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Motivation: 
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Prognostics (ISO13381-1,2004) : “the estimation of time to failure and risk for one or more existing 
and future failure modes”.

Component health degradation curve  (Sikorska, Hodkiewicz et al. 2011)



RUL prediction Methods
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Prognostic Approaches 
(Vachtsevanos, Lewis et al. 2007, ISO13381-1 2004, Liao 2005, Jardine et al. 2006, Lee et al. 2006)
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Outliers

RUL Prediction Illustration 
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RUL Prediction Illustration 



Motivation:  Degradation Models (Roller Bearing )
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Raw Data
RMS, Time Domain

Feature Extraction
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Motivation:  Degradation Models (Roller Bearing )
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Raw Data

RMS, Time Domain

Frequency Domain (FFT)

Extraction des caractéristiques

            2

Défaillance!!



Quelques résultats
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Données brutes

Motivation:  Degradation Models (Roller Bearing )



Motivation for Predictive Maintenance:  Engine RUL Prediction based on 
Data

23
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Gugulothu et al. 



Motivation for Predictive Maintenance: Battery SOH Prediction using Data
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Khumprom et al. 



Lithium Ion Battery RUL prediction 

25
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

Zhang et al. 



Artificial Intelligence (AI) Domains
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AI

Artificial Intelligence (as of today): Detection and Exploitation of useful patterns and trends in data

→Decisions

→ Predictions 

→Automated Actions

Major Domains   C1: Computer vision  &  Self Driving Cars

27
Source :  Nvidia, L. Fridman et al. 



Domains of AI

C2. Image processing: Shape & Object Detection

28

Detection Recognition “XYZ”

Face detection and Recognition. 

Predictive Maintenance 
Fault Detection (Roller Bearing)
Zhang et al. 



Domains of AI

C3. Filtering and Denoising : Auto encoders

29

Link: Denoising autoencoder for Image classification

Denoising Autoencoders: MATLAB Central 

End to End learning: Fault detection and Prediction:  
Unknown Model, Environment.  (JHA et al. 2017) 

Black Box
• Feature extraction, 
• selection, 
• Unsupervised 

Learning

Inputs

Learning in Black Box

Decisions

https://hackernoon.com/a-deep-convolutional-denoising-autoencoder-for-image-classification-26c777d3b88e
https://fr.mathworks.com/matlabcentral/fileexchange/71115-denoising-autoencoders


Domains of AI
C3. Particle Physics, Intelligent control (adaptive) of systems, Robotics:  Function Approximation  

30

Deep learning enabled function Approximation
 in LHC physics. 
Sirunyan et al. 2019, Physical Review letters 

• Universal function approximators
• Efficient approximation of unknown dynamics .   

Deep learning based function approximation of Extremely large state space 
(World) 
Human Level control through Deep Learning
Mnih et al. 2015, Nature



R1: Time Series Forecasting, Trend Prediction, Event Prediction

31

Domains of AI

Ma, Xiaolei, et al

Long terms traffic Speed prediction Financial market prediction (Dixon et al.)

Human Motion Prediction

Martinez et al., 2016 

Held et al. 
Video Frame tracking and Prediction 

Component Failure Prediction (Yoo et al., 2018)



R1: Predictive Maintenance : Bearing RUL Prediction.
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Domains of AI

Ma, Xiaolei, et al

Long terms traffic Speed prediction

Financial market prediction (Dixon et al.)

Held et al. 
Video Frame tracking and Prediction 

Component Failure Prediction (Yoo et al., 2018)



R2 :  Recommendation Systems

• Candidate Profiling, 

• Scoring , similarity measures, 

• Prediction

33

Domains of AI

• google Translate

• voice recognition

• text prediction

• voice to text and vice versa

• echo cancellation

Google home Mini

Alexa 

Sequence prediction often involves forecasting the next 

value in a real valued sequence. 



Reinforcement Learning:  Towards human level : 

control ((Finding the optimal way of doing a given task)

prediction 

Adaptation (Robots That Can Adapt like Animals, Nature)

AI enhances Tribology , KTH, Sweden
 Email:  mayank-shekhar.jha [at] univ-lorraine.fr

34

Domains of AI

Built 
new 
moves



Types of Learning
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Machine Learning:  Study of algorithms that improve their performance, for a given task, with more 
experience. 

36

Training data: {y,x}=(y,x)1, (y,x)2,….. (y,x)N

Function space:  F(x,w)

and constraints on function
F

C(w)

Teach a machine to learn the mapping y = f(x,w*) 

f (x, w*)

Optimal parameters or “BEST “parameters

Learning :  Supervised vs Unsupervised



Learning :  Supervised 
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Training data: {y,x}=(y,x)1, (y,x)2,….. (y,x)N

Function space:  F(x,w)

and constraints on function

Teach a machine to learn the mapping y = f(x,w*) 

y=f (x, w*)

Supervised learning: 
• Training of intelligent agent under ‘supervision’. 
• Model known, environment known. 
• Data sources, labels known!  
• An algorithm is employed to learn the mapping function from the input variable (x) to the output variable (y)  

and optimal function parameters:   that is 

• Objective:  Mapping function estimated accurately→ Agent Intelligent!  WHY??

Trained 
Model

Intelligent 
Agent

New Data (x) Prediction data (y)



Unsupervised learning = Available input data (X) and NO output . 

• LEARNING DONE IN AUTONOMOUS WAY. 

• The goal for unsupervised learning is to model the underlying structure or distribution in the data in 
order to learn more about the data.

Example:  K-mean clustering (using distance measures , similarity index, other ranking algos)

38

There is no correct answer and there is no teacher. 

Algorithms are left to their own to discover and present the interesting 
structure in the data.

Learning :  Unsupervised
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Remark: Most learning (in practice) : supervised.  
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Remark: Most learning (in practice) : supervised.  Remark: Most learning (in research) : Unsupervised, RL  

Black Box
• Feature extraction, 
• selection, 
• Unsupervised 

Learning

End to End Learning in Black Box

Decisions



Basic Processes: Classification and Regression

41

Classification : Prediction of Categorical variables (Labels)

Multi-class Classification

• Inter class: Maximum separation

• Inter class: Minimal variance 



Regression: Prediction of  numerical or continuous output variables 

42

Basic Processes:  Regression

Source:  Personal tutorials, also see: Park et al. 2015, Nature genomics

• Forecasting of object based upon the past dynamics (behavior), historical trends  observed.

• Sequence to sequence Model → next sequence prediction, long time prediction. 



Regression: Prediction of  numerical or continuous output variables 
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Basic Processes:  Regression

Source:  Personal tutorials, also see: Park et al. 2015, Nature genomics

• Forecasting of object based upon the past dynamics (behavior), historical trends  observed.

• Sequence to sequence Model → next sequence prediction, long time prediction. 

1 1 2 2 3 3

1

......

m

i ii

y w x w x w x b

w x b
=

= + + +

= +



Ordinary Least Square (OLS) based regression

• Error term

• Objective :  Minimize the sum of square of errors 
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𝒚 = 𝒄 + 𝒎 · 𝒙

= 𝒆𝟐
𝒆𝒊

𝑒𝑖 = 𝑦𝑖 − ෣𝑐 + 𝑚𝑥𝑖
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Relation AI, ML and DL
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Source:   Deep Learning 



Naïve Bayes,

Kernel Density Estimation

Rule Based, 

Decision Trees, 

Random Forests

Genetic Algorithms

Support vector machines (1990-2007): very promising, better

than NNs….till 1998. 

Neural networks (NNs) (1960-1986, 1986-1998, 1998-2007)

Deep Neural Networks (1998,DNNs) : CNNs revolutionized NN based works, 

Enter 2007, 
• Availability of data & data acquisition methods, 
• GPU based distributed calculations 
• Huge community of developers 
• Surge in DNN 

46

Machine Learning techniques for AI



Learning Using Deep Neural networks :  Supervised Learning  
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In this lecture, we look at Neural Networks and

Mechanism of  Supervised type learning . 

Input Features/
Features
Input data/ 
Inputs

Targets /
Labels
* NN output may or may 
not be equal to the target. 
Why? 



The Neuron
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The Neuron

• A neuron only fires if its input 

signal exceeds a certain amount 

(the threshold) in a short time period. 

49Introduction to Deep Learning 
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Huang, Anping, et al. 2017.

Neuron OutputInput 2

Input 3

Input 1

Synapses



The Neuron
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NeuronInput 2

Input 3

Input 1

Output



The Neuron
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Neuron y

Output Value

x1

x2

x3

Input Value 1
Independent Variable 1

Input Value 2
Independent Variable 2

Input Value 3
Independent Variable 3

• Standardization of input data (Same Scale)

• Data preprocessing 

Output Data :

• Continuous Values

• Discrete Values (Binary classes → Yes/No..)

• Categorical Variables (very small, small, large, 

very Large)  



The Neuron
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Neuron

y1
x1

x2

x3

Input Value 1
Independent Variable 1

Input Value 2
Independent Variable 2

Input Value 3
Independent Variable 3

• Standardization of input data (Same Scale)

• Data preprocessing 

y2

y3

Output Value 2

Output Value 3

Output Value 1

Single Observation

Same  Observation 
(Input data , Output Lable Single Observation



The Neuron: Basic Perceptron
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x1

x2

x3


xm

y

Output Value

 

1iw

3iw

m iw

2iw

Threshold function

i
m iw

Threshold for unit i

Synaptic weight from unit m to unit i

•Each neuron has weighted inputs from other neurons. 

•The input signals form a weighted sum. 

•If the activation level exceeds the threshold, the 

neuron “fires”.

•Each neuron has a threshold value.



Artificial Neural Networks (ANNs)
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1st  Step 

x1

x2

x3

• Each hidden or output neuron has weighted input connections from each of the units in the preceding layer.

xm

Output Value

1iw

3iw

m iw

2iw

• The unit performs a weighted sum of its inputs, and subtracts its threshold value, to give its activation level

1

m

i ii
w x b

=
+

1 1 2 2 3 3

1

......

m

i ii

y w x w x w x b

w x b
=

= + + +

= +
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2nd 
Step 

x1

x2

x3

xm

Output Value

1iw

3iw

m iw

2iw

Artificial Neural Networks (ANNs)

( )1

m

i ii
w x b

=
+

• Activation level is passed through an activation function             to determine output( )x
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x1

x2

x3

xm

y

Output Value

 3rd Step 

1iw

3iw

m iw

2iw

Artificial Neural Networks (ANNs)

( )1

m

i ii
w x b

=
+



The Artificial Neural Network (ANN)
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x1

x2

x3


xm

y

Output Value

 

1iw

3iw

m iw

2iw

Activation function 
Sigmoid

( )1

m

i ii
w x b

=
+



Activation functions (discussed later)
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Threshold function (binary step function)

Sigmoid function TanH / Hyperbolic Tangent

ReLu (Rectified Linear Unit)



Multi Layered (Deep) Feed Foreword Neural Networks

• These are fully connected layers, but need not be.
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Inputs

Hidden Layers

Outputs



Multi Layered (Deep) Feed Foreword Neural Networks

• Outputs can be multiple (multiple targets). See softmax activation later. 
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Inputs

Hidden Layers

Outputs
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x1

x2

xm

Hidden Nodes

Input Nodes

Output Nodes
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x1

x2

xm



Hidden Nodes

Input Nodes

Output Nodes



Basic functioning of NNs

JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr
63



How do NNs work :  Illustrative Example Apartment Price 
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y

Size (m2

Distance from station
(Km)

Building age
(years)

1w

2w

3w

1 1 2 2 3 3y w x w x w x b= + + +

Price



How do NNs work :  Illustrative Example Apartment Price 
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Size (m2

Distance from station
(Km)

Building age
(years)

Price



How do NNs work :  Illustrative Example Apartment Price 
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Size (m2

Distance from station
(Km)

Building age
(years)

Price



How do NNs work :  Illustrative Example Apartment Price 
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Size (m2

Distance from station
(Km)

Building age
(years)

( )1

m

i ii
y w x b

=
= +

Price

•Each neuron has weighted inputs from other neurons. 

•The input signals form a weighted sum. 

•If the activation level exceeds the threshold, the neuron 

“fires”.

•Each neuron has a threshold value.



How do NNs work :  Illustrative Example Apartment Price 
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Size (m2

Distance from station
(Km)

Building age
(years)

Price

Size (m2

Building age
(years)



How do NNs work :  Illustrative Example Apartment Price 
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Size (m2

Distance from station
(Km)

Building age
(years)

Price

( )1

m

i ii
y w x b

=
= +



How do NNs work :  Illustrative Example Apartment Price 
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x1

x2

xm

Several training, leads to optimal sets of 

weights, that determine the non-linear 

relationship between inputs and targets.

How do weights  adapt?  

Or, 

How do NNs learn?  

( )1

m

i ii
y w x b

=
= +



Learning in NNs
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How do NNs learn? 
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x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

ŷ y

Input 1

• Consider one data input  

( )1

m

i ii
w x b

=
+



How do NNs learn? 
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x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

ŷ y

Input 1

• Consider a data input

• Feed in the information (foreword propagation) 

( )1

m

i ii
w x b

=
+



74Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

( )
21 ˆ

2
E y y= −
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Input 1

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the individual loss wrt actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights.  
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w x b

=
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Input 1

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information can be fed back, to adjust the weights. 

( )1

m

i ii
w x b

=
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Input 2

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information can be fed back, to adjust the weights. 

• Repeated with other data inputs. 
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Input 2
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ŷ

ŷ

ŷ
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ŷ

Batch update ( One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information can be fed back, to adjust the weights. 

• Repeated with other data inputs. 
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Batch update ( One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information can be fed back, to adjust the weights. 

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6
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Update all the weights

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6

Rationale: The global error 
is backward propagated to 
network nodes, weights are 
modified proportional to 
their contribution. 

Batch update ( One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information can be fed back, to adjust the weights. 



86Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

ŷ
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Update all the weights

Batch update ( One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information will be fed back, to adjust the weights. 

• Repeated with other data inputs. 

.

.

• Total loss → cost function 

• The weights adjusted ‘at the same time’ using total loss. 

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6
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Update all the weights

Batch update ( One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value. 

Note: Objective to minimise the cost function. Find optimal 

weights. 

• Information will be fed back, to adjust the weights. 

• Repeated with other data inputs. 

.

.

• Total loss → cost function 

• The weights adjusted ‘at the same time’ using total loss. 

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6
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Update all the weights

Objective :  To minimize this loss, 

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6
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Update all the weights

Objective :  To minimize this loss, find optimal sets of weights.

How to minimise the loss and update the weights??  

 

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6
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Gradient Descent 
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• GD:  iterative method of finding minimum of any given function. Why iterative method preferred? 

• NNs involve non-linear functions, close solutions of min of loss functions not available. 

• Objective:  To minimize the loss function (cost function) or mean error between neural network output and actual values 
(chosen by user, Example: mean square error) . 

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2



Gradient Descent 
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• GD:  iterative method of finding minimum of any given function. Why iterative method preferred? 

• NNs involve non-linear functions, close solutions of min of loss functions not available. 

• Objective:  To minimize the loss function or mean error between neural network output and actual values (chosen by user, 
Example: mean square error) . 

• Intuition behind GD:  Climbing down the hill to find its bottom or minimum value  given by best parameters.

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2



Gradient Descent 
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• GD:  iterative method of finding minimum of any given function. Why iterative method preferred? 

• NNs involve non-linear functions, close solutions of min of loss functions not available. 

• Objective:  To minimize the loss function or mean error between neural network output and actual values (chosen by user, 
Example: mean square error) . 

• Intuition behind GD:  Climbing down the hill to find its bottom or minimum value  given by best parameters.

Basic steps: 

Given the loss function 

• Compute the slope (gradient) that is the first-order 

derivative of the function at the current point. 

• Move-in the opposite direction of the slope increase

from the current point by the computed amount.  

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

( , )J w b
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( ( , ))

J b

J w b
b b
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 −
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
 −
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
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Batch Gradient Descent 
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y
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y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Saw earlier:  Weights were updated using total loss of a data batch ➔ Batch 

GD. 

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6



Gradient Descent 
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• GD:  iterative method of finding minimum of any given function. Why iterative method preferred? 

• NNs involve non-linear functions, close solutions of min of loss functions not available. 

• Objective:  To minimize the loss function or mean error between neural network output and actual values (chosen by user, 
Example: mean square error) . 

• Intuition behind GD:  Climbing down the hill to find its bottom or minimum value  given by best parameters.

Basic steps: 

Given the loss function 

• Compute the slope (gradient) that is the first-order 

derivative of the function at the current point. 

• Move-in the opposite direction of the slope increase

from the current point by the computed amount.  

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2
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( ( , ))

( ( , ))

J b

J w b
b b

b


 −




 −



w
w w

w


 

s

learning rate. 

What happens when learning rate is very low? 

What happens when learning rate is very high? 



Gradient Descent 

• When learning rate too low ➔ slow convergence.

• When learning rate too high ➔ minima will be overshot ➔ slow or no convergence.  

• Learning rate is a Hyperparameter. 

• It must be fine tuned. Neither too high, nor too low. We see hyperparameter tuning later.

• GD works well when the total loss function is a convex function.
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Gradient Descent 

• When learning rate too low ➔ slow convergence.

• When learning rate too high ➔ minima will be overshot ➔ slow or no convergence.  

• Learning rate is a Hyperparameter. 

• It must be fine tuned. Neither too high, nor too low. We see hyperparameter tuning later.

• GD works well when the total loss function is a convex function.

• What happens when function is non-convex?   
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Gradient Descent 

• GD works well when the total loss function is a convex function.

• What happens when function is non-convex? 

Usually, the case, when millions of data are considered for training, 

with millions of parameters  (weights in many layers of NNs).   
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Source: Taig et al. 



Stochastic Gradient Descent 

• GD :  Consider a batch (set) of training data samples: 

• calculate loss

• update weights based on total loss.

• Curse of dimensionality: Need more data for training, updating  for whole set → extremely slow updates.

• To avoid getting stuck in local minima,  a certain “jittering” or noise /exploration is needed. 
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Update all the weights

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs  and  

update done for each data inputs until convergence.  

• Probability to get unstuck from local minima and converge towards global minima.

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6

Stochastic Gradient Descent 
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Update all the weights

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6

Stochastic Gradient Descent 

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs  and  

update done for each data inputs until convergence.  

• Probability to get unstuck from local minima and converge towards global minima.
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Update all the weights

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6

Stochastic Gradient Descent 

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs  and  

update done for each data inputs until convergence.  

• Probability to get unstuck from local minima and converge towards global minima.
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Update all the weights

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6

Stochastic Gradient Descent 

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs  and  

update done for each data inputs until convergence.  

• Probability to get unstuck from local minima and converge towards global minima.
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Update all the weights

One epoch = training done on entire data set once.   

Input 1     Input 2     Input 3       Input 4        Input 5  Input 6

Stochastic Gradient Descent 

ŷ

ŷ y

y

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs  and  

update done for each data inputs until convergence.  

• Probability to get unstuck from local minima and converge towards global minima.

• Iterate until convergence detected. 



105Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs  and  

update done for each data inputs until convergence.  

• Probability to get unstuck from local minima and converge towards global minima.

• Iterate until convergence detected. 

Batch GD Stochastic GD

Batch GD : stores all data loss, updates after all data loss taken into 

account. 

SGD : updates after each data sample. 

•  less time consuming 

• NN updated after each data, 

• memory not allocated to all data at once.  

• but, cannot vectorize the computations. (as only one 
                                                   data input treated once).

What happens when millions of data samples? but limited memory 

resources? 



Mini batch GD 

• Blends advantages of both GD and SGD. 

• Mini-batches of fixed size are created. 

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the 

weights

5. 
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Mini batch GD 

• Blends advantages of both GD and SGD. 

• Mini-batches of fixed size are created. 

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the 

weights

5. Repeat steps 1–4 for all the mini-batches
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Mini batch GD 

• Blends advantages of both GD and SGD. 

• Mini-batches of fixed size are created. 

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the 

weights

5. Repeat steps 1–4 for all the mini-batches.  
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Mini batch GD 

• Blends advantages of both GD and SGD. 

• Mini-batches of fixed size are created. 

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the 

weights

5. Repeat steps 1–4 for the mini-batches we created. 

Great!! We now know how  NNs update weights …..using:

batch-GD, SGD or mini batch SGD….but…
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Mini batch GD 

• Blends advantages of both GD and SGD. 

• Mini-batches of fixed size are created. 

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the 

weights

5. Repeat steps 1–4 for the mini-batches we created. 

Great!! We now know how  NNs update weights …..using:

batch-GD, SGD or mini batch SGD….but…

how to calculate the gradient of the cost function!! 
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Back propagation 

112Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

(1)W ŷ
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Loss

• Intuition:  the global error is backward propagated to network nodes, weights are modified proportional to their contribution

• Objective:  Calculate rate of change of Error with respect to each weights, to correct the weights. 

• Backpropagation rediscovered in 1986, efficient way of propagating backwards the error gradient and updating the weights.

but first, Forward Propagation : Illustration using 2 Hidden layer Deep NN.  
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Forward propagation 
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Forward propagation 

115Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

X

(1)W
ŷ
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Foreword propagation 

116Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

X

(1)W
ŷ
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Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule
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Objective of Backprop: 



Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule
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Objective of Backprop: 



Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule
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Objective of Backprop: 



Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule
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Objective of Backprop: 



Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule

121
Introduction to Deep Learning 

JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop: 



Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule
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Objective of Backprop: 



Back propagation 

• Calculate the gradient with respect to all parameters. 

• Intermediate values and gradients are calculated. 

• Reminder:  Chain rule
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Objective of Backprop: 



Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights
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Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the computational graph in the direction of dependencies and compute 
all the variables on its path.
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Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the computational graph in the direction of dependencies and compute 
all the variables on its path.

3. Compute Deep NN output

4. Back propagation of errors 

5.Update all the weights using Gradient descent:
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Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the compute graph in the direction of dependencies and compute all the variables on its 
path.

3. Compute Deep NN output

4. Back propagation of errors 

5. Update all the weights using Gradient descent:

6. Repeat the steps from 2 , until acceptable error levels observed .

Remarks:

• intermediate values must be stored until backpropagation

• backpropagation requires significantly more memory than plain inference.

• Gradients as tensors variables must be stored to invoke the chain rule.

• Minibatches → GD on several data inputs together ➔ more intermediate activations need to be stored.   
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Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights. How? what is the best way? 

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the compute graph in the direction of dependencies and compute all the variables on its 
path.

3. Compute Deep NN output

4. Back propagation of errors 

5.Update all the weights using Gradient descent:

6. Repeat the steps from 2 , until acceptable error levels observed.

Remarks:

• intermediate values must be stored until backpropagation

• backpropagation requires significantly more memory than plain inference.

• Gradients as tensors variables must be stored to invoke the chain rule.

• Minibatches → GD on several data inputs together ➔ more intermediate activations need to be stored.   
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How to access? What is the best model? When is training over? 



Summary

• Forward propagation sequentially calculates and stores intermediate variables within the compute

graph defined by the neural network. It proceeds from input to output layer.

• Back propagation sequentially calculates and stores the gradients of intermediate variables and

parameters within the neural network in the reversed order.

• When training deep learning models, forward propagation and back propagation are interdependent.

• Training requires significantly more memory and storage.
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Training data, Test Data and Validation data

Rich and large data sets: Different data sets for training, parameter tuning and testing of the model. 

When amount of data is large
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Available  Examples

Training

Set

Test

Set

70% 30%

Test error

Divide randomly

Generalization error

= test error

Training Set

70%

Validation Set

15%

Test Set

15%



Generalization: Underfitting and Overfitting

• Under fitting: model is unable to reduce training errors.

• Overfitting: model test error is significantly higher than 

training error.
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Generalization: Underfitting and Overfitting

• Under fitting: model is unable to reduce training errors.

• Overfitting: model test error is significantly higher than 

training error.

How does it depend on Model complexity? 
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Underfitting and Overfitting

• Under fitting: model is unable to reduce training errors.

• Overfitting: model test error is significantly higher than 

training error.

How does it depend on Model complexity? 

What is model complexity? 

• number of hyper-parameters (tunable parameters)

• number of layers, hidden nodes in each layer

• number of weights, range of values taken by weights

• Minibatch size
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Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases 

How to ensure that a network has been well trained??

1. Rich and large data sets: Different data sets for training, parameter tuning and testing of the       
model.

• Monitor error on the test set as network trains.

• Stop network training just prior to over-fit error occurring  - early stopping or  tuning

2. Number of effective weights is reduced : Number of weights and value range. 
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Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases 

How to ensure that a network has been well trained??

1. Rich and large data sets: Different data sets for training, parameter tuning and testing of the model. 

When amount of data is large
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Available  Examples

Training

Set

Test

Set

70% 30%

Test error

Divide randomly

Generalization error

= test error

Training Set

70%

Validation Set

15%

Test Set

15%



Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases 

How to ensure that a network has been well trained??

1.Rich and large data sets: Different data sets for training, parameter tuning and testing of the 
model. 

When amount of data is small: Cross-Validation (K-fold)

• original training data set is split into K noncoincident sub-data sets

• use the K -1 sub-data set to train the model. 

• validate the model using a sub-data set 

• Repeat model training and validation

process k times. 
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Available Examples

Training

Set
Validation

 Set 

1division

k-1 divisions



Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

• Manually or automatically select optimum number of hidden nodes and connections. 

• Not scalable, often needs expert opinion. 

• Regularization methods

• Adjust the bp error function to penalize the growth of unnecessary weights 

• Keep the weight vector small magnitude ➔add its value as a penalty to the problem of minimizing the loss. 
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Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

• Manually or automatically select optimum number of hidden nodes and connections. 

• Not scalable, often needs expert opinion. 

• Regularization methods

• Adjust the bp error function to penalize the growth of unnecessary weights 

• Keep the weight vector small magnitude ➔add its value as a penalty to the problem of minimizing the loss. 

• Weight vector becomes too large, ➔ the learning algorithm prioritizes minimizing w over minimizing

the training error.
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Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

• Manually or automatically select optimum number of hidden nodes and connections. 

• Not scalable, often needs expert opinion. 

• Regularization methods

• Adjust the bp error function to penalize the growth of unnecessary weights 

• Keep the weight vector small magnitude ➔add its value as a penalty to the problem of minimizing the loss. 

• Weight vector becomes too large, ➔ the learning algorithm prioritizes minimizing w over minimizing

the training error.

• Squared Norm Regularization: 

• Gradient Descent update becomes :  
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Weights decay by an amount
 proportional to its magnitude

 weight-cost parameter

another Hyperparameter



Training

1. Network Design (Architecture of NN networks.)  #layers, #hidden nodes, activation functions, 
model  ..

2. Initialize model parameters.

3. Choose Loss function 

4. Training and Backpropagation :  Mini batch, batch, or stochastic GD. 

5. Monitor the loss function and error . 

When no overfitting observed (epochs of training)

• Stop if the error fails to improve (has reached a minimum)

• Stop if the rate of improvement drops below a certain level

• Stop if the error reaches an acceptable level

• Stop when a certain number of epochs have passed

When overfitting observed: fine tune the NN network

(initialize parameters, prune or regularize the weights, …)
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Types of Activation functions
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Activation functions
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Threshold function (binary step function)

Sigmoid function TanH / Hyperbolic Tangent

ReLu (Rectified Linear Unit)



Activation Functions

Threshold function (binary step function)

• If the input value is above or below a certain threshold, 

the neuron is activated and sends the same signal to the next layer. 

• Good for Binary outputs → 2 class classifications. 

• Does NOT allow multi value outputs → does not support classification of input into multiple 
categories. 
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Activation Functions :  Non-linear functions (why linear functions not preferred? 

Sigmoid function 

• Smooth gradient, preventing “jumps” in output values.

• Output values bound between 0 and 1, normalizing the output of each neuron.

• Clear predictions—For X above 2 or below -2, tends to bring the Y value (the prediction) to the edge of the 
curve, very close to 1 or 0. This enables clear predictions.

• The Sigmoid function used for binary classification in logistic regression model. 

• While creating artificial neurons sigmoid function used as the activation function. 

Disadvantages

• Vanishing gradient—for very high or very low values of X, there is almost no change to the prediction, causing a 
vanishing gradient problem. 

• This can result in the network refusing to learn further, or being too slow to reach an accurate prediction.

• Computationally expensive

• Not Zero centered !!
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Activation Functions

TanH / Hyperbolic Tangent

Zero centred ➔making it easier to model inputs that have strongly negative, neutral, and strongly 
positive values. 

All advantages of Sigmoid function preserved.

Computationally expensive.  
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Activation Functions

ReLu (Rectified Linear Unit)

• Computationally efficient—allows the network to converge very quickly

• Non-linear—although it looks like a linear function, ReLU has a derivative function and allows for 
backpropagation. 

• Avoids vanishing or exploding gradient  problems unless…

Disadvantages: 

The Dying ReLU problem—when inputs approach zero, or  negative, 

the gradient of the function becomes zero, the network cannot perform backpropagation and cannot learn.
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Activation Functions

Leaky ReLu

• Computationally efficient—allows the network to converge very quickly (faster than Sigmoid/tanh)

• Does not Saturate/

• Does not “die”
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[Mass et al., 2013] [He et al., 2015]



Activation function

Softmax function

• Calculates the probabilities distribution of the event over ‘n’ different events.

• In general, calculates the probabilities of each target class over all possible target classes.

• Later the calculated probabilities will be helpful for determining the target class for the given inputs.

• The range will 0 to 1, and the sum of all the probabilities will be equal to one. 

Remark: Useful for output neurons—typically Softmax is used only for the output layer,

for neural networks that need to classify inputs into multiple categories.

• Very often used for multi-class classification.  
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Loss functions

JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr
149



Common Loss functions

Regression 

Mean Square Error (MSE) Loss: measured as the average of squared difference between predictions 
and actual observations.

Also known as:  L2 loss, Quadratic loss, MSE loss, ..

Remarks: 

• Predicted values that are far from actual values are penalized heavily. 

• Squaring : positivity, quadratic function→ nice properties helpful in finding gradients. 
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Common Loss functions

Classification (recall: binary classification and multi class classification

Softmax function )

• Often, for classification: outputs are probabilities of belonging to each class. 

• Thus, loss must be calculated based on assessment of probabilities. 
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Common Loss functions

Classification Loss (recall: binary classification and multi class classification

Softmax function )

Cross Entropy Loss (log loss, logistic loss, logarithmic loss, negative log loss..)

(Binary Class , or 2 classes)
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( )ˆ ˆlog( ) (1 y) log(1 )CEL y p p= − + − −

• Cross-entropy loss, or log loss, measures the performance of a classification model 

whose output is a probability value between 0 and 1.

•  Cross-entropy loss increases as the predicted probability diverges from the actual 

label.

• Notice that when actual label is 1 (y = 1), second half of function disappears whereas 

in case actual label is 0 (y = 0) first half is dropped off.

• A perfect model would have a log loss of 0.



Common Loss functions

Classification Loss (multi class classification, Softmax function)

Cross Entropy Loss 

(Multi Class )
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• Cross-entropy can be calculated for multiple-class classification.

 

• The classes have been one hot encoded, meaning that there is a binary feature for each class value. 

 

• The predictions must have predicted probabilities for each of the classes (Example: Softmax).

•  The cross-entropy is then summed across each binary feature and averaged across 

     all examples in the dataset.

Suggestion:  Read this thread of discussion on forum on using Cross entropy in practice.  
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M : Number of classes
yi,c : true probability of belonging to that class
pi,c : predicted probability of belonging to that class.

https://datascience.stackexchange.com/questions/9302/the-cross-entropy-error-function-in-neural-networks


Loss functions:  Best practices

Regression Problem

• A problem where you predict a real-value quantity.

• Output Layer Configuration: One node with a linear activation unit.

• Loss Function: Mean Squared Error (MSE).

Binary Classification Problem

• A problem where you classify an example as belonging to one of two classes.

• The problem is framed as predicting the likelihood of an example belonging to class one, e.g. the 
class that you assign the integer value 1, whereas the other class is assigned the value 0.

• Output Layer Configuration: One node with a sigmoid activation unit.

• Loss Function: Cross-Entropy

Multi-Class Classification Problem

• A problem where you classify an example as belonging to one of more than two classes.

• The problem is framed as predicting the likelihood of an example belonging to each class.

• Output Layer Configuration: One node for each class using the softmax activation function.

• Loss Function: Cross-Entropy.
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Summary

• Simple NN functioning, analogy with linear regressions

• Feed foreword Deep NN functioning 

• Weight updates through backprop and gradient descent (batch, mini batch and stochastic GD)

• Generalization :Training /validation/test set

• Generalization and Training issues: overfitting, underfitting, finding the right tradeoff.

• Weights initializations: Exploding and Vanishing gradients, Xavier initilisations. 

• Note on Activation functions.  
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Convolutional Neural Networks
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Images are just numbers for computer! 
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Source: OpenFrames

Images are matrix of numbers. 

Gray Scale  Images ➔ One channel Grey Scale ➔ 2D matrix of numbers (pixel values). 

Each pixel =[0,255], 

No of pixels proportional to image size → No of rows and columns. 

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


Color images

Colored Images:  3 channels of colors: 3D array 

RGB channels ➔ 3D Arrays

Red: 2-D matrix

Green: 2-D matrix

Blue: 2-D matrix
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Source: Broher

Source: Medium

https://brohrer.github.io/convert_rgb_to_grayscale.html
https://towardsdatascience.com/understanding-images-with-skimage-python-b94d210afd23


Drawbacks 

JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr
159



Drawbacks
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16 X 16 Image GreyScale

Colored Images:  3 channels of colors: 3D array 

RGB channels ➔ 3D Arrays

Red: 2-D matrix

Green: 2-D matrix

Blue: 2-D matrix

Deep Hidden layers Multi class output

Explosion of training parameters



Drawbacks
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16 X 16 Image GreyScale

Colored Images:  3 channels of colors: 3D array 

RGB channels ➔ 3D Arrays

Red: 2-D matrix

Green: 2-D matrix

Blue: 2-D matrix

Deep Hidden layers Multi class output

Simple calculation for 1 layer , 100  hidden units: 
 256 inputs  → 256 weights
100 hidden units → 256 x 100=25600 input weights  
Bias → 100 bias
26 Outputs (A-Z)→ 26 X 100 output weights
Biases → 26 
Total:  25600 + 100+ 2600 + 26 = 28326

That is just with one layer !! 

 

Explosion of training parameters



Drawbacks:  Trainable parameter explosion 

• Most images → high resolution (1MB or more) → several thousands of pixels ➔ several thousands 
inputs. 

• Several hundreds of hidden layers with several hundreds of units.

• Total parameters to train → Extremely large → Computation intractable !!

• Strong regularization needed → difficult and little reproducibility. 
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Drawbacks: Variance to distortions 

• The orientation / location of object within an image should have little influence over it getting 
detected. 

This is not true with previous NNs (MLPs, ANNs).  

• Variance to scaling, shifting and other distortions, influence of surroundings (global context). 

• The topology of the data is ignored. 

• Inherent distributions are not learnt well.  
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• Must avoid parameter explosion in face of large inputs. 

• Identification of object should be invariant to scaling, shifting and different orientation. 

• The object should be identifiable in any location / orientation ➔ placement of object in an image 
should not influence the outcome, only local information about the object should be sufficient. 

 



Convolutional neural networks
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Motivation 
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Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995. 

• Convolutional Neural Networks are a special kind of multi-layer neural networks. 

• Inspired by neuro-biology:  brain’s mechanism of understanding different attributes of an object

• Attributes : shape, size, orientation and color. 
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Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995. 

• Convolutional Neural Networks are a special kind of multi-layer neural networks. 

• Inspired by neuro-biology:  brain’s mechanism of understanding different attributes of an object

• Attributes : shape, size, orientation and color. 
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They can be compressed

 to the same parameters.

“snow-
leopard tail”

detector

“leopard tail 
detector”
detector

The Tail 
detector!



Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995. 

• Convolutional Neural Networks are a special kind of multi-layer neural networks. 

• Inspired by neuro-biology:  brain’s mechanism of understanding different attributes of an object

• Attributes : shape, size, orientation and color. 

Intuition:  

• Understanding the inherent data distribution.

• Using local information to extract topological properties from image. 

• Implicitly extract relevant features. 

Understanding the new data using learnt attributes. 
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Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995. 

• Convolutional Neural Networks are a special kind of multi-layer neural networks. 

• Inspired by neuro-biology:  brain’s mechanism of understanding different attributes of an object
• Attributes : shape, size, orientation and color. 

Intuition:  
• Understanding the inherent data distribution.

• Using local information to extract topological properties from image. 

• Implicitly extract relevant features. 

Understanding the new data using learnt attributes. 

Example:  

A door is always rectangular in shape, 

A ship has a characteristic shape,

a car of any brand shall have a typical shape….
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Intuition 
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Intuition
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Intuition:  

Use an image kernel to extract relevant features from the image. 

Image kernel = image matrix. 

Learn an appropriate filter weights  through successive training (BP).  

Shape 1 / feature 1 

Filter 1



Intuition
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Intuition:  

Use an image kernel to extract relevant features from the image. 

Image kernel = image matrix. 

Learn an appropriate filter weights  through successive training (BP).  

Shape 2 / feature 2

Filter 2



Intuition

Intuition:  

Edge Detection: An image kernel for edge detection. 
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Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Intuition

Intuition:  

Edge Detection:  image kernel for edge detection. 

Different image kernels to extract different features.  
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Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Intuition

Intuition:  

Edge Detection:  image kernel for edge detection. 

Multiple image kernels to extract different features. 

Why not multiple kernels to extract set of features expected from object / 

required for the objective. 
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Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Intuition

Intuition:

How to construct these filters? Edge detection is straight foreword. Not obvious in general. 

Essence of CNN : 

• learn the values (weights) of these filters (BP).   

• stack multiple layers of feature detectors (kernels) on top of each other for abstracted levels of feature 
detection.
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Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Intuition

Intuition:

How to construct these filters? Edge detection is straight foreword. Not obvious in general. 

Essence of CNN : 

• learn the values (weights) of these filters (BP).   

• stack multiple layers of feature detectors (kernels) on top of each other for abstracted levels of feature 
detection. 

• extract relevant features: Convolution operation . What and How? 
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Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Convolution Operator 
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Convolution Operator

Reminders:  

• origins in Signal Processing.

• convolution of two signals produces a third signal

• In signal processing, input signal convolution with impulse response of the system → output response
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𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏



Convolution Operator

Reminders:  

• origins in Signal Processing.

• convolution of two signals produces a third signal

• input signal * impulse response of the system ➔ output response.

Convolution of a signal by Dirac impulse positioned at t0 ➔ signal shift to t0. 
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Polytech Nancy 
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+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න
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∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

http://www.dspguide.com/ch6/2.htm
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Convolution Operator

Reminders:  

• origins in Signal Processing.

• convolution of two signals produces a third signal

• input signal * impulse response of the system ➔ output response.

Convolution of a signal by Dirac train → periodic signal with period Te
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Convolution Operator

Reminders:  

• origins in Signal Processing.

• convolution of two signals produces a third signal

• input signal * impulse response of the system ➔ output response.

Convolution of a signal by Dirac train → periodic signal with period Te

• Convolution operation constructs a system response signal. 

• Convolution  operation fundamental in assessing the similarity between two

signals. 
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Convolution Operator

Reminders:  

Low pass filtering: 

Input: three cycles of sine wave plus a slow increasing ramp.

Low pass filter impulse response ( or Convolution kernel / filter kernel) 

Output = slow component ramp.   

Convolution operation → extracts the weighted feature. 
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𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑆 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 = ෍

𝑎=−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎
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Convolution Operator

Reminders:  

High pass filtering: 

Input: three cycles of sine wave plus a slow increasing ramp.

High pass filter impulse response ( or Convolution kernel / filter kernel) 

Output = Fast component ramp.   

Convolution operation → extracts the weighted feature.   
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∞
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∞

𝑤 𝑎 𝑥 𝑡 − 𝑎
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Convolution Operator

Thus, convolution measures the overlap between 

any two functions.  
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𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑠 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 = න

−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎 𝑑𝑎

𝑆 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 = ෍

𝑎=−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎

Source :Blog AndrewSzot

Green curve is the value of the convolution f∗g, the red is f, the 
blue g and the shaded area is the product f(a)g(t−a) where t is 
the x-axis.

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Convolution 
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Convolution:  CNN context. 

Back to CNNs:
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10-1

10-1

10-1

Convolve with Threshold

Conv/filter Kernel:  Edge detection



Convolution Operator :  CNN context. 

Back to CNNs: 

Images can be represented as 2D array. 

Consider (i,j) → any position in an image. 

Consider Hidden layers as 2-D array , 

Then, dense layers → 4D tensors (Weights in a hidden layer X no of layers)

Weights matrices become weight tensors 
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10-1

10-1

10-1

Convolve with

Conv/filter Kernel:  Edge detection

ℎ 𝑖, 𝑗 = ෍

𝑎,𝑏

𝑊 𝑖, 𝑗, 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏



Convolution Operator :  CNN context. 

190Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

ℎ 𝑖, 𝑗 = ෍

𝑎,𝑏

𝑊 𝑖, 𝑗, 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

For any location, (i,j), consider an activation value  in 

hidden layer h[i,j]  

 h[i,j] is computed by summing over pixels in x and 

centered around (i,j).

10-1

10-1

10-1

Convolve with

Conv/filter Kernel:  Edge detection



Convolution Operator :  CNN context 
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ℎ 𝑖, 𝑗 = ෍

𝑎,𝑏

𝑊 𝑖, 𝑗, 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

w13w12w11

w23w22w21

w33w32w31

w13w12w11

w23w22w21

w33w32w31

For any location, (i,j), consider an activation value  in 

hidden layer h[i,j]  

 h[i,j] is computed by summing over pixels in x and 

centered around (i,j).

Run the image kernel (filter kernel, convolution) over 

entire a and b.

10-1

10-1

10-1

Convolve with

Conv/filter Kernel:  Edge detection

Animation Source: slides Abin - Roozgard



Convolution Operator

Invoke Translation invariance: 

Now, activation h should only change with shift in inputs x .

Or, filter kernel (weights) should be same for all (i,j)(pixel positions)

➔This means same feature is searched over whole image. 

➔In this way all neurons detect the same feature at different positions in the input image. 
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Source :Blog AndrewSzot

𝑊 𝑖, 𝑗, 𝑎, 𝑏 = 𝑉 𝑎, 𝑏

ℎ 𝑖, 𝑗 = ෍

𝑎,𝑏

𝑉 𝑎, 𝑏 .· 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers


Convolution Operator

Invoke Locality: 

The feature should be recognized using local aspects, look in

proximity and not very far. 

i.e. constrain the size of the kernel filter. 
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Source :Blog AndrewSzot

𝑊 𝑖, 𝑗, 𝑎, 𝑏 = 𝑉 𝑎, 𝑏

ℎ 𝑖, 𝑗 = ෍

𝑎,𝑏

𝑉 𝑎, 𝑏 .· 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

𝑓𝑜𝑟 𝑎 , 𝑏 > 𝛥

𝑝𝑢𝑡 𝑉 𝑎, 𝑏 = 0

ℎ 𝑖, 𝑗 = ෍

𝑎=−𝛥

𝛥

෍

𝑏=−𝛥

𝛥

𝑉 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

w13w12w11

w23w22w21

w33w32w31

w13w12w11

w23w22w21

w33w32w31

Animation Source: slides Abin - Roozgard

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers
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6 x 6 image

1 -1 -1
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Filter 1

Filter 2

……

2 images of 4 x 4 matrix is 

produced. 

This procedure is repeated for 

each filter

Example:

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 4 3
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Feature Maps



1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

H x W image

1 -1

Edge detector kernel

Kernel: if 

horizontally elements are same , output is 0. 

Else, non-zero.   

Example: Edge detection

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

Detected: 

 1 for edge from white to black 

-1 for edge from black to white

Difficult to handcraft such filters.  

Thus, filter kernel weights must be learnt !! 

Feature Map



Remarks:

Output shape determined by shape of input and convolutional kernel window.

Small convolution with filter kernels → “smaller” outputs (feature maps).
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𝑛ℎ − 𝑘ℎ + 1 × 𝑛𝑤 − 𝑘𝑤 + 1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

𝑛ℎ

𝑛𝑤

𝑘ℎ

𝑘𝑤
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Padding

• Multiple layers of convolution may reduce the information available at boundary.

• Padding prevents this problem.

• Adding zeros around the edges such that multiple convolution operation does not lead to information 
loss.

• Pixels added around edges.

• These pixels are zero in value.
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𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 1 × 𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 1

𝑝ℎ

𝑝𝑤

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0



Padding:  In practice

• 𝑝ℎ = 𝑘ℎ − 1 , 

• 𝑝𝑤 = 𝑘𝑤 − 1, 

• Kernel dimensions : 𝑘𝑤, 𝑘ℎ are chosen odd numbers (Ex:  1,3,5,7..) 

• Padding dimensions are even.  𝑝 = 𝑘 − 1 , 

• then,  each  side padded with 𝑝/2  zeros 

• or, padding dimensions = (k-1)/2
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𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 1 × 𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 1

𝑝ℎ

𝑝𝑤

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0



Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=1

Output =5 x5
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1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

Number of rows and columns per slide → stride. 

• Useful in reducing information (resolution) drastically. 

0 0 1 0 1 0 0



Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=1

Output =5 x5
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=1

Output =5 x5
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Stride=1
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=1

Output =5 x5
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=1

Output =5 x5
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0 0 1 1 0 0 0
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Stride=1
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=1

Output =5 x5
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1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

Feature Map
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3

222Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0



Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3 Feature map matrix
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=2

Output =3 x3 Feature map matrix

225Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

𝑛ℎ − 𝜅ℎ + 𝑝ℎ

𝑠
+ 1 ×

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤

𝑠
+ 1

In general, with stride =s

output size: 

0 0 1 0 1 0 0



Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=3 ?? (stride increased)

Cannot apply 3x3 filter kernel on 7X7 input → Does not fit. 
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=3 ?? (stride increased)

Cannot apply 3x3 filter kernel on 7X7 input → Does not fit. 
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Convolution : Strides

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=3 ?? (stride increased)

Cannot apply 3x3 filter kernel on 7X7 input → Does not fit. 
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Stride=3
𝑛ℎ − 𝜅ℎ + 𝑝ℎ

𝑠
+ 1 ×
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𝑠
+ 1

0 0 1 0 1 0 0

In general, with stride =s

output size:

 



Apply padding 

Input : 7x7 (spatially) 

Filter kernel:  3X3 

Stride=3 ?? (stride increased)

Output= 3 X 3
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𝑠
+ 1 ×

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤

𝑠
+ 1

In general, with stride =s

output size:

 

Apply Padding: 1 pixel border on each side ( ph=2 , pw=2)

Kernel =3X3, Stride =1 , 

output =7 X 7 !! 

In practice: 

Stride =1, 

kernel dim:  F X F where F is an odd number (Ex: 1,3,5,7..)

Padding on each side = (F-1)/2



Multi input and output channels 
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Multi input channels 

so far, greyscale images→ One channel. 

Most images are colorful → 3 channels RGB

➔Input as multi-dimensional array : 3 X h X w 

➔construct a convolution kernel with the same number of input channels as the input data (3 here)
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Multi input channels 

so far, greyscale images→ One channel. 

Most images are colorful → 3 channels RGB

➔Input as multi-dimensional array : 3 X h X w 

➔construct a convolution kernel with the same number of input channels as the input data (3 here)

➔Assign a 2-D kernel to each channel → concatenation gives 3D conv kernel. 
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Multi input channels 

Convolution with 3 input channels: 

• slide the 2D filter kernel on 2D input , for each channel. 
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Multi input channels 

Convolution with 3 input channels: 

• slide the 2D filter kernel on 2D input , for each channel. 
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Multi input channels 

Convolution with 3 input channels: 

• slide the 2D filter kernel on 2D input , for each channel.
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Multi input channels 

Convolution with 3 input channels: 

• slide the 2D filter kernel on 2D input , for each channel.

• add the three 2D feature maps to get the output➔ feature map ( a 2D array ). 

• generalizable to n input channels. 
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Multi input channels:  Summary

Convolution of image (3 channels) 

with 3 channel filter ➔ 1-D feature map. 
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Multi input channels:  Summary

Convolution of image (3 channels) 

with 3 channel filter ➔ 1-D feature map. 
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Multi input channels:  Summary

Convolution of image (3 channels) 

with 3 channel filter ➔ 1-D feature map. 
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Multi outputs

When more than one feature is to be extracted → multiple filters are used. 

Output for each filter is desired.  Output has multiple channels. 

Convolution is performed with each filter kernel ,  for each output channel. 

Output is concatenated along number of filter (output channel) dimension. 

2 different filters ➔ convolution with each filter kernel and concatenated along output channel dimension.  
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Multi outputs

When more than one feature is to be extracted → multiple filters are used. 

Output for each filter is desired.  Output has multiple channels. 
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Each filter (5 x 5 x 3)
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• So far:  Just Convolutions!
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• Apply Non-linearity (as seen earlier) :  features pass thru activation functions → activation maps 
(terminology is loose , feature maps/activation maps both are used often to mean the same)

• In practice:  ReLu is mostly preferred (fast convergence, no zero-gradient problem..
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Convolution Layers with Non linearity Activation 
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Convolution
Layers
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Convolution Layers
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Convolution Layers
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Convolution Layers
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Convolutional neural network
(CovNets) CNNs
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Convolution Layers
Remarks:  Observe the reduction in size. 

Each feature map = learns features in hierarchical  sense. (High level, mid level , low level…)

Convolution Neural networks (why?) : the filter weights + bias  (parameters) are learnt at each stage.

Each neuron in a hidden layer: take input (while sliding) → compute weighted sum→ apply bias→ apply non-linear activation.

Repeat for each filter, 

Repeat at each stage.  
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CNNs for classification

• We discussed convolution operation and feature maps. 

• Pooling: 
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Pooling
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Pooling:  Motivations

Down sampling: 

• We want to reduce the resolution of images.

• The output should not depend on the dimensionality of the original image. 

Invariance to translation:

In reality, objects hardly ever occur exactly at the same place. 

• Detection should be invariant to translation to some extent. 

Example: For instance, image with sharp feature and shifted by one pixel → detection result should 
not be vastly different from original image. 

Pooling layers:  

• reduce the sensitivity of Conv layer to location 

• reduce the resolution through the processing pipeline. 
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Pooling layer :  Max pooling or Average Pooling
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Pooling layer :  Max pooling or Average Pooling

3

257Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr

0 3 1 6

2 1 0 2

-1 1 1

-1 0 -1 3

Max Pooling 

Choose the maximum 
value in pooling window

1.5
0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Average Pooling 

Choose the average
value in pooling window



Pooling layer :  Max pooling or Average Pooling

3 6
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Pooling layer :  Max pooling or Average Pooling

3 6

1
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Pooling layer :  Max pooling or Average Pooling
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value in pooling window
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Choose the average
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Strides and padding also available for pooling. 

In practice,  pooling window size:  2 x 2 , stride = 2.

Note:  Zero padding is NOT common for pooling layers. 
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Pooling 

Pooling layers / Subsampling pixels does not change the object.

Changes the resolution , fewer parameters to characterize the image. 

The subsampling layers reduce the spatial resolution of each feature map

By reducing the spatial resolution of the feature map, a certain degree of shift and distortion
invariance is achieved. 

Reduces the effect of noises and shift or distortion
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Pooling:  multi inputs 

So far:  Conv + Relu → Feature Map → Pooling (subsampling)

When, multiple filters used: 
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Pooling:  multi inputs / multiple feature maps 

So far:  Conv + Relu → Feature Map → Pooling (subsampling)

When, multiple filters used: Pooling done on each input feature map. 

New set of images  but smaller images. 
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So far: 
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• At each stage, a  new image (reduced resolution) is obtained, ready for convolution. 

• At the end, the output structure is “flattened” to create a single long feature vector

to be used by the dense layer for the final classification. 
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Flattening

For classification, expect the net outputs distribution of probability of each class ( multi class , 
softmax )

This has little to do with “spatial” 2D information.   

This is abstract representation. 

Output information → flatten→ create single long feature vector (like last lecture)→ feed to Dense 
ANNs. 

Fully connected  Dense Feed foreword networks can propagate this information. 
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Demo:  training on CIFAR-10 dataset

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.htmlt
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AlexNet:  obtained above par state of art results on ImageNet challenge, 

learnt good low level features,

higher level features built upon these.  
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LeNet-5 (LeCun et al. 1998)

• state-of-the-art performance on hand digit recognition tasks. 
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LeNet-5 (LeCun et al. 1998)

Advantages : 

• convolution with learnable parameters (sharable parameters) ➔ effective way to extract similar features at multiple locations with few parameters . 

• correlation with neighboring pixels (data) considered. 

• optical character, fingerprint recognition…

Limitations: 

• High computational burden: each pixel as separate input . 

• Traditional activations functions:  slow learning. 
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Stagnation of CNN : Early 2000

ML paradigm in 1990-1998: 

• Typically such datasets were hand generated using very expensive sensors. 

• Lacked richness, diversity ➔ insignificant improvement of performance (lack of complex training data, representations etc. 

• Till 2012, feature representation had to be thought, or based on intuition. 

CNNs: 

• Backpropagation → not effective to reach global minima. 

• Activation functions:  Sigmoid function (variants) 

• vanishing gradient problem (exponential decay )

• exploding gradient problem.  
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Stagnation of CNN : Early 2000

ML paradigm in 1990-1998: 

• Typically such datasets were hand generated using very expensive sensors. 

• Lacked richness, diversity ➔ insignificant improvement of performance (lack of complex training data, representations etc.

• Till 2012, feature representation had to be thought, or based on intuition. 

CNNs: 

• Backpropagation → not effective to reach global minima. 

• Activation functions:  sigmoid function (variants) 

• vanishing gradient problem (exponential decay )

• exploding gradient problem (no efficient initialization methods)

• Little attention : object detection, classification/prediction of spatio-temporally complex data

• Limited computational resources (no GPUs)
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Revival of CNNs: 2006-2011 

• Efficient initialization techniques:  

• greedy layer-wise pre-training (Hinton et al. 2006) 

• unsupervised/supervised training-based pre-training

• Xavier initialization (Glorot and Bengio, 2010)

• Use of Non-saturating Activation Functions : ReLu (Glorot and Bengio, 2010)

• Max-pooling > Sub-sampling (Ranzato et al, 2007) → learnt better invariant features.

• Late 2006: GPUs for training CNNs. 

• 2007: NVIDIA → CUDA programming → harness parallel processing power of GPUs



Revival of CNNs: 2006-2011 

• Efficient initialization techniques:  

• greedy layer-wise pre-training (Hinton et al. 2006) 

• unsupervised/supervised training-based pre-training

• Xavier initialization (Glorot and Bengio, 2010)

• Use of Non-saturating Activation Functions : ReLu (Glorot and Bengio, 2010)

• Max-pooling > Sub-sampling (Ranzato et al, 2007) → learnt better invariant features.

• Late 2006: GPUs for training CNNs. 

• 2007: NVIDIA → CUDA programming → harness parallel processing power of GPUs

• 2010:  Dr. Fei-Fei Li group (Stanford) → ImageNet platform 

today ImageNet → 15 millions, large number  categories and classes (target labels). 

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (2010-2017)



AlexNet (Krizhevsky et al. 2012)

• Considered first “modern deep architecture”

• Deeper than LeNet-5:  from 5 to 8 layers  
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AlexNet (Krizhevsky et al. 2012)

• Considered first “modern deep architecture”, deeper than LeNet-5:  from 5 to 8 layers, 

• 60 Million parameters

• Depth increases overfitting: learning algo: skips some transformational units.

• ReLU : improve convergence ➔ reduce vanishing gradient problem. 

• Heavy data augmentation for training: flipping, clipping, color change etc. 

• Use of multiple GPUs for training :  trained in parallel on two NVIDIA GTX 580 

• Use of large filter (11X11, 5X5) as initial layers

• Overlapping pooling layers: (0.5% reduction in overfitting).  

• Other adjustments: 

• Dropout  for regularization

• SGD Momentum 
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AlexNet (Krizhevsky et al. 2012)

• Considered first “modern deep architecture”, deeper than LeNet:  from 5 to 8 layers, 

• 60 Million parameters

• Depth increases overfitting: learning algo: skips some transformational units.

• ReLU : improve convergence ➔ reduce vanishing gradient problem. 

• Heavy data augmentation for training: flipping, clipping, color change etc. 

• Use of multiple GPUs for training :  trained in parallel on two NVIDIA GTX 580 

• Use of large filter (11X11, 5X5) as initial layers

• Overlapping pooling layers: (0.5% reduction in overfitting).  

• Other adjustments: 

• Dropout  for regularization:  0.5

• SGD Momentum

• Winner of ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012

• Recognize off-center objects. 

• Beginning of Modern era of Deep learning:  SOTA 

• Deep Learning to new fields: medical imaging, data extraction, end to end learning… 

• Missing ➔ A template for Deep NN design. 
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Visual Geometry Group  or VGG  (Simonyan and Zisserman 2015)

19 layers deeper compared to AlexNet

Addition: 

• Studied the relation of depth with the representational capacity of the network. 

• Replaced: large kernel-sized with small receptive field (multiple 3×3 kernels). 

• All hidden layers:  ReLu activation. 

• Suggested that small size filters can improve the performance of the CNNs 
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Visual Geometry Group  or VGG (Simonyan and Zisserman 2015)

Dataset:

• ImageNet , inputs down-sampled → 256×256

Architecture: 

• Image  passed through a stack of convolutional (conv.) layers, with  filters → with a very small receptive field: 3×3 

• The convolution stride is fixed to 1 pixel

• the spatial padding of conv. layer input is such that the spatial resolution is preserved after convolution, i.e. the padding is 
1-pixel for 3×3 conv. layers. 

• Spatial pooling is carried out by five max-pooling layers, which follow some of the conv. layers (not all the conv. layers are 
followed by max-pooling). 

• Max-pooling is performed over a 2×2 pixel window, with stride 2.

• Complexity regulation: 1X1 convolutions between conv layers (learn linear combination of resultant feature maps) 

• Followed by: Three Fully-Connected (FC) layers :  4096, 4096,1000 (for ILSVRC classification) 

• The final layer is the soft-max layer. 

• The configuration of the fully connected layers is the same in all networks.
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Visual Geometry Group  or VGG (Simonyan and Zisserman 2015)
19 layers deeper compared to AlexNet

Addition: 

• Studied the relation of depth with the representational capacity of the network. 

• Replaced: large kernel-sized with small receptive field (multiple 3×3 kernels). 

• All hidden layers:  ReLu activation. 

Advantages:  

• Significantly outperformed previous generation models with respect to classification accuracy. 

• Representation depth is beneficial for the classification accuracy. 

• Suggested that small size filters can improve the performance of the CNNs. 

• Several layers of deep and narrow convolutions (i.e., 3×3) were more effective than fewer layers of wider convolutions.

• 2nd Place 2014-ILSVRC 

Set the trend: smaller sized filters. 

Limitations: 

• Very slow to train  (For example: VGG16 was trained for weeks , NVIDIA Titan Black GPU’s )

• Large no pf parameters 138 million parameters 

• Heavy architecture → 533MB 
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Network in Network (NiN) (Lin et al., 2013)

• Intuition: 

• to use an MLP on the channels for each pixel separately. 

• Apply a fully-connected layer at each pixel location (for each height and width). 

282Source: Alaeddine, H., Jihene, M. Deep network in network. Neural Comput & Applic (2020). 



Network in Network (NiN) (Lin et al., 2013)

• Intuition: 

• to use an MLP on the channels for each pixel separately. 

• Apply a fully-connected layer at each pixel location (for each height and width). 

• If we tie the weights across each spatial location becomes ➔ 1X1 convolution layer. 

or

fully-connected layer acting independently on each pixel location

283Source: Alaeddine, H., Jihene, M. Deep network in network. Neural Comput & Applic (2020). 



Network in Network (NiN) (Lin et al. 2013)

• Architecture: 

• inspired from AlexNet.

• Convolutional layers:  11×11, 5×5, and 3×3

• followed by two 1×1 convolutional layers that act as per-pixel fully-connected layers with ReLU
activations

• Each NiN block is followed by a maximum pooling layer (stride 2, window shape of 3×3).

• The convolution window shape of the first layer is typically set by the user.

• Output: number of output channels equal to the number of label classes, followed by a global average pooling 
layer. 

• Avoids fully-connected layers totally (against AlexNet, LeNet…)

• Advantages: 

• 1X1 convolutions ➔ allow for more per-pixel nonlinearity within convolutional stack. 

• NiN removes the fully-connected layers and replaces them with global average pooling. 

• Removing fully-connected layers reduces overfitting. 

• NiN has dramatically less parameters. 
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Network in Network (NiN) (Lin et al. 2013)

• Architecture: 

• inspired from AlexNet.

• Convolutional layers:  11×11, 5×5, and 3×3

• followed by two 1×1 convolutional layers that act as per-pixel fully-connected layers with ReLU
activations

• Each NiN block is followed by a maximum pooling layer (stride 2, window shape of 3×3).

• The convolution window shape of the first layer is typically set by the user.

• Output: number of output channels equal to the number of label classes, followed by a global average pooling 
layer. 

• Avoids fully-connected layers totally (against AlexNet, LeNet…)

• Advantages: 

• 1X1 convolutions ➔ allow for more per-pixel nonlinearity within convolutional stack. 

• NiN removes the fully-connected layers and replaces them with global average pooling. 

• Removing fully-connected layers reduces overfitting. 

• NiN has dramatically less parameters. 
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GoogLeNet (Szegedy et al., 2015)

• Winner of 2014 ILSVRC 

• One focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ? 

• Introduced  Inception block: 

• incorporates multi-scale convolutional transformations using split, transform and merge idea.

• encapsulates filters of different sizes (1x1, 3x3, and 5x5) 

• captures spatial information at different scales:  fine and coarse grain level.   

286Source: Dive into  Deep learning book



GoogLeNet (Szegedy et al., 2015)

• Winner of 2014 ILSVRC 

• One focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ? 

• Introduced  Inception block: 

• incorporates multi-scale convolutional transformations using split, transform and merge idea.

• encapsulates filters of different sizes (1x1, 3x3, and 5x5) 

• captures spatial information at different scales:  fine and coarse grain level.   

• computation regularization ➔ adding a bottleneck layer of 1x1 convolutional filter, before employing large size kernels. 
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GoogLeNet (Szegedy et al., 2015) or Inception V1

• Winner of 2014 ILSVRC 

• One of the focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ? 

• Introduced  Inception block: 

• Incorporates multi-scale convolutional transformations using split, transform and merge idea.

• Encapsulates filters of different sizes (1x1, 3x3, and 5x5) 

• Captures spatial information at different scales:  fine and coarse grain level.   

• Computation regularization ➔ adding a bottleneck layer of 1x1 convolutional filter, before employing large size kernels. 

• Advantages: 

• Density reduced → use of global average pooling at the last layer and NOT instead of using a fully connected layer 

• Significant decrease in parameters:  from 138 Million to 4 Million parameters. 

• Other novelties: 

• Batch Normalization 

• RmsProp as optimizer,…
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GoogLeNet (Szegedy et al., 2015) or Inception V1

• Winner of 2014 ILSVRC 

• One of the focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ? 

• Introduced  Inception block: 

• Incorporates multi-scale convolutional transformations using split, transform and merge idea.

• Encapsulates filters of different sizes (1x1, 3x3, and 5x5) 

• Captures spatial information at different scales:  fine and coarse grain level.   

• Computation regularization ➔ adding a bottleneck layer of 1x1 convolutional filter, before employing large size kernels. 

• Advantages: 

• Density reduced → use of global average pooling at the last layer and NOT instead of using a fully connected layer 

• Significant decrease in parameters:  from 138 Million to 4 Million parameters. 

• Other novelties: 

• Batch Normalization 

• RmsProp as optimizer,…

• Limitations: 

• heterogeneous topology that needs to be customized from module to module 

• representation bottleneck that drastically reduces the feature space 

• in the next layer and thus sometimes may lead to loss of useful information. 

• Variants: Inception V2, Inception V3
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ResNet (He et al., 2015)

Problem: Deeper networks do not necessarily lead to 
better accuracy.  

290Source: Dive into  Deep learning book



ResNet (He et al. 2015)

Problem: Deeper networks do not necessarily lead to 

better accuracy. WHY?  

Vanishing gradients? (infinitesimally  small  gradients? )
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Overfitting ? 
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.
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Should behave as Identity Function
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

Intuition :

• Learn Residual mapping
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ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of 

layers was increased.

Degradation Problem: 

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

Intuition :

• Learn Residual mapping 

• Use skip connections

• If any layer hurts performance ➔ skip it! 

• Easier to learn 

so that it behaves as identity function. 
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ResNet (He et al. 2015)
Architecture: 

• Identity Block:  skip connections

• Conv block: restructure incoming data

• 153 layers Deep

• Less computational complexity (but deeper : 20 X AlexNet, 8 X VGG)

Advantage: 

• Residual mapping can learn the identity function more easily

• Stacking more layers ➔ equivalent to stacking identity mappings

• Inputs can forward propagate faster through the residual connections across layers. 
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Where are we? 

Khan et.al. 2020



Context: Predictive Maintenance
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Degradation Models and RNNs

Degradation Models :  Sensor signals ➔ time series data ➔ Hidden pattern: ➔ Cyclic 

➔ Trend 

➔ Seasonal

➔ Trend + Cyclic+seasonal
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PEM Fuell Cells

Lithium-ion battery degradation,
Center for Advanced Life Cycle Engineering (CALCE)
in University of Maryland (He W., Williard N., Osterman
M., & Pecht M., 2011)



Degradation Models and RNNs
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Bearing Degradation Dataset



Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 

• Raw degradation data → Hidden features / representation:

• Spatially varying

• Temporally varying

• Multimodal characteristics  
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Photo: Report of Jha 

Roller bearing degradation (PRONOSTIA platform)

CNNs



CNNs for Prognostics

307Hybrid Prognostics and Deep Learning (Presentation at KIST), 
Email: mayank-shekhar.jha [at] univ-lorraine.fr

Babu et al.2016 

CNN for multi-variate time series signals: 
• Sliding windows approach
• Segments of time series multi variate signal
(short pieces of signal)

• Highlight: Joint feature learning on each segmented signal
• concatenate MLP at end, for RUL target. 



Deep LSTMs for RUL prediction
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• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]
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Deep LSTMs for RUL prediction
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• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

Some issues:

• Independent Windows → to assure assumption of i.i.d 

• Dependent windows → claim more realistic. 
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Many variants exist!
Training tuples: 

Loss Calculation : Error based cost function 



CNNs for Prognostics

• Traditionally, 2D-3D structured data for face/object recognition.

• Application to PHM: 1D grid structured topology of sequential 

data.

310Hybrid Prognostics and Deep Learning (Presentation at KIST), 
Email: mayank-shekhar.jha [at] univ-lorraine.fr

Jha, course on Deep learning 2020, Polytech Nancy

Diagnostics: 
• Input: 1D segments of vibration data
• Highlight: Automatic extraction of features  
• Train: several layers CNN + Softmax classification   



CNNs for Prognostics

• Automatically learn feature representation, hidden multimodal distributions

[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

&  

• Efficient learning with multi-variate sequential (time series) data. 

[Babu et al., 2016]

• Hybrid structure
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[Babu et al., 2016]

[Liu et al., 2017]



Turbo jet Fan Engine NASA
CMAPSS
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Sequence Modelling

Recurrent Neural Networks

Long Short Term Memory 
(LSTMs)

Application: Prognostics and Deep Learning 
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Sequence Modelling 
Motivations 

Challenges 

Some ideas 

Design
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Sequence modelling : Motivations

• Sequential data:  
• time series forecasting, 

• motion prediction (human, self driving cars)

• sensor data:  machine health monitoring/prediction

• text processing/prediction

• machine translation 

316Introduction to Deep Learning 
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Financial market prediction (Dixon et al.) Human Motion Prediction

Martinez et al., 2016 

Component Failure Prediction 
(Yoo et al., 2018)

I am from London but I live in Paris and I speak fluent English. 



Sequence modelling : Motivations > Challenges 

• Inputs data

• Variable lengths

• spatially + temporally dependent

• ordered

• output data different length than input (machine translation) 
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Sequence modelling : Motivations >Challenges > Some ideas 

1. Fixed window

• cannot model long term dependencies

2. Use whole sequence as counts  (I occurs 3 times) 

• no learning of order (what followed by what?)

3. Large window length input 

• each has separate parameter

• learning will not transfer at other places

in the sequence. 
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Sequence modelling : Motivations >Challenges > Some ideas 

1. Fixed window

• cannot model long term dependencies

2. Use whole sequence as counts  (I occurs 3 times) 

• no learning of order (what followed by what?)

3. Large window length input 

• each has separate parameter

• learning will not transfer at other places

in the sequence. 

• Feed forward NN, not designed to:

• handle variable data lengths

• parameter sharing (correlation, temporal dependency…)

• track long term dependency + order 

• CovNets:

• can share parameters across time but remain shallow. 
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Sequence modelling : Motivations 
>Challenges > Some ideas > Design• Variable length inputs

• Learn long term dependencies

• Learn the order in data

• Share parameters across sequence 

• Make predictions (long term) efficiently. 

JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr 320



Recurrent Neural Networks
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RNNs: Structure 
• Recurrence of states. Ex.  a dynamical system 

• Recursive computation ➔ Computational graph
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RNNs: Structure 
• Recurrence of states. Ex.  a dynamical system 

• Recursive computation ➔ Computational graph

• When system driven by external input, 
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RNNs: Structure 
• Recurrence of states. Ex.  a dynamical system 

• Recursive computation ➔ Computational graph

• When system driven by external input, 

New state contains information about history. 

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure) 

Unrolling →

• Captures dependency in input data.

• Same weights at each time step :  some weight sharing. 
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RNNs: Structure 
• Recurrence of states. Ex.  a dynamical system 

• Recursive computation ➔ Computational graph

• When system driven by external input, 

New state contains information about history. 

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure) 

Unrolling →

• Captures dependency in input data.

• Same weights at each time step :  some weight sharing. 

• Outputs from RNN: 
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RNNs: Structure 
• Recurrence of states. Ex.  a dynamical system 

• Recursive computation ➔ Computational graph

• When system driven by external input, 

New state contains information about history. 

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure) 

Unrolling →

• Captures dependency in input data.

• Same weights at each time step :  some weight sharing. 

• Outputs from RNN: 
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RNNs: Structure 
• Recurrence of states. Ex.  a dynamical system 

• Recursive computation ➔ Computational graph

• When system driven by external input, 

New state contains information about history. 

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure) 

Unrolling →

• Captures dependency in input data.

• Same weights at each time step :  some weight sharing. 

• Outputs from RNN: 
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RNNs: Structure 
• Depending upon application:

• h needs to be rich, 

• capture all historical trends {cyclicity, seasonality, trend, fluctuations, global/local} 

• Advantage: 

• learnt model has same size (regardless of input size)

• possible to use same transition function f
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RNNs: Structure 
• Depending upon application:

• h needs to be rich, 

• capture all historical trends {cyclicity, seasonality, trend, fluctuations, global/local} 

• Advantage: 

• learnt model has same size (regardless of input size)

• possible to use same transition function f

• Learning → Back-propagation through time (BPTT) 

• errors calculated/back-propagated over time = BP over unrolled network 

• gradients calculated in time. 

• Training slower than MLP:

• repeated multiplication of weights in sequence length

• repeated product of derivative of activation function. 

329Introduction to Deep Learning 
JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr



Challenges: 

Vanishing gradients: Many values <<1  

• activation gradient products

• small weights

• negligible gradient ➔ negligible learning. 
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Challenges: 

Vanishing gradient problem: Many values <<1  

• activation gradient products

• small weights

• negligible gradient ➔ negligible learning. 

Long range Learning: 

• hidden units modify with new information

• vanishing gradient problem ➔ new information not preserved over long ranges. 

• time series forecasting: seasonality etc. 
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Challenges: 

Vanishing gradient problem: Many values <<1  

• activation gradient products

• small weights

• negligible gradient ➔ negligible learning. 

Long range Learning: 

• hidden units modify with new information

• vanishing gradient problem ➔ new information not preserved over long ranges. 

• time series forecasting: seasonality etc. 

• machine translation: relation of first word  to context 

• prognostics: prediction of state of health at long time range

Prediction Drift: 
• next step prediction   ➔ recurrence of  h learnt 

• long range prediction → recurrence of h over multiple steps 

• error cumulation  over multiple time steps 
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Solution:  

• Efficient parameter initialization

• Non-saturating activation functions: ReLU, Leaky ReLu…

• Gradient clipping

• Gated Cells: 

• “control” the information flow

• allow more useful information, forget non-useful information…

• track information through many time steps to filter out the useless ones.
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Long Short Term Memory 
(LSTMs)
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LSTMs ( Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through
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Gated RNNs: let selective information through

RNNS:   

LSTMs ( Hochreiter & Schmidhuber 1997)
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LSTMs ( Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

LSTMs:   
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LSTMs ( Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

Gates: 
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LSTMs ( Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates: 

Cell state :  Information highway.  
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LSTMs ( Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates: 

Cell state :  Information highway.  

1. Forget: 
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LSTMs ( Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates: 

Cell state :  Information highway.  

1. What to Forget: 

2. what to Store: 
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LSTMs ( Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates: 

Cell state :  Information highway.  

1. What to Forget: 

2. what to Store: 

3. Update old cell state: 
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LSTMs ( Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates: 

Cell state :  Information highway.  

1. What to Forget: 

2. What to Store: 

3. Update old cell state:

4. Generate output:  
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LSTMs ( Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

LSTMs:   
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Backpropagation:  Uninterrupted gradient flow 

Learning: 

Faster than RNNs,

Long range dependency conserved..  
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LSTM Variants: 

• Peephole connections 

• Gated Recurrent Units (GRUs) (Cho et al. 2014)

• etc. 
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LSTM Variants: 

• Peephole connections 

• Gated Recurrent Units (GRUs) (Cho et al. 2014)

• etc. 
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Deep (Stacked )LSTMs (Fernández, Graves, & Schmidhuber,2007): 

Unroll

Image credits: Fernández, Graves, & Schmidhuber,2007 



Deep LSTMs

• Advantages over RNNs: 

• Learn long term dependencies easily.  

• Avoid vanishing gradient problem  through easy information flow. 

• Replaced RNNs for Identification of Non-linear systems (dynamical systems).  

• Benchmarking performance LSTM > RNN > MLP > CNN (different datasets/ factors) 

(A Richard et al. 2019)
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Application: 
Prognostics and Deep Learning
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System degradation 

• Machines (dynamical systems) degrade with:

• time

• operational load cycles 

• operational conditions etc. 
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Prognostics

• Prognostics: 

• Estimate (state of health) → identification of degradation model. 
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Prognostics

• Prognostics: 

• Estimate (state of health) → identification of degradation model. 

• Prediction of future health + Remaining Useful Life (RUL)
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Prognostics

• Prognostics: 

• Estimate (state of health) → identification of degradation model. 

• Prediction of future health + Remaining Useful Life (RUL)
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Prognostics

• Prognostics: 

• Estimate (state of health) → identification of degradation model. 

• Prediction of future health + Remaining Useful Life (RUL)

353JHA Mayank , Email:  mayank-shekhar.jha [at] univ-lorraine.fr



Prognostics

• Prognostics: 

• Estimate (state of health) → identification of degradation model. 

• Prediction of future health + Remaining Useful Life (RUL)

• Evaluate: Decision  “when failure occurs ???” “what maintenance strategy”
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Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 
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Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 
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PEM Fuel Cell  degradation (Jha et al. 2016)



Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary  → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 
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PEM Fuel Cell  degradation (Jha et al. 2016)

Lithium-ion battery degradation,
Center for Advanced Life Cycle Engineering (CALCE)

in University of Maryland (He W., Williard N., Osterman

M., & Pecht M., 2011)

Roller bearing degradation (PRONOSTIA platform)



Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 

• Raw degradation data → Hidden features / representation:

• Spatially varying

• Temporally varying

• Multimodal characteristics  
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Degradation Data

• Degradation: 

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc. 

• depends on qualitative+ quantitative factors. 

• Raw degradation data → Hidden features / representation:

• Spatially varying

• Temporally varying

• Multimodal characteristics  
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Photo: Report of Jha 

Roller bearing degradation (PRONOSTIA platform)

Deep LSTMs

CNNs



Deep LSTMs for Prognostics

Basic Architecture
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Deep LSTMs for RUL prediction

Basic Architecture
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Image credits: Fernández, Graves, & Schmidhuber,2007 
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Deep LSTMs for RUL prediction

Basic Architecture:       LSTMs: Temporal features  + FNNs: Map features in RULs
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Image credits: Fernández, Graves, & Schmidhuber,2007 

Fully connected Layer
3D- Input

Target Vector
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Deep LSTMs for RUL prediction
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• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]
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Deep LSTMs for RUL prediction
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• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

Some issues:

• Independent Windows → to assure assumption of i.i.d 

• Dependent windows → claim more realistic. 
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Many variants exist!
Training tuples: 

Loss Calculation : Error based cost function 



LSTM training 

• Inputs : Sensor data at time t

• Output: RUL at time t
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RUL prediction training How?? 
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RUL prediction Example:  C-MAPSS dataset (NASA)
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MAPSS stands for 'Commercial Modular Aero-Propulsion 
System Simulation' and it is a tool for the simulation of realistic 
large commercial turbofan engine data. 

The fault was injected at a given time in one of the flights and 
persists throughout the remaining flights, effectively increasing 
the age of the engine. 



Some applications: 
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[Gugulothu et al 2017] 

PEM Fuel Cell degradation

Lithium-ion battery  RUL prediction
(He W., Williard N., OstermanM., & Pecht M., 2011)

Engine prognostics (NASA) : CMAPSS  

'Commercial Modular Aero-Propulsion System Simulation’

[Zhang et al, 2017]

• unknown non-linear dynamics, 

• non-stationary (multi modal degradation, 

• multiple modes of degradation)  



CNNs for Prognostics

• LSTMs: good sequence learning 

but good input sequence needs to be provided!!   

• Feature extraction needs domain knowledge. 

• Labelled data → difficult ! 

• CNNs → Hidden features / representation of sequence:

• Spatially varying

• Temporally varying

• Multimodal characteristics  
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Roller bearing degradation (PRONOSTIA platform)

CNNs



CNNs for Prognostics

• CNNs → Traditionally, 2D-3D structured data for face/object recognition

• Prognostics → 3D structured topology for sequence data 
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tRUL

Stacked LSTMsDeep CNNs



CNNs for Prognostics

• Automatically learn feature representation, hidden multimodal distributions

[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

&  

• Efficient learning with multi-variate sequential (time series) data. 

[Babu et al., 2016]

• Hybrid structure
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[Babu et al., 2016]

[Liu et al., 2017]
[Kong et al. 2019]



PEM Fuell Cell Degradation 
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Gugulothu et al. 



Battery degradation RUL prediction ((He W., Williard N., OstermanM., & 
Pecht M., 2011)
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Lithium-ion battery  RUL prediction

LSTM based RUL 
prediction



Basic Approach 

AI enhances Tribology , KTH, Sweden
 Email:  mayank-shekhar.jha [at] univ-lorraine.fr
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Raw Data

Dimensionality 
Reduction 

Feature Extraction

Supervised /Unsupervised Training  of Classifier

Cross validation

Data Preparation :
• fill missing values

• data sorting..
• Test set, Train Set 

Classification/PredictionNew Data

Decision
/

Output

Principle Component Analysis (PCA), 
t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Time domain
• frequency (FFT)
• Time-frequency (Wavelet transforms)
• STFFT 

Offline

Trained classifier Model
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