
Received: 13 August 2022 Revised: 23 April 2023 Accepted: 7 June 2023

DOI: 10.1002/oca.3028

R E S E A R C H A R T I C L E

Model-free optimal tracking over finite horizon using
adaptive dynamic programming

Mayank Shekhar Jha Didier Theilliol Philippe Weber

Centre de Recherche en Automatique de
Nancy (CRAN), UMR 7039, CNRS Faculté
des Sciences et Technologies, Université
de Lorraine, Vandoeuvre Cedex, France

Correspondence
Mayank Shekhar Jha, Centre de Recherche
en Automatique de Nancy (CRAN), UMR
7039, CNRS Faculté des Sciences et
Technologies, Université de Lorraine, B.P.
70239, 54506 Vandoeuvre Cedex, France.
Email:
mayank-shekhar.jha@univ-lorraine.fr

Abstract
Adaptive dynamic programming (ADP) based approaches are effective for solv-
ing nonlinear Hamilton–Jacobi–Bellman (HJB) in an approximative sense. This
paper develops a novel ADP-based approach, in that the focus is on minimizing
the consecutive changes in control inputs over a finite horizon to solve the opti-
mal tracking problem for completely unknown discrete time systems. To that
end, the cost function considers within its arguments: tracking performance,
energy consumption and as a novelty, consecutive changes in the control inputs.
Through suitable system transformation, the optimal tracking problem is trans-
formed to a regulation problem with respect to state tracking error. The latter
leads to a novel performance index function over finite horizon and correspond-
ing nonlinear HJB equation that is solved in an approximative iterative sense
using a novel iterative ADP-based algorithm. A suitable Neural network-based
structure is proposed to learn the initial admissible one step zero control law. The
proposed iterative ADP is implemented using heuristic dynamic programming
technique based on actor-critic Neural Network structure. Finally, simulation
studies are presented to illustrate the effectiveness of the proposed algorithm.

K E Y W O R D S

actor critic, adaptive dynamic programming, model free, neural networks, nonlinear Hamilton
Jacobi bellman, optimal tracking

1 INTRODUCTION

Optimal control for nonlinear systems requires solving the nonlinear Hamilton–Jacobi–Bellman (HJB) equation analyti-
cally which is usually too difficult.1,2 To that end, the usefulness of dynamic programming (DP) for solving HJB equation
is well established.3–5 Adaptive dynamic programming (ADP) based methods have emerged as effective approach for solv-
ing nonlinear HJB in approximative sense and solve the optimal control problems forward-in-time.6–8 Several variants
of adaptive-critic designs have been developed to implement ADP-based methods including heuristic dynamic program-
ming (HDP), dual HDP and globalized-dual HDP.9 While HDP employs a critic NN to approximate the optimal cost
function, dual HDP uses critic NN to approximate the derivative of the optimal cost function, and globalized-dual HDP
employs critic NN to estimate both of the optimal cost function as well as its derivative.10 In a broad sense, the actor-critic
structures are both included in most ADP-based methods.

For dynamical systems, it is usually required to the optimize the energy consumed (keeping control input to zero) along
with desired performance, but it is also significantly important to minimize the consecutive changes in control inputs
that is,Δut where u is the control input at time t. For time varying tracking problems, the control input values depend on

Optim Control Appl Meth. 2023;1–25. wileyonlinelibrary.com/journal/oca © 2023 John Wiley & Sons Ltd. 1

https://orcid.org/0000-0002-6926-1386
http://wileyonlinelibrary.com/journal/OCA
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foca.3028&domain=pdf&date_stamp=2023-06-27

2 JHA et al.

the desired trajectory. As such, the latter remain sensitive to the trajectory generator output and associated perturbations.
Under constrain free conditions (non-saturating actuators) as considered in this paper, the control inputs are sensitive to
severe changes in control values (depending on the reference trajectory). Thus, it becomes important to account for such
changes in control inputs often brought in by trajectory generators, while designing optimal control for tracking. In fact,
one of the undesirable effects of large control input change (frequent actuator solicitation) is actuator degradation.11,12

ADP-based approaches are being extensively developed in various domains where smoothness in the control input profile
is often desirable. This includes fault tolerant control,13 smart buildings,14 robust control,15 time-delay systems,16 health
sector,17 spacecraft rendezvous,18 and so on.

Much of the existing work stands on the view of infinite horizon designs and seek to satisfy the required system prop-
erties including system stability over an infinite time horizon19 provided an important proof of convergence for iterative
ADP algorithm to solve discrete-time nonlinear HJB,20 considered consecutive changes in control inputs within the cost
function (infinite horizon) and provided the convergence proof,21 extended the analysis to unknown affine systems,22

extended the treatment for nonaffine nonlinear systems,23 and8 gave a holistic treatment and provided boundedness result
for online HDP approach. Most of these works have considered the known system models.

Finite horizon control design seeks to satisfy various required properties within a finite horizon limit and remains
closer to the reality and hence, more pertinent for physical systems.24,25 Recent years have seen significant rise in finite
horizon-based control.26 In Reference 27, adaptive epsilon-ADP algorithm was proposed to solve near optimal control
problem,28 provided finite horizon iterative ADP-based optimal control,29 considered a non-quadratic cost function and
provided convergence proofs. However, the aforementioned works have considered the system models that are either
fully known20 or partially known (knowledge of control matrix).30 presented an iterative ADP-based optimal control
under fully unknown conditions but over infinite horizon. The recent works of References 31 and 32 present finite hori-
zon optimal tracking design under unknown model conditions using iterative HDP conditions with convergence proofs.
Although, complete unknown conditions are assumed, the knowledge of inverse system dynamics (imperative for feed-
forward control) is assumed to be available a priori and the inverse system dynamics problem is not addressed which is
usually very difficult to obtain analytically.

In this context,20 considered changes in control input within the cost function but over infinite time horizon and
under known system conditions.

To the best knowledge of authors, none of the existing works have focused on minimizing the consecutive changes in
control inputs over a finite horizon under complete unknown conditions within the ADP framework.

To bridge the existing scientific gap, this paper:

• Develops a novel ADP iterative algorithm by accounting for consecutive changes in control inputs within the cost
function and provides novel proofs of convergence. It is noted that similar formulation was proposed in Reference 20
but over infinite horizon for optimal regulation problem under known conditions while this paper proposes the latter
over finite horizon and optimal tracking problem under complete unknown conditions.

• To initialize the iterative algorithm under the assumptions of admissibility, an initial one step zero control law is
required. This paper proposes a suitable NN-based algorithm to obtain the initial admissible one step zero control.

This section is followed by section 2 that presents problem formulation taking into account consecutive changes in
control input within the cost function and deriving the corresponding nonlinear HJB equation. Then, in section 3, it is
noted that unknown system dynamics as well as inverse dynamics need to be identified, section 4 presents the two novel
contribution of the paper: novel algorithm to derive an initial one step zero control law, and the principal contribution in
form of novel iterative ADP algorithm under finite horizon conditions with complete convergence analysis and proofs.
Further, section 5, implements the proposed iterative ADP using actor-critic structure-based iterative HDP technique and
finally, section 6 presents a simulation study and section 7 draws the conclusions.

2 PROBLEM STATEMENT

The dynamic system is considered unknown, nonlinear, control affine in discrete time as:

xk+1 = F
(

xk,up,k (xk)
)

= f (xk) + g (xk) up,k (xk) . (1)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 3

where xk ∈ Rn is the global system state vector determining the system state trajectory, up(x) ∈ Rm is the con-
trol vector, f (⋅) and g(⋅) are nonlinear functions differentiable with respect to its arguments, g(x) satisfies ||g(x)||F ≤
gM ∀x ∈ Rn where gM > 0 is any positive constant. Moreover, f + gu is considered Lipschitz continuous on a com-
pact set Ω in Rn containing the origin, system (1) is stabilizable so that there exists a control sequence on compact
set Ω that asymptotically stabilizes the system. For notational purposes, we denote the feedback control up,k(x) as
up,k. Optimal tracking problem consists of determining the optimal control law u∗p,k (or optimal control sequence)
that makes the system (1) track a reference (desired) trajectory rk ∈ Ω ⊆ R

n generated by a trajectory generator
𝜙(r) ∈ Rn as:

rk+1 = 𝜙 (rk) (2)

Assumption 1. Mapping between the state xk and the desired trajectory 𝜙 (rk) is one to one.

The steady state desired control ud,k corresponding to reference trajectory rk can be defined as:

ud,k = g−1 (rk)
[
𝜙 (rk) − f (rk)

]
(3)

where the inverse of control matrix g−1 (rk) is unknown but exits so that g−1 (rk) g (rk) = I ∈ Rm×m with I being an identity
matrix.

A reference control generator function ud,k depends on unknown inverse dynamics which must be identified (see
section 3.2) to generate the desired reference control.

2.1 System transformation and nonlinear HJB optimality

The tracking error is defined as:

ek = xk − rk (4)

The augmented error dynamics can be obtained from (1) to (3) as33:

[
ek+1

rk+1

]

=

[(
f (ek + rk) + g (ek + rk) ud,k − 𝜙 (rk)

)
+ g (ek + rk) uk

𝜙 (rk)

]

(5)

where ud,k is obtained from (3). Considering the augmented system (5), ek and rk can be treated as system variables and
uk is seen as feedback control input at k, given as:

uk = up,k − ud,k (6)

Moreover, considering the fact the reference evolution does not depend on other system variables, (5) can be
represented as:

ek+1 = Fe (ek,uk) (7)

where ek = xk − rk, ek ∈ Rn.
Now, starting from k, considering the initial state of the system at discrete time k as ek, let the control sequence

over finite horizon be noted as uN−1
k = (uk,uk+1, . … uk+N−1) that leads to a system trajectory starting from ek:

ek+1, ek+2, ek+3.. … ek+N . The cardinality of the control sequence that determines its length is denoted as
||||
uN−1

k

||||
.

Then,
||||
uN−1

k

||||
= N and the final state under the control sequence uN−1

k is denoted as e(final)
(

ek,uN−1
k

)
. Then,

e(final)
(

ek,uN−1
k

)
= eN .

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 JHA et al.

2.2 Cost function penalizing consecutive changes in control input

For finite horizon optimal control problem, the optimality of the control sequence is assessed by a cost function that must
penalize consecutive changes in control inputs, that is, Δut where u is the control input at time t.

To that end, the cost function in this paper seeks to penalize the consecutive changes in control inputs uk − uk−1. It is
considered as:

J
(

ek,uN−1
k

)
=

N−1∑

i=k
η (ei,ui,ui−1) (8)

where η(⋅) is the utility function and η(0, 0, 0) = 0, η (ei,ui,ui−1) ≥ 0 ∀ei,ui,ui−1. The utility function is chosen as:

η (ei,ui,ui−1) =
[
eT

i rT
i
]
[

Qx 0
0 0

][
ei

ri

]

+ uT
i S ui + (ui − ui−1)TR (ui − ui−1) (9)

where Qx, S, and R are symmetric and positive definite matrices of appropriate dimensions. The first term
in the quadratic function penalizes system errors, the second term penalizes the control error and while the
third term penalizes the consecutive changes in the control input.

Remark 1. From (6) it is observed that tracking control up,k to the original system (1) consists of a feedback
control uk and a predetermined desired control ud,k associated with the desired reference trajectory rk.

Remark 2. By considering the augmented error system (5) in the cost function (8), the optimal tracking
problem of (1) has been transformed to an optimal regulation problem.

Defining vk = uk − uk−1 and noting the fact that v0 = u0 and vk = uk = 0 ∀k < 0, one can obtain:

uk = vk + vk−1 + . … v0

= vk +
k−1∑

l=0
vl (10)

where ∀l < k, control value at l is denoted as vl. Moreover, for notational simplicity,
k−1∑

l=0
vl is denoted as

∑k−1
l=0 vl. Then, the

control action at any k, uk becomes:

uk = vk +
k−1∑

l=0
vl (11)

Accordingly, the utility function in (9) becomes:

η

(

ei, vi,

(

vi +
i−1∑

l=0
vl

))

=
⎧
⎪
⎨
⎪
⎩

[
eT

i rT
i
]

Q

[
ei

ri

]

+ vT
i Rvi +

(

vi +
i−1∑

l=0
vl

)T

S

(

vi +
i−1∑

l=0
vl

)⎫
⎪
⎬
⎪
⎭

(12)

where Q =
[

Qx 0
0 0

]
. After having defined control actions in (10), the control sequences are represented in accor-

dance to (10). Then, consider vN−1
k = (vk, vk+1, ..vN−1) as the sequence of control inputs from any k > 0 to N − 1.

Then, the sequence of control actions starting from k as defined in (10) can be denoted as:
∑

l=0 vl
N−1

k
=

((
vk +

∑k−1
l=0 vl

)
,

(
vk+1 + vk +

∑k−1
l=0 vl

)
, … ,

(
vN−1 + vN−2 + … +

∑k−1
l=0 vl

))
. Additionally, the corresponding cumula-

tive cost function (cf. (8)) can be defined as:

J
⎛
⎜
⎜
⎝
ek, vN−1

k ,

∑

l=0
vl

N−1

k

⎞
⎟
⎟
⎠
=

N−1∑

i=k
η

(

ei, vi,

(p=i∑

p=k
vp +

k−1∑

l=0
vl

))

(13)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 5

Remark 3. The difference of control errors in cost function (9) has been incorporated systematically in cost
function (13). The problem is then transformed to that of finding control law v∗ (ek) starting at k, that is optimal
in sense of (13) and produces optimal control value v∗k at k.

Remark 4. From v∗k, the optimal control value u∗k for the system (5) can be constructed as u∗k= v∗k +
k−1∑

l=0
vl.

Definition 1. The control sequence starting from k, vN−1
k is considered finite horizon admissible with respect

to error state ek ∈ Ω if vN−1
k is continuous on compact set Ωu ∈ R

m for ∀ek ∈ Ω and stabilizes (5) on Ω,

v0 = 0, and for every initial condition ek ∈ Ω, the cost J
(

ek, vN−1
k ,

∑
l=0 vl

N−1

k

)
is finite with the final state

e(final)
(

ek, vN−1
k

)
= 0.

Assumption 2. In this work, the nonlinear augmented error system (5) is considered stabilizable on a com-
pact set Ω ∈ R

n, that is, for all initial conditions ek ∈ Ω, there exists a control sequence vN−1
k such that the

final state e(final)
(

ek, vN−1
k

)
= 0.

2.3 Associated nonlinear HJB optimality

ConsiderΘek =
{

vk ∶ e(final)
(

ek, vk

)
= 0

}
be the set of all finite horizon admissible control sequences starting at k and let

Θ(i)ek
=
{

vk+i−1
k ∶ e(final)

(
ekvk+i−1

k

)
= 0,

||||
vk+i−1

k

||||
= i
}

be the set of all admissible finite horizon control sequences starting

at k of length i. Then, the optimal cost function with respect to these admissible control sequences over the finite horizon
[k,N − 1] is:

J∗ (ek) = inf
vN−1

k

⎧
⎪
⎨
⎪
⎩

J
⎛
⎜
⎜
⎝
ek, vN−1

k ,

∑

l=0
vl

N−1

k

⎞
⎟
⎟
⎠
∶ vN−1

k ∈ Θ(N−k)
ek

⎫
⎪
⎬
⎪
⎭

(14)

It must be noted that cost function (13) can be written as combination of immediate one stage cost at k and cost due
to rest of the remaining N− k− 1 stages as:

J
⎛
⎜
⎜
⎝
ek, vN−1

k ,

∑

l=0
vl

N−1

k

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

[
eT

k rT
k
]

Q

[
ek

rk

]

+ vT
k Rvk +

(

vk +
k−1∑

l=0
vl

)T

S

(

vk +
k−1∑

l=0
vl

)⎞
⎟
⎟
⎠
+

N−1∑

i=k+1
η

(

ei, vi,

(i∑

p=k
vp +

k−1∑

l=0
vl

))

(15)
According to Bellman’s optimality principle,3,4 the optimal cost function satisfies the Discrete time Hamilton Jacobi

Bellman (DTHJB) optimal equation:

J∗ (ek) = min
vk

⎧
⎪
⎨
⎪
⎩

[
eT

k rT
k
]

Q

[
ek

rk

]

+ vT
k Rvk +

(

vk +
k−1∑

l=0
vl

)T

S

(

vk +
k−1∑

l=0
vl

)

+ J∗ (ek+1)
⎫
⎪
⎬
⎪
⎭

(16)

This leads to the optimal control from ek starting at k, v∗ (ek) given by the gradient of the right hand side of (16) with
respect to vk as:

v∗ (ek) = −
1
2
(R + S)−1

[

2S

(k−1∑

l=0
vl

)

+ gT (ex,k + rk
)
𝜕J∗ (ek+1)
𝜕ek+1

]

(17)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 JHA et al.

Substituting the value of optimal control in (16), the optimal cost can be derived as:

J∗ (ek) =
[
eT

k rT
k
]

Q

[
ek

rk

]

+ 1
4

(

2S

(k−1∑

l=0
vl

)

+ gT (ex,k + rk
)
𝜕J∗ (ek+1)
𝜕ek+1

)T

× (R + S)−1R(R + S)−1 ×

(

2S

(k−1∑

l=0
vl

)

+ gT (ex,k + rk
)
𝜕J∗ (ek+1)
𝜕ek+1

)

+

[

−1
2
(R + S)−1 × 2S

(k−1∑

l=0
vl

)

+ gT (ex,k + rk
)
𝜕J∗ (ek+1)
𝜕ek+1

+
k−1∑

l=0
vl

]T

× S

[

−1
2
(R + S)−1 × 2S

(k−1∑

l=0
vl

)

+ gT (ex,k + rk
)
𝜕J∗ (ek+1)
𝜕ek+1

+
k−1∑

l=0
vl

]

+ J∗ (ek+1) (18)

This equation cannot be solved exactly as no closed form solution exists.
Thus, the problem addressed in this paper is in two folds. First, the completely unknown dynamics problem of (1)–(3)

is addressed by using NNs in section 3. Second, the optimal control problem of (18) is solved using a novel iterative ADP
method and convergence analysis over the respective finite horizon is provided in section 4.

3 SYSTEM IDENTIFIER-NN AND FEEDFORWARD CONTROLLER NN

For the completely unknown systems, the challenge lies in obtaining the complete or even the partial knowledge of the
system dynamics. In this work, NNs are used to identify the complete system dynamics of (1) and a system identifier-NN
(SI-NN) is constructed for that purpose.

Additionally, to obtain tracking control up,k, the knowledge of pre-determined desired reference control ud,k is needed
(see Remark 1), which requires the knowledge of inverse mapping of the system as shown in (3). To that end, a feedforward
controller neural network (FCN-NN) is proposed to identify the inverse mapping of the system that leverages the already
trained SI-NN.

3.1 System identifier-NN

Input–output data is used to identify the system dynamics using multi-layered feedforward NNs. According to the uni-
versal approximation property of NNs over compact set, system (1) has an NN-based representation on a compact set S.
Denoting the weights between input layer and hidden layer as 𝜗m, ideal weights between the hidden layer and output
layer as 𝜔m, a three-layer NN with n1 number of neurons in each hidden layer is considered as:

xk+1 = 𝜔∗T
m 𝜎m

(
𝜗

∗T
m zm,k

)
+ 𝜀m,k (19)

where 𝜔∗m ∈ Rn1×n and 𝜗∗m ∈ R(n+m)×n1 are the constant ideal weight matrices of system (model) NN, zT
m,k =[

xT
k uT

p,k

]
is the input to the NN, 𝜀m,k is the NN function approximation error and 𝜎m(⋅) is the NN activa-

tion function chosen as the hyperbolic tangent function, that is, 𝜎m(z) = (ez − e−z) ∕ (ez + e−z) so that 𝜎m(z) ∈
[−1, 1] and 𝜎m(z) ∈ Rn1 .

Assumption 3. (21): The activation function 𝜎(⋅) and NN function approximation error 𝜀m,k are considered
upper bounded as ‖𝜎m(•)‖ ≤ 𝜎M and 𝜀T

m.k𝜀m.k ≤ 𝜆Mx̃Tx̃ for some non-negative constants 𝜎M and 𝜆M .

Assumption 4. For the ease of analysis, only the output weights of NN are updated and the hidden weights
are kept fixed.21 Using Assumption 4 and considering zm,k = 𝜗∗T

m zm,k, (19) can be rewritten as:

xk+1 = 𝜔∗T
m 𝜎m

(
zm,k

)
+ 𝜀m,k (20)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 7

F I G U R E 1 The feedforward neuro-controller NN training architecture.

The training procedure of SI-NN is very well established in the literature and major steps are provided in the
Appendix A in Algorithm A1. After a sufficiently long training process, the system dynamics of (1) can be written as:

xk+1 = x̂k+1 = �̂�T
m𝜎m

(
zm,k

)
(21)

where �̂�m, is the estimation of ideal weight matrix 𝜔∗m.
Next, the augmented system in (5) requires knowledge of the desired control (3).

3.2 Feedforward controller neural network

To generate a desired control ud,k with respect to a given desired reference rk (see (3)), the inverse mapping of system
must be learnt. Under completely unknown conditions, this task is non-trivial. For this purpose, this work uses the feed-
forward neuro-control learning approach.28 In this work, a FCN-NN is constructed to learn the inverse mapping using a
feedforward NN. It is observed that the desired control can be obtained by setting in the original system (1), up,k = ud,k,
xk = rk for all k that is,

rk+1 = F
(

rk,ud,k
)

ud,k = F−1 (rk+1, rk) (22)

where F−1 is the inverse dynamics of the system which is in general, very difficult to obtain, if not impossible. To
that end, a fully connected feedforward NN structure is adopted for FCN-NN to learn the inverse dynamics F−1 by
employing the structure shown in Figure 1.30 The details of the architecture and major steps of NN training is pro-
vided in Appendix B. After a sufficiently long training, the inverse dynamics identification error approaches zero, the
FCN-NN weights approach their ideal value in an asymptotic sense (the proof can be provided in sense of Theorem A3
in Appendix A and it is omitted here). Then, the inverse dynamics F−1 is learnt by the FCN-NN and the desired control
ud,k in (22) can be expressed as:

ud,k = ûd,k = �̂�T
F−1𝜎F−1

(
zF−1

,k
)

(23)

The desired control learnt here is needed in section 5 to implement the optimal tracking based on actor-critic structure.
Next, section presents the major contributions of the paper.

4 FINITE HORIZON TRACKING USING ITERATIVE ADP ALGORITHM

This section presents the principal contribution of this paper. A novel finite-horizon iterative ADP algorithm is proposed
to solve (18) and the convergence to optimality is proved through convergence analysis.

However, the aforementioned algorithm requires presence of one-step zero control.27,31

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 JHA et al.

F I G U R E 2 The feedforward one step-zero controller NN training architecture.

This section proposes a procedure, inspired from the one in Figure 1, to learn the one step zero control law using a
NN. The novel architecture serves as a minor contribution of the paper, can be used obtain an initial one step control
value uOS for the error system (7) thus, avoiding the requirement of an analytical solution as in Reference 31.

4.1 Initial one step-zero control

The objective is to learn an initial admissible control law. Using a one-step zero control law, the equivalent system (7)
states are driven to zero (origin), that is, Fe

(
ek,uOS,k

)
= 0, where uOS,k is the control value that drives the system states to

origin in one step.31 used a similar strategy to assure presence of initial admissible control law for regulation purposes.
However, a trained system network was used to get the initial one step control in form of a least square solution.

Here, a feedforward one step-zero controller NN (FOSC-NN) is introduced to learn the one step zero control law using
a feedforward NN. The training of FOSC-NN is done using the structure shown in Figure 2 which comprises of trainable
FOSC-NN, the already-trained SI-NN and system origin (where system states are zero) 𝜉k ∈ Rn.

Without the loss of generality, in this paper, 𝜉k = 0 ∀k. The error e
𝜉,k ∈ Rn is generated using original system states

xk ∈ Rn and the system-origin(s) 𝜉k ∈ R
n. Consider FOSC-NN as a three-layer NN with n3 number of neurons in each

hidden layer as:

ûOS,k = 𝜔∗T
OS𝜎OS

(
𝜗

∗T
OS e

𝜉,k
)
+ 𝜀OS,k

= 𝜔∗T
OS𝜎OS

(
zOS,k

)
+ 𝜀OS,k (24)

with e
𝜉,k ∈ Rn as input and ûOS,k as the estimated one step control from FOSC-NN, 𝜔∗OS ∈ Rn3×m and 𝜗∗OS ∈ Rn×n3 are the

constant ideal weight matrices of FOSC-NN, 𝜀OS,k is the NN function approximation error and 𝜎OS is the NN activation
function chosen as the hyperbolic tangent function, that is, 𝜎OS(z) = (ez − e−z) ∕ (ez + e−z) so that 𝜎OS(z) ∈ [−1, 1] and
𝜎OS(z) ∈ Rn3 . FOSC-NN is trained by feeding-in set of inputs xk ∈ Rn and 𝜉k ∈ Rn, followed by adaptation of FOC-NN
weights such that SI-NN (trained a priori) outputs zero error, that is, êk+1 = 0. To that end, following steps are taken.

Algorithm 1. FOSC-NN training

Step 1: An array of the system origin values 𝜉k ∈ Rn (in this paper, 𝜉k = 0,∀k), system states xk are considered.
Corresponding errors e

𝜉,k = xk − 𝜉k are generated.
Step 2: FOSC-NN is fed with input e

𝜉,k, such that the output estimated the desired one step zero control value uOS,k: ûOS,k.
Step 3: The trained SI-NN with frozen weights is fed with inputs zT

m,k =
[

xT
k ûT

OS,k

]
, so that the estimated output is x̂k+1.

The output error is estimated as: ê
𝜉,k+1 = x̂k+1 − 𝜉k+1.

Step 4: FOSC-NN is trained using the error: ê
𝜉,k+1 by minimizing the error function:

EOS,k+1 = (1∕2)̂eT
𝜉,k+1ê

𝜉,k+1

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 9

so that ê
𝜉,k+1 = x̂k+1 − 𝜉k+1 is minimized in iterative sense. The weights of FCN-NN are adapted using a gradient

descent-based optimization scheme:

�̂�OS,k+1 = �̂�OS,k − 𝛼OS
𝜕EOS,k+1

𝜕�̂�OS,k

= �̂�OS,k − 𝛼OS
𝜕EOS,k+1

𝜕êk+1

𝜕ê
𝜉,k+1

𝜕ûOS,k

𝜕ûOS,k

�̂�OS,k

= �̂�OS,k − 𝛼OS
𝜕ê
𝜉,k+1

𝜕ûk
𝜎OS

(
zOS,k

)
êT
𝜉,k+1

where 𝛼OS > 0 is the learning rate. It should be noted that the error ê
𝜉,k+1 = x̂k+1 − 𝜉k+1 is propagated through the trained

SI-NN and 𝜕ê
𝜉,k+1

𝜕ûOS,k
= 𝜕x̂k+1

𝜕ûOS,k
is obtained through application of backpropagation algorithm from output of SI-NN x̂k+1 to its

input ûOS,k.

After a sufficiently long training procedure, the FOSC-NN identification error approaches zero and the network
weights approach their ideal values in an asymptotic sense (the proof can be provided in sense of Theorem A3 in
Appendix A and it is omitted here). Then, the one-step zero control law is learnt by the FOSC-NN that drives system states
to zero (origin). (24) can be approximated as:

ûOS,k = �̂�T
OS𝜎OS

(
zOS,k

)
(25)

Thus, it is noted that given tracking error ek ∈ Rn, the trained FOSC-NN outputs control action ûOS,k such
that Fe

(
ek, ûOS,k

)
= 0.

Remark 5. In theory, since 𝜗T
OS,k can be enough small, if �̂�OS,k is appropriately set, then Fe

(
ek, ûOS,k

)
= 0 can

be assured. Therefore, in the theoretical analysis that follows, it will be considered that Fe
(

ek, ûOS,k
)
= 0 is

applicable. However, in practice, as remarked in Reference 31, the states are driven to the origin but remain
deviated from the origin due to inertia of the control. In practice, a fine-tuning behavior can be applied to
regulate the states to zero after the initial one step zero control.

4.2 Derivation of iterative ADP algorithm

This section presents the principal contribution of this paper. For notational simplicity, at ith iteration V (i) shall denote
the cost function value and v(i) denotes the minimum control input value.

First, consider the initial iterative index i = 0, such that initial cost function for all states V (0)(⋅) = 0. Then, from
(27), an initial admissible control law of single (cardinality of one) control vector u(0)OS (ek) can be obtained from trained
FOSC-NN as:

u(0)OS (ek) = �̂�T
OS𝜎OS

(
̂
𝜗

T
OS ek

)
(26)

which is subject to the final state condition constraint (see Assumption 1): Fe

(
ek,u(0)OS (ek)

)
= 0 or ek+1 = 0. Now, consid-

ering the transformation of control input in (11) that takes into account the cumulated control value till k− 1:
∑k−1

l=0 vl, the
transformed control law at k, v(0) (ek) can be expressed as: v(0) (ek) = u(0)OS (ek) −

∑k−1
l=0 vl. The cost function can be updated

iteratively using v(0) (ek) ,u(0)OS (ek) and V (0)(⋅):

V (1) (ek) = min
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (0) (ek+1)

}

= min
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ 0

}

= 𝛈
(

ek, v(0) (ek) ,

(

v(0) (ek) +
k−1∑

l=0
vl

))

subject to ∶ Fe

(
ek,u(0)OS (ek)

)
= 0 (27)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 JHA et al.

Second, consider the iterative index i = 1, the iterative control law v(1) (ek) is calculated using the iterative cost function
V (1) (ek) as:

v(1) (ek) = argmin
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (1) (ek+1)

}

= −1
2
(R + S)−1

[

2S

(k−1∑

l=0
vl

)

+ gT (ek + rk)
𝜕V (1) (ek+1)
𝜕ek+1

]

(28)

followed by update of iterative cost function V (2) (ek) using v(1) (ek) as

V (2) (ek) = min
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (1) (ek+1)

}

= 𝛈
(

ek, v(1) (ek) ,

(

v(1) (ek) +
k−1∑

l=0
vl

))

+ V (1)

(

Fe

(

ek,

(

v(1) (ek) +
k−1∑

l=0
vl

)))

(29)

In general, the closed form solutions are very difficult to obtain. To that end, for i= 2,3,… , the above iterative
procedure can be implemented as shown in (32):

v(i) (ek) = argmin
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (i) (ek+1)

}

= −1
2
(R + S)−1

[

2S

(k−1∑

l=0
vl

)

+ gT (ek + rk)
𝜕V (i) (ek+1)
𝜕ek+1

]

(30)

followed by cost function as shown in (33).

V (i+1) (ek) = min
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (i) (ek+1)

}

= 𝛈
(

ek, v(i) (ek) ,

(

v(i) (ek) +
k−1∑

l=0
vl

))

+ V (i)

(

Fe

(

ek,

(

v(i) (ek) +
k−1∑

l=0
vl

)))

(31)

Remark 6. In the iterative ADP algorithm (32) and (33), superscript (i) denotes iteration index of control law
and cost function, subscript k denotes the time index of augmented system’s state and control trajectory.

4.3 Convergence analysis of iterative ADP algorithm

In this section, convergence proofs for iterations between (32) and (33) is provided such that cost function
V (i) → J∗ and the control law v(i) → v∗ as i →∞.

Lemma 1. Let
{

V (i) (ek)
}

be the sequence of cost functions defined by (33). If there exists an initial one step zero
control u(0) (ek) such that Fe

(
ek,u(0) (ek)

)
= 0, then there exits an upper bound Y such that 0 ≤ V (i) (ek) ≤ Y.

Proof. Given time index k, from (33) we can get cost function with respect to state at k as:

V (i+1) (ek) = min
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (i) (ek+1)

}

(32)

with vk−1, vk−2, … v0 being any control actions before k. Then, it can be written over a time horizon of
length i as:

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 11

V (i+1) (ek) = min
vk+i−1

k

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ 𝛈
(

ek+1, vk+1,

(

vk+1 + vk +
k−1∑

l=0
vl

))

+ V (i−1) (ek+2)

}

⋮

= min
vk+i−1

k

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ 𝛈
(

ek+1, vk+1,

(

vk+1 + vk +
k−1∑

l=0
vl

))

+

… + 𝛈
(

ek+i−1, vk+i−1,

(

vk+i−1 + … + vk +
k−1∑

l=0
vl

))

+ V (1) (ek+i) (33)

where V (1) (ek+i) = min
vk+i
𝛈
(

ek+i, vk+i,
(

vk+i + … + vk +
∑k−1

l=0 vl

))
is subject to Fe

(
ek+i,

(
vk+i + … + vk +

∑k−1
l=0 vl

))

= 0.
Then, we have

V (i+1) (ek) = min
vk+i

k

i∑

j=0
𝛈
(

ek+j, vk+j,

(j∑

p=0
vk+p +

k−1∑

l=0
vl

))

(34)

Moreover, applying the definition of finite horizon cost function (c.f. (13)), we have:

V (i+1) (ek) = min
vk+i

k

J

(

ek, vk+i
k ,

(k+1∑

p=k
vp +

k−1∑

l=0
vl

))

subject to Fe

(

ek+i,

(

vk+i + … + vk +
k−1∑

l=0
vl

))

= 0 (35)

Thus, ∀i ∶ 0 ≤ V (i+1) (ek) ≤ Y for some Y ≥ 0. ▪

Moreover, taking into account the iteration between (32) and (33) at each stage starting at k until some k+ i, this can
be written in terms of minimum control value obtained at any iteration j, v(i−j) (ek+j

)
as:

V (i+1) (ek) =
i∑

j=0
𝛈
(

ek+j, v(i−j) (ek+j
)
,

(j∑

p=0
v(i−p)e(k+p) +

k−1∑

l=0
vl

))

(36)

Theorem 1. Assuming there exists an initial one step zero finite-horizon admissible control law u(0) (ek) such
that Fe

(
ek,u(0) (ek)

)
= 0, the cost function sequence

{
V (i)} obtained using iteration (32) and (33) is a monotoni-

cally non-increasing sequence such that V (i+1) (ek) ≤ V (i) (ek) for ∀i ≥ 1.

Proof. The proof is developed using mathematical induction. First, let i= 1, the cost function V (1) (ek) is given
by (29) subject to Fe

(
ek,
(

v(0) (ek) +
∑k−1

l=0 vl

))
= 0. Let the corresponding sequence of finite horizon admis-

sible control starting at k be denoted as: v̂k
k. Then, v̂k

k =
(

v(0) (ek)
)

and the corresponding utility function is

𝛈
(

ek, v(0) (ek) ,
(

v(0) (ek) +
∑k−1

l=0 vl

))
. Now, it can be shown that there exists a finite horizon admissible control

of length 2 so that corresponding cumulative cost V (2) (ek) is related to V (1) (ek). To that end, we construct finite
horizon admissible control of length 2: v̂k+1

k , so that v̂k+1
k =

(
v(0) (ek) ,−

(
v(0) (ek) +

∑k−1
l=0 vl

))
. Then, using con-

dition on final state we have ek+1 = Fe

(
ek,
(

v(0) (ek) +
∑k−1

l=0 vl

))
= 0 and applying the 2nd control action in

v̂k+1
k , we get: the ek+2 = Fe

(
ek+1,

(
−
(

v(0) (ek) +
∑k−1

l=0 vl

)
+ v(0) (ek) +

∑k−1
l=0 vl

))
= (0, 0) = 0, which implies that

v̂k+1
k is an admissible control. Then, the corresponding utility function 𝛈

(
ek+1,−

(
v(0) (ek) +

∑k−1
l=0 vl

)
, 0
)
=

(
v(0) (ek) +

∑k−1
l=0 vl

)T
R
(

v(0) (ek) +
∑k−1

l=0 vl

)
. Now, we can obtain the cumulative cost function as:

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 JHA et al.

J

(

ek, v̂k+1
k ,

(k+1∑

p=k
vp +

k−1∑

l=0
vl

))

= 𝛈
(

ek, v(0) (ek) ,

(

v(0) (ek) +
k−1∑

l=0
vl

))

+ 𝛈
(

ek+1,−

(

v(0) (ek) +
k−1∑

l=0
vl

)

, 0

)

= V (1) (ek) +

(

v(0) (ek) +
k−1∑

l=0
vl

)T

R

(

v(0) (ek) +
k−1∑

l=0
vl

)

▪

On the other hand, according to (37), we have:

V (2) (ek) = min
v̂k+1

k

J

(

ek, v̂k+1
k ,

(k+1∑

p=k
vp +

k−1∑

l=0
vl

))

= min
v̂k+1

k

⎛
⎜
⎜
⎝
V (1) (ek) +

(

v(0) (ek) +
k−1∑

l=0
vl

)T

R

(

v(0) (ek) +
k−1∑

l=0
vl

)⎞
⎟
⎟
⎠

(37)

As R is an arbitrarily chosen non-negative matrix, it can be taken as small as desired, which leads us to conclusion
that V (2) (ek) ≤ min

v̂k+1
k

J
(

ek, vk+1
k ,

(∑k+i
p=kvp +

∑k−1
l=0 vl

))
= V (1) (ek). Therefore, theorem is valid for i= 1. Now, let us assume

that the theorem holds for some i= q, where q ≥ 1. Then, using (38) we get:

V (q) (ek) =
q−1∑

j=0
𝛈
(

ek+j, v(q−1−j) (ek+j
)
,

(j∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

))

(38)

with the corresponding control sequence v̂k+q−1
q =

(
v(q−1) (ek) , v(q−2) (ek+1) , … v(0)

(
ek+q−1

))
.

Then, for i= q+ 1, a control sequence of length q+ 1 can be constructed as v̂k+q
q =

(

v(q−1) (ek) , v(q−2) (ek+1) , … v(0)
(

ek+q−1
)
,−

(
q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

))

such that the corresponding system trajec-

tory is given as: ek+1 = Fe

(

ek,

(

v(q−1) (ek) +
k−1∑

l=0
vl

))

; ek+2 = Fe

(

ek+1,

(

v(q−1) (ek) + v(q−2) (ek+1) +
k−1∑

l=0
vl

))

, … , ek+q =

Fe

(

ek+q−1,

(

v(q−1) (ek) + … + v(0)
(

ek+q−1
)
+

k−1∑

l=0
vl

))

. Now, as this is an admissible control, it leads to ek+q = 0.

Then, last control from sequence v̂k+q
q leads to:

ek+q+1 = Fe

(

ek+q,

(

−

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)

+
q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

))

= Fe(0, 0) = 0.

This shows v̂k+q
q is a finite horizon admissible control. The corresponding utility function is:

𝛈
(

ek+q,−

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)

, 0

)

=

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)T

R

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)

(39)

Now, we can obtain the cumulative cost function as:

J

(

ek, v̂k+q
k ,

(k+q∑

p=k
vp +

k−1∑

l=0
vl

))

= 𝛈
(

ek, v(q−1) (ek) ,

(

v(q−1) (ek) +
k−1∑

l=0
vl

))

+ … + 𝛈
(

ek+q−1, v(0)
(

ek+q−1
)
,

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

))

+ 𝛈
(

ek+q,−

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)

, 0

)

.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 13

From (40) and (41), it can be seen that:

J

(

ek, v̂k+q
k ,

(k+q∑

p=k
vp +

k−1∑

l=0
vl

))

= V (q) (ek) +

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)T

R

(q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)

(40)

On the other hand, according to (37), we have:

V (q+1) (ek) = min
v̂k+q

k

J

(

ek, v̂k+q
k ,

(k+q∑

p=k
vp +

k−1∑

l=0
vl

))

≤ J

(

ek, v̂k+q
k ,

(k+q∑

p=k
vp +

k−1∑

l=0
vl

))

(41)

This implies: V (q+1) (ek) ≤ V (q) (ek) +

(
q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)T

R

(
q−1∑

p=0
v(q−1−p)e(k+p) +

k−1∑

l=0
vl

)

. Now, as R is an arbitrar-

ily chosen non-negative matrix. Without loss of generality, it can be taken as small as desired. This leads us to the
conclusion that V (q+1) (ek) ≤ V (q) (ek) and completes the proof by mathematical induction. ■

Thus,
{

V (i)} is a monotonically nonincreasing sequence bounded below and as such the limit limi→∞ V (i) (ek) =
V (∞) (ek) exists.

Theorem 2. Assuming there exists an initial one step zero finite-horizon admissible control law u(0)OS (ek) such
that Fe

(
ek,u(0)OS (ek)

)
= 0, given the sequence of cost function

{
V (i)} as in (33) with initial value V (0)(⋅) = 0, if ek is

controllable, then as i → ∞, the sequence converges toward the optimal cost function J∗, that is, limi→∞ V (i) (ek) =
V (∞) (ek) = J∗ (ek).

Proof. From (14) and (37) or Lemma 1, we get

J∗ (ek) = inf
vN−1

k

⎧
⎪
⎨
⎪
⎩

J
⎛
⎜
⎜
⎝
ek, vN−1

k ,

∑

l=0
vl

N−1

k

⎞
⎟
⎟
⎠
∶ vN−1

k ∈ Θ(N−k)
ek

⎫
⎪
⎬
⎪
⎭

≤ min
vk+i

k

{

J

(

ek, vk+i
k ,

(k+1∑

p=k
vp +

k−1∑

l=0
vl

))

∶ vk+i−1
k ∈ Θ(i)ek

}

= V (i) (ek) (42)

From (44), we have J∗ (ek) ≤ V (i) (ek). Letting i →∞, we get:

J∗ (ek) ≤ V (∞) (ek) (43)

Now, using definition of J∗ (ek) for any arbitrary 𝛿 > 0, there exists an admissible control sequence (not
necessarily a minimizing one) 𝜏k ∈ Θek such that

J

(

ek, 𝜏k,

(
∑

p=k
𝜏p +

k−1∑

l=0
vl

))

≤ J∗ (ek) + 𝛿 (44)

Now, if 𝜏k ∈ Θ(q)ek
such that control sequence 𝜏k is of length q, that is, |||𝜏k

||| = q. Then, on one hand, from
Theorem 1, we obtain:

V (∞) (ek) ≤ V (q) (ek)

= min
vk+q−1

k

{

J

(

ek, vk+q−1
k ,

(k+q−1∑

p=k
vp +

k−1∑

l=0
vl

))

∶ vk+q−1
k ∈ Θ(q)ek

}

(45)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 JHA et al.

On the other hand, as 𝜏k ∈ Θek is an arbitrary admissible control sequence, we get:

min
vk+q−1

k

{

J

(

ek, vk+q−1
k ,

(k+q−1∑

p=k
vp +

k−1∑

l=0
vl

))

∶ vk+q−1
k ∈ Θ(q)ek

}

≤ J

(

ek, 𝜏
k+q−1
k ,

(k+q−1∑

p=k
𝜏p +

k−1∑

l=0
vl

))

(46)

Then, from (46), (47), and (48), we get

V (∞) (ek) ≤ V (q) (ek) ≤ J

(

ek, 𝜏k,

(
∑

p=k
𝜏p +

k−1∑

l=0
vl

))

≤ J∗ (ek) + 𝛿

or, V (∞) (ek) ≤ J∗ (ek) + 𝛿 (47)

As 𝛿 > 0 is chosen arbitrarily, we have:

V (∞) (ek) ≤ J∗ (ek) (48)

Combining (45) and (50), we can conclude that sequence
{

V (i) (ek)
}

tends to J∗ (ek) as i →∞ that is,
limi→∞ V (i) (ek) = V (∞) (ek) = J∗ (ek). Hence, the theorem is proved. ▪

Corollary 1. Assuming there exists an initial one step zero finite-horizon admissible control law u(0) (ek)
such that Fe

(
ek,u(0) (ek)

)
= 0, given the sequence of cost function

{
V (i)} as in (33) with initial value

V (0)(⋅) = 0 and corresponding control sequence
{

v(i)
}

as in (32). Then, for ∀k, following holds true:

V (∞) (ek) = min
vk

{

𝛈
(

ek, vk,

(

vk +
k−1∑

l=0
vl

))

+ V (∞) (ek+1)

}

.

The proof follows directly from Theorem 2 and Bellman’s optimality principle (c.f. (16)).

Corollary 2. Let the sequence of cost function
{

V (i)} as in (33) with initial value V (0)(⋅) = 0 and the corre-
sponding control sequence

{
v(i)
}

as in (32). Then as i →∞, the sequence converges toward the optimal control
law v∗, that is, as i → ∞ limi→∞ v(i) (ek) = v∗ (ek).

According to Theorem 2 and Corollary 1 and 2, the iterative procedure needs to be run until i → ∞ to
obtain the optimal cost function J∗ (ek) and optimal control law v∗ (ek). In practice, it is impossible to implement
this strategy.

To that end, an 𝜀 − optimal approach can be adopted such that iterative strategy is followed till a pre-defined tolerable
error 𝜀 is reached. The algorithm is stopped when iterative cost function satisfies the prescribed error, that is:

|||V
(i) (ek) − J∗ (ek)

||| ≤ 𝜀 (49)

The length of the control sequence depends on the initial states of the system and tolerable error. However, as J∗ (ek)
is not known a priori, it is difficult to implement (51) as the stopping criteria. Thus, an alternative stopping criterion can
be formulated as:

|||V
(i) (ek) − V (i+1) (ek)

||| ≤ 𝜀 (50)

The equivalence of (50) to (49) can be shown in the sense of References 28,31 and it is omitted in this paper.

5 ACTOR CRITIC STRUCTURE-BASED IMPLEMENTATION

The optimal(sub) control law is learnt using iterations (32) and (33), which can be executed using adaptive-critic
structures10 by approximating value function V (i+1) and control policy function v(i) using NNs.

In this paper, the HDP architecture is used the execute the iterative ADP algorithm using actor-critic NNs. To that
end, four feedforward fully connected NNs are used to execute the iterative ADP algorithm.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 15

F I G U R E 3 The actor critic-based implementation using iterative heuristic dynamic programming.

As shown in Figure 3, the four NNs are: SI-NN model (trained a priori, see (21)), FCN-NN (trained a priori, see (23)),
critic network (critic-NN) and action network (action-NN). All NNs are chosen as fully connected feedforward NNs. It is
noted that training of SI-NN and FCN-NN is done before implementing the iterative algorithm and weights of the SI-NN
and FCN-NN are kept unchanged (frozen) during the implementation of proposed iterative ADP algorithm.

5.1 System model

The trained SI-NN (with ideal weight sets) outputs the next state as ((21)): x̂k+1 = 𝜔∗T
m 𝜎m

(
𝜗

∗T
m zm,k

)
with zT

m,k =
[

xT
k uT

p,k

]

as inputs.

5.2 FCN-NN training

FCN-NN is trained using Algorithm B1 (see Appendix B). With trained FCN-NN, the desired control ud,k can be generated
with respect to any given reference value rk. The input control up,k (see (6)) consists of two components: feedforward
component ud,k and the feedback component v(i) (ek) +

∑k−1
l=0 vl with respect to state ek at an iteration i. While the former

feedforward component is generated from trained FCN-NN network, the latter feedback component comprises of actor
output: v(i) (ek) and the accumulated control value till time k− 1:

∑k−1
l=0 vl. The actor output at any iteration is learnt in

iterative sense by the actor-NN structure using the HDP actor critic training scheme and accumulated control value
∑k−1

l=0 vl
is stored in a buffer till time k.

Then, with x̂k = êk + rk and up,k =
(

v(i) (ek) +
∑k−1

l=0 vl

)
+ ud,k, the state estimation at successive instant can be obtained

from the trained SI-NN, as: x̂k+1 = êk+1 + rk+1. While the feedforward component is generated from trained FCN-NN
network at any time k, the feedback component is learnt in iterative sense using critic-NN and action-NN structure using
the HDP architecture.

5.3 Critic-NN

The critic-NN is used for approximating the cost function V (i+1) (ek). The output of the critic network is denoted as:

̂V (i+1) (ek) = 𝜔T(i+1)
C 𝜎c

(
𝜗

T(i+1)
C ek

)
(51)

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 JHA et al.

However, from (33) we have:

V (i+1) (ek) = 𝛈
(

ek, v(i) (ek) ,

(

v(i) (ek) +
k−1∑

l=0
vl

))

+ ̂V (i) (ek+1) (52)

which can be constructed using the summation of immediate cost value 𝛈(⋅) and estimated cost value from critic-NN.
Moreover,

∑k−1
l=0 vl is generated at k by summing the stored control values till k− 1 in a buffer memory of appropriate size.

Thus, the target error for critic-NN can be generated as:

e(i+1)
c,k = ̂V (i+1) (ek) − V (i+1) (ek) (53)

with e(i+1)
c,k denoting the error at (i+ 1)th iteration at time index k. Then, the critic-NN minimizes the error function:

E(i+1)
c,k = (1∕2)eT(i+1)

c,k e(i+1)
c,k (54)

and the weights are adapted according to gradient-based scheme as:

𝜔

(i+1)
C (j + 1) = 𝜔(i+1)

C (j) − 𝛼c
𝜕E(i+1)

c,k

𝜕𝜔

(i+1)
C (j)

= 𝜔(i+1)
C (j) − 𝛼c

𝜕E(i+1)
c,k

𝜕e(i+1)
c,k

𝜕e(i+1)
c,k

𝜕
̂V (i+1) (ek)

𝜕
̂V (i+1) (ek)
𝜕𝜔

(i+1)
C (j)

𝜗

(i+1)
C (j + 1) = 𝜗(i+1)

C (j) − 𝛼c
𝜕E(i+1)

c,k

𝜕𝜗

(i+1)
C (j)

= 𝜗(i+1)
C (j) − 𝛼c

𝜕E(i+1)
c,k

𝜕e(i+1)
c,k

𝜕e(i+1)
c,k

𝜕
̂V (i+1) (ek)

𝜕
̂V (i+1) (ek)

𝜕𝜎c

(
𝜗

T(i+1)
C ek

)
𝜕𝜎c

(
𝜗

T(i+1)
C ek

)

𝜕𝜗

(i+1)
C (j)

(55)

where 𝛼c > 0 is the learning rate and j is the weight updating/training inner loop iterative index.

Remark 7. It is noted that each iteration (outer loop) i, consists of a set of weight updating cycles indexed by
j (inner loop) to learn the critic weights for the value function at that given ADP iteration step i, with respect
to the error at time k.

5.4 Actor-NN

Actor-NN is used to calculate the control value v(i) (ek) that minimizes the cost function with respect to ek at iterative step
i in accordance to (32). To that end, consider actor-NN as:

v̂(i) (ek) = 𝜔T(i)
a 𝜎a

(
𝜗

T(i)
a ek

)
(56)

The target value is given by (32) as:

v(i) (ek) = −
1
2
(R + S)−1

[

2S

(k−1∑

l=0
vl

)

+ gT (ek + rk)
𝜕
̂V (i) (ek+1)
𝜕 (ek+1)

]

(57)

where 𝜕̂V (i) (ek+1) can be produced the trained critic-NN (57) and
∑k−1

l=0 vl is generated from the buffer memory at k. More-
over (59) requires control matrix ĝ (ek + rk) which cannot be obtained directly for unknown systems. To that end, the
trained SI-NN can be used (see (1) and (21)) as:

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 17

ĝ (xk) =
𝜕

(
x̂k+1

)

𝜕

(
up,k

) =
𝜕

(
𝜔

∗T
m 𝜎m

(
𝜗

∗T
m zm,k

))

𝜕

(
up,k

) = 𝜔∗T
m
𝜕

(
𝜎m
(
𝜗

∗T
m zm,k

))

𝜕

(
𝜗

∗T
m zm,k

) 𝜗

∗T
m
𝜕

(
zm,k

)

𝜕

(
up,k

) (58)

It is clear that ĝ (xk) can be obtained using backpropagation from outputs of SI-NN x̂k+1 and input up,k. Further, the
target error for actor-NN can be generated (61), followed by minimization of error function (62) and actor-NN weight
update (63).

e(i)a,k = v̂(i) (ek) − v(i) (ek) (59)

E(i)a,k = (1∕2)eT(i)
a,k e(i)a,k (60)

𝜔

(i)
a (j + 1) = 𝜔(i)a (j) − 𝛼c

𝜕E(i)a,k

𝜕𝜔

(i)
a (j)

= 𝜔(i)a (j) − 𝛼c
𝜕E(i)a,k

𝜕e(i)a,k

𝜕e(i)a,k

𝜕v̂(i) (ek)
𝜕v̂(i) (ek)
𝜕𝜔

(i)
a (j)

𝜗

(i)
a (j + 1) = 𝜗(i)a (j) − 𝛼a

𝜕E(i+1)
c,k

𝜕𝜗

(i)
a (j)

= 𝜗(i)a (j) − 𝛼a
𝜕E(i)a,k

𝜕e(i)a,k

𝜕e(i)a,k

𝜕v̂(i) (ek)
𝜕v̂(i) (ek)

𝜕𝜎a

(
𝜗

T(i)
a ek

)
𝜕𝜎a

(
𝜗

T(i+1)
a ek

)

𝜕𝜗

(i)
a (j)

(61)

Here, e(i)a,k denotes the error at (i)th iteration at time index k, 𝛼c > 0 is the learning rate and j is the weight
updating/training inner loop iterative index.

6 SIMULATION STUDY

In this section, two examples are presented to demonstrates the theoretical result and assess the performance
of the HDP algorithm. Following nonlinear system is considered as xk+1 = f (xk) + g (xk) up,k (xk).

Example 1. The nonlinear system is considered from Reference 28 with some modifications:

xk+1 =

[
sin
(
0.5x2,k

)
x2

1k

cos
(
1.4x2,k

)
sin
(
0.9x1,k

)

]

+

[
1.1
0

0
0.45

]

up,k (62)

such that f (xk) =
[
sin
(
0.5x2,k

)
x2

1k , cos
(
1.4x2,k

)
sin
(
0.9x1,k

)]T , g (xk) = [1.1, 0.45]T with xk = [x1k x2k]T ∈
R

2 as state variables and up,k ∈ R
2 as control variable. The reference trajectory for the above system is

considered as:

rk =

[
0.3cos(0.2k)
0.1sin(0.4k)

]

(63)

The cost function is defined by (9) with Qx = 0.1I, S = 2I, and R = I where I denotes identity matrix of
suitable dimensions.

It is assumed that system dynamics completely unknown and the input–output data is available. SI-NN is established
by a four layered fully connected feedforward network with: 3 input neurons, 16-first hidden layer neurons, 8-second
hidden layer neurons and 2 outputs neurons. All activation functions are hyperbolic tangent functions. The initial weights
of the NN are randomly initialized in the interval [−0.1, 0.1]. Training set consists of 2000 randomly sampled input–output
data. The learning rate is kept as 𝛼m = 0.001 and the training is done for 1000 epochs. Figure 4 shows the estimation of 100

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 JHA et al.

F I G U R E 4 System states and training errors.

random data samples along with training errors which clearly remains close to zero and bounded. The SI-NN successfully
learns the unknown nonlinear system dynamics (see Appendix A, Algorithm A1). Next, training of FCN-NN is done using
the trained SI-NN (see Algorithm A1).

To that end, the FCN-NN is set up as shown in Figure 1 using a four layered fully connected NN with 16 hidden nodes
in each layer, 2 input neurons, and one output neuron (2-16-16-1), with weights initialized in the interval [−0.1, 0.1] and
learning rate 𝛼F−1 = 0.001. A set of reference trajectories in the practical tracking region are generated comprising of 2000
data randomly generated. Next, the initial control policy is obtained by training FOSC-NN (see Algorithm 1) such that
Fe

(
ek,u(0)OS (ek)

)
= 0 where u(0)OS (ek) = �̂�T

OS𝜎OS

(
̂
𝜗

T
OS ek

)
is the one-step zero control value is learnt (see (27) and (28)).

FOSC-NN structure consists of five layered fully connected NN 2-32-16-8-1 with 3 hidden layers, 2 node input and one
node output, with all activation functions chosen as nonlinear hyperbolic tangent function. The FOSC-NN is trained
with randomly chosen 1000 data samples. Figure 5 shows the performance of trained FOSC-NN using 100 randomly
sampled data. It is observed that FOSC-NN can learn the control law that drives the states near the origin (zero) in an
approximative sense.

Next, the actor-critic NN weights are initialized randomly in [−0.1, 0.1]. The tolerance error in iterative algorithm
is fixed as 𝜀 = 10−6, maximum number of iterations is fixed as ni = 100, critic and actor NN are chosen as five layered
fully connected feedforward networks with: 3 input neurons, 16-8-4 hidden layer neurons and 2 outputs neurons, with
activation functions set as hyperbolic tangent functions. The learning rates, tolerance errors, and maximal number of
internal learning cycles (weight updating stochastic gradient descent step j) for the two networks are: 𝛼c = 𝛼a = 0.001,
𝜀c = 𝜀a = 10−12, nc = na = 1000.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 19

F I G U R E 5 Learning of one step zero control law using feedforward one step-zero controller NN (FOSC-NN): (a) state prediction using
initial control policy is obtained by training FOSC-NN, (b) randomly sampled data used for training FOSC-NN.

F I G U R E 6 Cost function value with respect to number of iterations i for Example 1.

The iterative HDP algorithm is trained at k = 0 with an array of randomly chosen 10 initial states x0. The critic
and actor NN is trained for maximal ni = 30 iterations (i.e., i= 1, 2,… 30) with each iteration consisting of nc =
na = 1000 internal weight updating cycles. First, the critic-NN is trained to approximate the iterative cost func-
tion (33). The weights of critic NN are kept frozen while training the actor NN that approximates the iterative
control law (32). This training procedure is repeated until the iterative cost function converges to an approxi-
mate optimal value, that is, ||V (i) (x0) − V (i+1) (x0)|| ≤ 10−12. The convergence shown in Figure 6 is attained in nearly
19 iterations.

This also leads to learning of the approximate optimal control law v∗ (x0). The learnt approximate control law is applied
to the system. Next, the state of the controlled system is initialized to be x0 = [0.9 − 0.9]T and the learnt control law is
applied to the controlled system for 50-time steps. The reference trajectory is generated using (65) and the system state
curves are shown in Figure 7A,B. The system is effectively able to track the reference trajectories. This demonstrates the

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 JHA et al.

F I G U R E 7 Reference tracking by system states of Example 1.

effectiveness of the proposed method. To further assess the efficiency of the overall procedure, Figure 7C shows tracking
of a sinusoidal reference with four different arbitrary frequencies by the state x1.

Example 2. To further check the effectiveness of the proposed algorithm, the control coefficient matrix is
changed from a constant matrix to a function matrix. Consider the system inspired from Reference 31 with
some modifications as:

xk+1 =

[
sin
(
0.5x2,k

)
x2

1k

cos
(
1.4x2,k

)
sin
(
0.9x1,k

)

]

+
⎡
⎢
⎢
⎣

− 0.6sin
(

0.2x2
2,k + 0.1

)

0

0
− 0.4

(
1 − cos

(
0.1x1,k

))
⎤
⎥
⎥
⎦

up,k (64)

with xk = [x1k x2k]T ∈ R
2 as state variables up,k ∈ R

2 as control variables. A similar approach is adopted
wherein the SI-NN learns the unknown dynamics using Algorithm A1 (see Figure 8) FCN-NN is trained using
SI-NN (Algorithm 1) and learns desire control profiles with respect to a given number of tracking references
profiles.

Initial control policy is obtained by training FOSC-NN that provides the one-step zero control value (Algorithm 1).
Actor-critic NNs are trained in similar manner with all parameters remaining same except: 𝛼c = 𝛼a = 0.0001, 𝜀c =
𝜀a = 10−16, nc = na = 2000. The iterative HDP algorithm is trained at k = 0 with an array of randomly chosen
100 initial states. The critic and actor NN is trained for maximal ni = 50 iterations (i.e., i= 1,2,… 50) until the
iterative cost function converges to an approximate optimal value, that is, ||V (i) (x0) − V (i+1) (x0)|| ≤ 10−16 as shown
in Figure 9. The approximate optimal control law v∗ (x0) is learnt and applied to the system initialized at x0 =
[−0.5 0.9]T for 100-time steps. The tracking performance as shown in Figure 10 demonstrates the effectiveness of the
proposed approach.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 21

(A)

(B)

(C)

F I G U R E 8 System states and training errors.

F I G U R E 9 Cost function value with respect to number of iterations i for Example 2.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 JHA et al.

F I G U R E 10 Reference tracking by system states of Example 1.

7 CONCLUSIONS

The paper proposes a novel approach by considering consecutive changes in control inputs within the cost function
while solving the optimal tracking problem for completely unknown discrete time nonlinear systems over a finite
horizon. The latter leads to a novel performance index function over finite horizon and corresponding nonlinear
Hamilton–Jacobi–Bellman equation that is solved in approximative iterative sense using a novel iterative ADP-based
algorithm. The convergence of the novel algorithm to optimality(sub) over a finite horizon is established under
the admissibility conditions through mathematically rigorous proofs. To find an initial one step zero control pol-
icy, a novel architecture is proposed to learn the one step zero control law which successfully brings the states near
their origin (zero) in an approximative sense. The proposed iterative ADP is implemented using heuristic dynamic
programming technique based on actor-critic NN structure. Finally, simulation studies are presented over two non-
linear systems with constant as well as varying control matrix to demonstrate the effectiveness of the proposed
algorithm.

ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers for their inputs.

AUTHOR CONTRIBUTION
MSJ conceived the idea and designed the analysis and proofs, wrote the paper, and performed the simulation analysis
including the coding in Python, DT reviewed the paper, PW reveiwed the final manuscript.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ORCID
Mayank Shekhar Jha https://orcid.org/0000-0002-6926-1386

REFERENCES
1. Lewis FL, Vrabie D, Syrmos VL. Optimal control. John Wiley & Sons; 2012.
2. Li N, Kolmanovsky I, Girard A. LQ control of unknown discrete-time linear systems—A novel approach and a comparison study. Optim

Control Appl Methods. 2019;40(2):265-291.
3. Bellmann R. Dynamic programming. Princeton University Press; 1957.
4. Bertsekas DP, Bertsekas DP, Bertsekas DP, Bertsekas DP. Dynamic programming and optimal control. Vol 1. Athena scientific Belmont;

1995.
5. Su H, Zhang H, Zhang K, Gao W. Online reinforcement learning for a class of partially unknown continuous-time nonlinear systems via

value iteration. Optim Control Appl Methods. 2018;39(2):1011-1028.
6. Werbos P. Handbook of Intelligent Control. Van Nostrand Reinhold New York Publishers; 1992:493-525.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-6926-1386
https://orcid.org/0000-0002-6926-1386

JHA et al. 23

7. Werbos PJ. Intelligence in the brain: A theory of how it works and how to build it. Neural Netw. 2009;22(3):200-212.
8. Sokolov Y, Kozma R, Werbos LD, Werbos PJ. Complete stability analysis of a heuristic approximate dynamic programming control design.

Automatica. 2015;59:9-18.
9. Prokhorov DV, Santiago RA, Wunsch DC. Adaptive critic designs: A case study for neurocontrol. Neural Networks [Internet].

1995;8(9):1367-1372. http://www.sciencedirect.com/science/article/pii/0893608095000429
10. Prokhorov DV, Wunsch DC. Adaptive critic designs. IEEE Trans Neural Netw. 1997;8(5):997-1007.
11. Langeron Y, Grall A, Barros A. A modeling framework for deteriorating control system and predictive maintenance of actuators. Reliab

Eng Syst Saf [Internet]. 2015;140:22-36. http://www.sciencedirect.com/science/article/pii/S0951832015000940
12. Khelassi A, Theilliol D, Weber P, Ponsart JC. Fault-tolerant control design with respect to actuator health degradation: An LMI approach.

2011 IEEE International Conference on Control Applications (CCA), IEEE; 2011.
13. Zhang C, Xu X, Zhang X. Dual heuristic programming with just-in-time modeling for self-learning fault-tolerant control of mobile robots.

Optim Control Appl Methods. 2021;44:1215-1234.
14. Chen Z, Chen S, Zhang Y, Deng Q, Zeng X. Online and hard constrained adaptive dynamic programming algorithm for energy storage

control in smart buildings. Optim Control Appl Methods. 2021;44:1074-1091.
15. Liu Y, Xing Z, Chen Z, Xu J. Data-based robust optimal control of discrete-time systems with uncertainties via adaptive dynamic

programming. Optim Control Appl Methods. 2021;44:1290-1304.
16. Liang Y, Zhang H, Zhang K, Wang R. A novel neural network discrete-time optimal control design for nonlinear time-delay systems using

adaptive critic designs. Optim Control Appl Methods. 2020;41(3):748-764.
17. Ali SF, Padhi R. Optimal blood glucose regulation of diabetic patients using single network adaptive critics. Optim Control Appl Methods.

2011;32(2):196-214.
18. Gu J, Zhou J. An off-policy approach for model-free stabilization of linear systems subject to input energy constraint and its application

to spacecraft rendezvous. Optim Control Appl Methods. 2020;41(3):948-959.
19. Al-Tamimi A, Lewis FL, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence

proof. IEEE Trans Syst Man, Cybern Part B. 2008;38(4):943-949.
20. Zhang H, Wei Q, Luo Y. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy

HDP iteration algorithm. IEEE Trans Syst Man, Cybern Part B. 2008;38(4):937-942.
21. Dierks T, Thumati BT, Jagannathan S. Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural

networks with proof of convergence. Neural Netw. 2009;22(5–6):851-860.
22. Wang D, Liu D, Wei Q, Zhao D, Jin N. Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic

programming. Automatica [Internet]. 2012;48(8):1825-1832. http://www.sciencedirect.com/science/article/pii/S0005109812002221
23. Liu F, Sun J, Si J, Guo W, Mei S. A boundedness result for the direct heuristic dynamic programming. Neural Netw. 2012;

32:229-235.
24. Amato F, Ariola M. Finite-time control of discrete-time linear systems. IEEE Trans Automat Contr. 2005;50(5):724-729.
25. Haimo VT. Finite time controllers. SIAM J Control Optim. 1986;24(4):760-770.
26. Zattoni E. Structural invariant subspaces of singular Hamiltonian systems and nonrecursive solutions of finite-horizon optimal control

problems. IEEE Trans Automat Contr. 2008;53(5):1279-1284.
27. Wang FY, Jin N, Liu D, Wei Q. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with

ε-error bound. IEEE Trans Neural Netw. 2010;22(1):24-36.
28. Wang D, Liu D, Wei Q. Finite-horizon neuro-optimal tracking control for a class of discrete-time nonlinear systems using adaptive dynamic

programming approach. Neurocomputing. 2012;78(1):14-22.
29. Heydari A, Balakrishnan SN. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics. IEEE

Trans Neural Networks Learn Syst. 2012;24(1):145-157.
30. Huang Y, Liu D. Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iter-

ative ADP algorithm. Neurocomputing [Internet]. 2014;125:46-56. http://www.sciencedirect.com/science/article/pii/S0925231213001641
31. Mu C, Wang D, He H. Data-driven finite-horizon approximate optimal control for discrete-time nonlinear systems using iterative HDP

approach. IEEE Trans Cybern. 2018;48(10):2948-2961.
32. Song R, Xie Y, Zhang Z. Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear

systems. Neurocomputing. 2019;356:206-216.
33. Park YM, Choi MS, Lee KY. An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans Neural Netw.

1996;7(5):1099-1110.

How to cite this article: Jha MS, Theilliol D, Weber P. Model-free optimal tracking over finite horizon using
adaptive dynamic programming. Optim Control Appl Meth. 2023;1-25. doi: 10.1002/oca.3028

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.sciencedirect.com/science/article/pii/0893608095000429
http://www.sciencedirect.com/science/article/pii/S0951832015000940
http://www.sciencedirect.com/science/article/pii/S0005109812002221
http://www.sciencedirect.com/science/article/pii/S0925231213001641

24 JHA et al.

APPENDIX A

Consider the estimated system state vector x̂k+1, estimated NN weights �̂�m,k and the ideal weight matrix 𝜔∗m at k. Then,
the estimated system state can be expressed as:

x̂k+1 = �̂�T
m,k𝜎m

(
zm,k

)
(A1)

Further, the system identification error x̃k+1 can be expressed as:

x̃k+1 = x̂k+1 − xk+1 =
(
�̂�

T
m,k − 𝜔

∗T
m

)
𝜎m
(

zm,k
)
− 𝜀m,k = �̃�T

m,k𝜎m
(

zm,k
)
− 𝜀m,k (A2)

where �̃�m,k = �̂�m,k − 𝜔∗m is the weight identification error at time k. Now, considering
𝜙m,k = �̃�T

m,k𝜎m
(

zm,k
)
, we have:

x̃k+1 = 𝜙m,k − 𝜀m,k (A3)

The weights are adapted to minimize the identification error Em = (1∕2)x̃k+1x̃T
k+1 using gradient descent scheme21:

�̂�m,k+1 = �̂�m,k − 𝛼m
𝜕Em,k+1

𝜕x̃k+1

𝜕x̃k+1

𝜕�̂�m,k
= �̂�m,k − 𝛼m𝜎m

(
zk
)

x̃T
k+1 (A4)

where 𝛼m > 0 is the learning rate of the SI-NN.

Theorem A1. Consider the SI-NN defined by (A3) to identify the system (1), with weights being updated by (A4).
Under Assumption 3, the system identification error is asymptotically stable x̃k and weight identifier error �̃�k is
uniformly ultimately bounded.

Proof. (21,30): The following positive definite Lyapunov candidate is considered:

Gm,k = x̃T
k x̃k +

(
1
𝛼m

)
tr
{
�̃�

T
m,k�̃�m,k

}
(A5)

The first order change in time of the candidate is given as:

Gm,k =
(

x̃T
k+1x̃k+1 − x̃T

k x̃k
)
+
(

1
𝛼m

)
tr
{
�̃�

T
m,k+1�̃�m,k+1 + �̃�T

m,k�̃�m,k

}
(A6)

From (A3) and (A4):

ΔGm,k = 𝜙T
m,k𝜙m,k − 2𝜙T

m,k𝜀m,k + 𝜀T
m,k𝜀m,k + 𝛼m𝜎

T
m
(

zk
)
𝜎m
(

zk
)

x̃T
k+1x̃k+1 − x̃T

k x̃k − 2𝜑T
m,kx̃k+1 (A7)

Applying Cauchy–Schwarz inequality, it is noted that
x̃T

k+1x̃k+1 =
(
𝜙m,k − 𝜀m,k

)T (
𝜙m,k − 𝜀m,k

)
≤ 2

(
𝜙

T
m,k𝜙m,k + 𝜀T

m,k𝜀m,k

)
and using (A7), leads to:

ΔGm,k ≤ −𝜙T
m,k𝜙m,k + 𝜀T

m,k𝜀m,k + 2𝛼m𝜎
T
m
(

zk
)
𝜎m
(

zk
) (
𝜙

T
m,k𝜙m,k + 𝜀T

m,k𝜀m,k

)
− x̃T

k x̃k − 2𝜑T
m,k𝜑m,k (A8)

As ‖𝜎m(.)‖ ≤ 𝜎M and 𝜀T
m,k𝜀m,k ≤ 𝜆Mx̃T

k x̃k) (see Assumption 4), we have:

ΔGm,k ≤ −(1 − 2𝛼m𝜎
2
M
‖‖𝜙m,k‖‖

2 −
(
1 − 𝜆M − 𝜆M2𝛼m𝜎

2
M
)
‖x̃k‖2 (A9)

Then, if learning rate is chosen as 0 ≤ 𝛼m ≤ 1 with 𝛼m ≤ 𝛽
2∕2𝜎2

M for some 𝛽 ≠ 0 such that
max

{
−
√
(1 − 𝛼m) ∕𝛼m,−1

}
≤ 𝛽 ≤ min

{√
(1 − 𝛼m) ∕𝛼m, 1

}
, it is seen that ΔGm,k ≤ 0. Thus, x̃k and �̃�m are

bounded on a compact set S if x̃k(0) and �̃�m(0) are bounded on S. Moreover, as k → ∞, x̃k → 0. ▪

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

JHA et al. 25

For SI-NN training, following steps are followed:

Algorithm A1. SI-NN training (21,30 for detailed steps)

Step1: An array of system states, control input at time k, zT
m,k =

[
xT

k uT
p,k

]
, is generated randomly (see (19)) and the

corresponding array of states xk+1 is considered available for supervised training.
Step 2: The system identifier NN is trained by minimizing the error function using stochastic gradient descent
scheme (A4), until the error (A2) converges to zero or remains inferior to a certain constant tolerance (set a priori). E.
Step 3: The trained SI-NN is tested against a test set to assess overfitting and underfitting issues and retrained if required.

APPENDIX B

The procedure comprises of trainable FCN-NN as input to an already-trained SI-NN in a cascading manner. Consider
FCN-NN as a three-layer NN with n2 number of neurons in each hidden layer as:

ûd,k = 𝜔∗T
F−1𝜎F−1

(
𝜗

∗T
F−1 zF−1

,k
)
+ 𝜀F−1

,k

= 𝜔∗T
F−1𝜎F−1

(
zF−1

,k
)
+ 𝜀F−1

,k (B1)

with ûd,k as the estimate output of desired control from FCNN, 𝜔∗F−1 ∈ R(n2×m) and 𝜗∗F−1 ∈ Rn×n2 are the constant ideal
weight matrices of FCNN, zF−1

,k is the input, 𝜀F−1
,k is the NN function approximation error and 𝜎F−1(⋅) is the NN activation

function chosen as the hyperbolic tangent function, that is, 𝜎F−1(z) = (ez − e−z) ∕ (ez + e−z) so that 𝜎F−1(z) ∈ [−1, 1] and
𝜎F−1(z) ∈ Rn2 .

FCN-NN is trained by feeding-in set of reference values rk+1 as input and optimizing the FCN-NN weights such that
SI-NN (trained a priori) outputs the true estimate of rk+1: r̂k+1.

To that end, following steps are taken.

Algorithm B1. FCN-NN training.

Step 1: A set of reference trajectories are generated using a known reference generator (2)
Step 2: FCN-NN is fed with input zF−1

,k = rk+1, following which the trained SI-NN is fed as inputs zT
m,k =

[
rT

k ûT
d,k

]
, so that

the output is r̂k+1
Step 3: FCN-NN is trained using the error r̃F−1

,k+1 = r̂k+1 − rk+1 by minimizing the error function:

EF−1
,k+1 = (1∕2)r̃T

F−1
,k+1r̃F−1

,k+1 (B2)

Step 4: The weights of FCN-NN are adapted using a gradient descent-based optimization scheme.

�̂�F−1
,k+1 = �̂�F−1

,k − 𝛼F−1
𝜕EF−1

,k+1

𝜕�̂�F−1
,k

�̂�F−1
,k+1 = �̂�F−1

,k − 𝛼F−1
𝜕EF−1

,k+1

𝜕r̃F−1
, k+1

𝜕r̃F−1
,k+1

𝜕ûd,k

𝜕ûd,k

𝜕�̃�F−1
,k

�̂�F−1
,k+1 = �̂�F−1

,k − 𝛼F−1𝜎F−1
(

zF−1
,k
) 𝜕r̃F−1

,k+1

𝜕ûd,k
r̃T

F−1
,k+1 (B3)

where 𝛼F−1 > 0 is the learning rate. It should be noted that the error r̃F−1
,k+1 is propagated through the trained SI-NN and

𝜕r̃F−1
,k+1

𝜕ûd,k
is obtained through application of backpropagation algorithm from output of SI-NN r̂k+1 to its input ûd,k.

 10991514, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3028 by U

niversite L
orraine, W

iley O
nline L

ibrary on [05/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	Model-free optimal tracking over finite horizon using adaptive dynamic programming
	1 INTRODUCTION
	2 PROBLEM STATEMENT
	2.1 System transformation and nonlinear HJB optimality
	2.2 Cost function penalizing consecutive changes in control input
	2.3 Associated nonlinear HJB optimality

	3 SYSTEM IDENTIFIER-NN AND FEEDFORWARD CONTROLLER NN
	3.1 System identifier-NN
	3.2 Feedforward controller neural network

	4 FINITE HORIZON TRACKING USING ITERATIVE ADP ALGORITHM
	4.1 Initial one step-zero control
	4.2 Derivation of iterative ADP algorithm
	4.3 Convergence analysis of iterative ADP algorithm

	5 ACTOR CRITIC STRUCTURE-BASED IMPLEMENTATION
	5.1 System model
	5.2 FCN-NN training
	5.3 Critic-NN
	5.4 Actor-NN

	6 SIMULATION STUDY
	7 CONCLUSIONS

	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTION
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

