average Temperature Spinner (°C), Max/Min/Average/STD Blades Pitch Angle (degree),
Average Temperature Controller VCP Chokcoil (°C), Average Temperature Grid Rotor Inverter Phase1/2/3 (°C),
Average Temperature Controller Cooling Water (°C), Average Nacelle Direction (degree), Average Temperature Grid
Busbar (°C), Average Temperature Generator Bearing (°C).



Cases

» Constructing training, testing and valisation sets - four case

studies.
Case 1 Case 2 Case 3 Case 4
Testing WTO06 WTO07 WT11 WTO1
Training WTO01, WT07 WTO01, WT06 WTO06, WT07 WTO06, WT07
Validation WT11 WT11 WTO1 WT11
First fault Hydraulic Group | Hydraulic Group | Hydraulic Group | Transformer
Actual Lifetime | 8 months 6 months 4 months 8 months




Probabilistic RUL prognostics

Long-short term memory (LSTM) with Monte Carlo dropout.
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Results - Probabilistic RUL prognostics

MAE | RMSE | CRPS | CRPSY
=19

Case 1: WT06 | 12.72 | 15.52 | 9.98 2.51

Case 2: WT07 | 11.30 | 13.65 | 7.86 9.16

Case 3: WT11 | 9.40 | 11.08 | 6.93 6.88

Case 4: WTO1 | 19.35 | 22.42 | 14.68 | 3.11
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Probabilistic RUL p
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Optimal Replacement time

At current time k, interested in the optimal time to inspect t,, i.e.,

Bk
tk = argminy, m,

where

tk—1 tk_1
E[C(k, t)] = & Y x(i) + [1 -y </>k(i)],
i=0 i=0

and

t—1 t—1
E[L(k, t)] =k + ) i-duli) + tk[1 - Z¢k(i>].

i=0 i=0



Results - Inspection Planning
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Results - Inspection planning

» Overall, conservative planning of inspections.

» The timing of the inspections reflects the insights obtained
using CRPS and CRPS" scores - WT for which the
prognostics obtain low CRPS scores also have timely
inspections planned (WT06, WTO01), i.e. the failures of the
WT are well anticipated.

> In the last phase of the life of the WT, the inspections are
consistently planned within a short period of time.



Example 3: Deep reinforcement learning for
maintenance

What if the maintenance planning of engines does not follow
the renewal theory?

More general optimisation frameworks are needed —
Reinforcement Learning

Deep Reinforcement Learning for Predictive Aircraft Maintenance
using Probabilistic Remaining-Useful-Life Prognostics. J. Lee, M.
Mitici. Reliability Engineering & Safety Systems, 108908, 2023



Measurements

Aircraft turbofan engines - the degradation of engines is simulated
using the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) program developed by NASA.

Symbol | Description Units
_Parameters available to participants as sensor data
T2 Total temperature at fan inlet “°R
T24 Total temperature at LPC outlet  °R : Combume Ni_ LI
T30 Total temperature at HPC outlet  °R
T50 Total temperature at LPT outlet  °R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Ne Physical core speed rpm Nozzle
epr Engine pressure ratio (P50/P2) -
Ps30 Static pressure at HPC outlet psia LPC HPC N2
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRe Corrected core speed rpm
BPR Bypass Ratio -
farB Burner fuel-air ratio -
htBleed Bleed Enthalpy -

Abhinav Saxena and Kai Goebel. Turbofan engine degradation simulation data set. NASA Ames Prognostics Data
Repository.Moffett Field, CA: NASA Ames Research Center; 2008.
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Reinforcement learning for maintenance planning

Probabilistic RUL prognostics

Convolutional neural network
with Monte Carlo dropout

!

( Estimated distribution of RUL )

Predictive maintenance planning

Deep reinforcement learning
using Soft-Actor-Critic
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Assumptions

» Maintenance schedule updated every D > 1 flight cycles.

» Need to decide to replace/ not an engine during the next D
cycles (a decision step).

> At start of decision epoch t, available prognostic
pxt=P(Rt <kl|xt) fork e {1,..,D},

with x; measurements available at decision step t.



RL formulation

> State:
St = [p1,t 7o g pD,t]/
with py ; the probability that the RUL is less than k cycles.
» Action:

o= k, 0<k <D Schedulereplacement at cycle k,
““IM, M>D Do nothing '



RL formulation

» Reward:
—Csch(k) if(k—1)<ar<kandp; >k
h_ —Cuns if(k—1)<ar<kandp; <k
““J-cms ifar>Dandp<D ’
0 ifa; > D and p; > D
where
Csch(K) = co — 1k, )

with ¢y a fixed cost of replacement (¢y > 0), ¢ a penalty for
an early replacement (c¢y > 0), p; the hidden state, i.e., the
true RUL.
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DRL approach

DRL agent chooses action a; (maintenance decision) given
state s; (estimated distribution of RUL) based on a policy
n(atlst) : Sx A — [0,1].

An optimal policy 7* maximizes:

J(n) = Z ]E(s,,a,)~pn [Vtrt(st/ at)] p
t

where p; is the state—action trajectory distribution induced by a
policy 7.



Results

RUL prognostics, every D = 30 flight cycles.
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Results

0.800 T
Decision step 81

Engine 247 is operated 179 cycles
0.600 o wmmm=  Schedule replacement after 7 cycles.
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Decision step t = 81, replacement is scheduled after 7 cycles.
From this step, consistent decision to replace asset.



Total cost Number of  Total number of
unscheduled replacements replacements
DRL approach 17.84 (-36.3%) 0.62 (-95.6%) 14.89 (+6.4%)
using distribution of RUL
Predictive maintenance 25.23 (-9.8%) 10.87 (-22.3%) 14.00 (0.0%)
at mean-estimated-RUL
Corrective maintenance 27.99 (0.0%) 13.99 (0.0%) 13.99 (0.0%)
Ideal maintenance 16.10 (-42.5%) 0.0 (-100.0%) 13.95 (-0.3%)
at true RUL
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Conclusion & Outlook

» Prognostics successfully integrated into maintenance
planning, leading to fewer failures, less wasted life of
assets.

» Beneficial to use probabilistic RUL prognostics instead of a
point/mean estimate of RUL, and dynamic assessment of
maintenance decision.

Remaining challenges:

» Formulate degradation models that are reacting to control
strategies while continuous measurement collection is
enabled.

» Dynamic adaptation of the control strategies directly
connected to the degradation models.

» Safety assessment framework that includes data-driven
methods.



Thank you for the invitation!

Mihaela Mitici, Utrecht University
m.a.mitici@uu.nl



Open Positions

» Postdoc - Reinforcement Learning for energy strategies in
the nexus of electric vehicles - photovoltaic panels -
buildings.

» PhD - Optimisation models (linear programming) for
energy usage balancing and battery degradation in
low-voltage medium-voltage networks.
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