
Introduction to Artificial Intelligence for
Prognostics

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 1

Mayank Shekhar JHA
Associate Professor

(Maitre de Conférences)

Automatic Control, Reliability of Systems

mayank-shekhar.jha{at}univ-lorraine.fr

Research

Centre de Recherche en Automatique de Nancy

(CRAN) UMR 7039,

Faculté des Sciences et Technologies

Boulevard des Aiguillettes - BP 70239 - Bât.

1er cycle 54506 Vandoeuvre-lès-Nancy

Cedex France

Teaching

Polytech Nancy (ESSTIN),

2 Rue Jean Lamour 54509

Vandoeuvre-lès-Nancy,

Cedex France

mailto:Philippe.Weber@univ-lorraine.fr

Contents

Introduction

Neural Networks basics

Feed forward Deep NNs

Convolutional Neural Networks for Prognostics

Recurrent Neural Networks & LSTMs for Prognostics

Case Study: CMAPSS (Nasa Dataset)

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
2

Introduction and Few Reminders
Artificial Intelligence Domains

Types of Learning

Linear and Logistic Regression

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
3

Motivation:

4
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostics (ISO13381-1,2004) : “the estimation of time to failure and risk for one or more existing
and future failure modes”.

Component health degradation curve (Sikorska, Hodkiewicz et al. 2011)

RUL prediction Methods

5
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostic Approaches
(Vachtsevanos, Lewis et al. 2007, ISO13381-1 2004, Liao 2005, Jardine et al. 2006, Lee et al. 2006)

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 6

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Measurements

St
at

e
o

f
H

ea
lt

h

Time

2. Model Based Approach

Current Time, k

k

RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 7

Measurements

St
at

e
o

f
H

ea
lt

h

Time

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 8

Measurements

St
at

e
o

f
H

ea
lt

h

Time

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 9

Measurements

St
at

e
o

f
H

ea
lt

h

Time

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 10

Measurements

St
at

e
o

f
H

ea
lt

h

Time

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 11

Measurements

St
at

e
o

f
H

ea
lt

h

Time

Failure Threshold

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 12

Outliers

RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 13

Measurements

St
at

e
o

f
H

ea
lt

h

Time

Failure Threshold

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 14

Measurements

St
at

e
o

f
H

ea
lt

h

Time

Failure Threshold

()p RUL

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 15

Measurements

St
at

e
o

f
H

ea
lt

h

Time

Failure Threshold

()p RUL

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 16

Measurements

St
at

e
o

f
H

ea
lt

h

Time

Failure Threshold

()p RUL

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 17

Measurements

St
at

e
o

f
H

ea
lt

h

Time

Failure Threshold

()p RUL

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

P
ro

b
ab

ili
ty

 D
en

si
ty

Data

Model Based Approach

Current Time, k

k

2. Model Based Approach
RUL Prediction Illustration

18
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

RUL Prediction Illustration

Motivation: Degradation Models (Roller Bearing)

19

Raw Data
RMS, Time Domain

Feature Extraction

Motivation: Degradation Models (Roller Bearing)

20

Raw Data

RMS, Time Domain

Frequency Domain (FFT)

Extraction des caractéristiques

 2

Motivation: Degradation Models (Roller Bearing)

21

Raw Data

RMS, Time Domain

Frequency Domain (FFT)

Extraction des caractéristiques

 2

Défaillance!!

Quelques résultats

22

Données brutes

Motivation: Degradation Models (Roller Bearing)

Motivation for Predictive Maintenance: Engine RUL Prediction based on
Data

23
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Gugulothu et al.

Motivation for Predictive Maintenance: Battery SOH Prediction using Data

24
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Khumprom et al.

Lithium Ion Battery RUL prediction

25
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Zhang et al.

Artificial Intelligence (AI) Domains

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
26

AI

Artificial Intelligence (as of today): Detection and Exploitation of useful patterns and trends in data

→Decisions

→ Predictions

→Automated Actions

Major Domains C1: Computer vision & Self Driving Cars

27
Source : Nvidia, L. Fridman et al.

Domains of AI

C2. Image processing: Shape & Object Detection

28

Detection Recognition “XYZ”

Face detection and Recognition.

Predictive Maintenance
Fault Detection (Roller Bearing)
Zhang et al.

Domains of AI

C3. Filtering and Denoising : Auto encoders

29

Link: Denoising autoencoder for Image classification

Denoising Autoencoders: MATLAB Central

End to End learning: Fault detection and Prediction:
Unknown Model, Environment. (JHA et al. 2017)

Black Box
• Feature extraction,
• selection,
• Unsupervised

Learning

Inputs

Learning in Black Box

Decisions

https://hackernoon.com/a-deep-convolutional-denoising-autoencoder-for-image-classification-26c777d3b88e
https://fr.mathworks.com/matlabcentral/fileexchange/71115-denoising-autoencoders

Domains of AI
C3. Particle Physics, Intelligent control (adaptive) of systems, Robotics: Function Approximation

30

Deep learning enabled function Approximation
 in LHC physics.
Sirunyan et al. 2019, Physical Review letters

• Universal function approximators
• Efficient approximation of unknown dynamics .

Deep learning based function approximation of Extremely large state space
(World)
Human Level control through Deep Learning
Mnih et al. 2015, Nature

R1: Time Series Forecasting, Trend Prediction, Event Prediction

31

Domains of AI

Ma, Xiaolei, et al

Long terms traffic Speed prediction Financial market prediction (Dixon et al.)

Human Motion Prediction

Martinez et al., 2016

Held et al.
Video Frame tracking and Prediction

Component Failure Prediction (Yoo et al., 2018)

R1: Predictive Maintenance : Bearing RUL Prediction.

32

Domains of AI

Ma, Xiaolei, et al

Long terms traffic Speed prediction

Financial market prediction (Dixon et al.)

Held et al.
Video Frame tracking and Prediction

Component Failure Prediction (Yoo et al., 2018)

R2 : Recommendation Systems

• Candidate Profiling,

• Scoring , similarity measures,

• Prediction

33

Domains of AI

• google Translate

• voice recognition

• text prediction

• voice to text and vice versa

• echo cancellation

Google home Mini

Alexa

Sequence prediction often involves forecasting the next

value in a real valued sequence.

Reinforcement Learning: Towards human level :

control ((Finding the optimal way of doing a given task)

prediction

Adaptation (Robots That Can Adapt like Animals, Nature)

AI enhances Tribology , KTH, Sweden
 Email: mayank-shekhar.jha [at] univ-lorraine.fr

34

Domains of AI

Built
new
moves

Types of Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
35

Machine Learning: Study of algorithms that improve their performance, for a given task, with more
experience.

36

Training data: {y,x}=(y,x)1, (y,x)2,….. (y,x)N

Function space: F(x,w)

and constraints on function
F

C(w)

Teach a machine to learn the mapping y = f(x,w*)

f (x, w*)

Optimal parameters or “BEST “parameters

Learning : Supervised vs Unsupervised

Learning : Supervised

37

Training data: {y,x}=(y,x)1, (y,x)2,….. (y,x)N

Function space: F(x,w)

and constraints on function

Teach a machine to learn the mapping y = f(x,w*)

y=f (x, w*)

Supervised learning:
• Training of intelligent agent under ‘supervision’.
• Model known, environment known.
• Data sources, labels known!
• An algorithm is employed to learn the mapping function from the input variable (x) to the output variable (y)

and optimal function parameters: that is

• Objective: Mapping function estimated accurately→ Agent Intelligent! WHY??

Trained
Model

Intelligent
Agent

New Data (x) Prediction data (y)

Unsupervised learning = Available input data (X) and NO output .

• LEARNING DONE IN AUTONOMOUS WAY.

• The goal for unsupervised learning is to model the underlying structure or distribution in the data in
order to learn more about the data.

Example: K-mean clustering (using distance measures , similarity index, other ranking algos)

38

There is no correct answer and there is no teacher.

Algorithms are left to their own to discover and present the interesting
structure in the data.

Learning : Unsupervised

39Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Remark: Most learning (in practice) : supervised.

40Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Remark: Most learning (in practice) : supervised. Remark: Most learning (in research) : Unsupervised, RL

Black Box
• Feature extraction,
• selection,
• Unsupervised

Learning

End to End Learning in Black Box

Decisions

Basic Processes: Classification and Regression

41

Classification : Prediction of Categorical variables (Labels)

Multi-class Classification

• Inter class: Maximum separation

• Inter class: Minimal variance

Regression: Prediction of numerical or continuous output variables

42

Basic Processes: Regression

Source: Personal tutorials, also see: Park et al. 2015, Nature genomics

• Forecasting of object based upon the past dynamics (behavior), historical trends observed.

• Sequence to sequence Model → next sequence prediction, long time prediction.

Regression: Prediction of numerical or continuous output variables

43

Basic Processes: Regression

Source: Personal tutorials, also see: Park et al. 2015, Nature genomics

• Forecasting of object based upon the past dynamics (behavior), historical trends observed.

• Sequence to sequence Model → next sequence prediction, long time prediction.

1 1 2 2 3 3

1

......

m

i ii

y w x w x w x b

w x b
=

= + + +

= +

Ordinary Least Square (OLS) based regression

• Error term

• Objective : Minimize the sum of square of errors

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 44

𝒚 = 𝒄 + 𝒎 · 𝒙

= 𝒆𝟐
𝒆𝒊

𝑒𝑖 = 𝑦𝑖 − 𝑐 + 𝑚𝑥𝑖

𝑒1 + 𝑒2 + 𝑒3 … 𝑒𝑛

Ƹ𝑐 = ത𝑦 − ෝ𝑚 ҧ𝑥

𝑖=1

𝑛

𝑒𝑖
2 =

𝑖=1

𝑛

𝑦𝑖 − 𝑐 + 𝑚𝑥𝑖

2

ෝ𝑚 =
σ𝑖=1

𝑛 𝑥𝑖 − ҧ𝑥 × 𝑌𝑖 − ത𝑦

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

𝑥𝑖, 𝑦𝑖 ; 𝑖 = 1,2,3 … 𝑛

ത𝑦 =
σ𝑖=1

𝑛 𝑦𝑖

𝑛

ҧ𝑥 =
σ𝑖=1

𝑛 𝑥𝑖

𝑛

Relation AI, ML and DL

45Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: Deep Learning

Naïve Bayes,

Kernel Density Estimation

Rule Based,

Decision Trees,

Random Forests

Genetic Algorithms

Support vector machines (1990-2007): very promising, better

than NNs….till 1998.

Neural networks (NNs) (1960-1986, 1986-1998, 1998-2007)

Deep Neural Networks (1998,DNNs) : CNNs revolutionized NN based works,

Enter 2007,
• Availability of data & data acquisition methods,
• GPU based distributed calculations
• Huge community of developers
• Surge in DNN

46

Machine Learning techniques for AI

Learning Using Deep Neural networks : Supervised Learning

47Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

In this lecture, we look at Neural Networks and

Mechanism of Supervised type learning .

Input Features/
Features
Input data/
Inputs

Targets /
Labels
* NN output may or may
not be equal to the target.
Why?

The Neuron

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
48

The Neuron

• A neuron only fires if its input

signal exceeds a certain amount

(the threshold) in a short time period.

49Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Huang, Anping, et al. 2017.

Neuron OutputInput 2

Input 3

Input 1

Synapses

The Neuron

50Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

NeuronInput 2

Input 3

Input 1

Output

The Neuron

51Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Neuron y

Output Value

x1

x2

x3

Input Value 1
Independent Variable 1

Input Value 2
Independent Variable 2

Input Value 3
Independent Variable 3

• Standardization of input data (Same Scale)

• Data preprocessing

Output Data :

• Continuous Values

• Discrete Values (Binary classes → Yes/No..)

• Categorical Variables (very small, small, large,

very Large)

The Neuron

52Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Neuron

y1
x1

x2

x3

Input Value 1
Independent Variable 1

Input Value 2
Independent Variable 2

Input Value 3
Independent Variable 3

• Standardization of input data (Same Scale)

• Data preprocessing

y2

y3

Output Value 2

Output Value 3

Output Value 1

Single Observation

Same Observation
(Input data , Output Lable Single Observation

The Neuron: Basic Perceptron

53Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

y

Output Value

1iw

3iw

m iw

2iw

Threshold function

i
m iw

Threshold for unit i

Synaptic weight from unit m to unit i

•Each neuron has weighted inputs from other neurons.

•The input signals form a weighted sum.

•If the activation level exceeds the threshold, the

neuron “fires”.

•Each neuron has a threshold value.

Artificial Neural Networks (ANNs)

54Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1st Step

x1

x2

x3

• Each hidden or output neuron has weighted input connections from each of the units in the preceding layer.

xm

Output Value

1iw

3iw

m iw

2iw

• The unit performs a weighted sum of its inputs, and subtracts its threshold value, to give its activation level

1

m

i ii
w x b

=
+

1 1 2 2 3 3

1

......

m

i ii

y w x w x w x b

w x b
=

= + + +

= +

55Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

2nd
Step

x1

x2

x3

xm

Output Value

1iw

3iw

m iw

2iw

Artificial Neural Networks (ANNs)

()1

m

i ii
w x b

=
+

• Activation level is passed through an activation function to determine output()x

56Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

y

Output Value

 3rd Step

1iw

3iw

m iw

2iw

Artificial Neural Networks (ANNs)

()1

m

i ii
w x b

=
+

The Artificial Neural Network (ANN)

57Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

y

Output Value

1iw

3iw

m iw

2iw

Activation function
Sigmoid

()1

m

i ii
w x b

=
+

Activation functions (discussed later)

58Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Threshold function (binary step function)

Sigmoid function TanH / Hyperbolic Tangent

ReLu (Rectified Linear Unit)

Multi Layered (Deep) Feed Foreword Neural Networks

• These are fully connected layers, but need not be.

59Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Inputs

Hidden Layers

Outputs

Multi Layered (Deep) Feed Foreword Neural Networks

• Outputs can be multiple (multiple targets). See softmax activation later.

60Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Inputs

Hidden Layers

Outputs

61Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

xm

Hidden Nodes

Input Nodes

Output Nodes

62Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

xm

Hidden Nodes

Input Nodes

Output Nodes

Basic functioning of NNs

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
63

How do NNs work : Illustrative Example Apartment Price

64Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

y

Size (m2

Distance from station
(Km)

Building age
(years)

1w

2w

3w

1 1 2 2 3 3y w x w x w x b= + + +

Price

How do NNs work : Illustrative Example Apartment Price

65Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Size (m2

Distance from station
(Km)

Building age
(years)

Price

How do NNs work : Illustrative Example Apartment Price

66Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Size (m2

Distance from station
(Km)

Building age
(years)

Price

How do NNs work : Illustrative Example Apartment Price

67Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Size (m2

Distance from station
(Km)

Building age
(years)

()1

m

i ii
y w x b

=
= +

Price

•Each neuron has weighted inputs from other neurons.

•The input signals form a weighted sum.

•If the activation level exceeds the threshold, the neuron

“fires”.

•Each neuron has a threshold value.

How do NNs work : Illustrative Example Apartment Price

68Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Size (m2

Distance from station
(Km)

Building age
(years)

Price

Size (m2

Building age
(years)

How do NNs work : Illustrative Example Apartment Price

69Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Size (m2

Distance from station
(Km)

Building age
(years)

Price

()1

m

i ii
y w x b

=
= +

How do NNs work : Illustrative Example Apartment Price

70Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

xm

Several training, leads to optimal sets of

weights, that determine the non-linear

relationship between inputs and targets.

How do weights adapt?

Or,

How do NNs learn?

()1

m

i ii
y w x b

=
= +

Learning in NNs

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
71

How do NNs learn?

72Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

ŷ y

Input 1

• Consider one data input

()1

m

i ii
w x b

=
+

How do NNs learn?

73Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

ŷ y

Input 1

• Consider a data input

• Feed in the information (foreword propagation)

()1

m

i ii
w x b

=
+

74Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y
E

Input 1

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the individual loss wrt actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

()1

m

i ii
w x b

=
+

75Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ y
E

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

Input 1

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information can be fed back, to adjust the weights.

()1

m

i ii
w x b

=
+

76Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

ŷ y

Input 2

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information can be fed back, to adjust the weights.

• Repeated with other data inputs.

()1

m

i ii
w x b

=
+

77Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y

Input 2

()1

m

i ii
w x b

=
+

78Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y

Input 2

()1

m

i ii
w x b

=
+

79Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y

Input 3

()1

m

i ii
w x b

=
+

80Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y

Input 4

()1

m

i ii
w x b

=
+

81Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y

Input 5

()1

m

i ii
w x b

=
+

82Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

x1

x2

x3

xm

1iw

3iw

m iw

2iw
ŷ

y

()
21 ˆ

2
E y y= −

ŷ y

Input 6

()1

m

i ii
w x b

=
+

83Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ
ŷ

ŷ

ŷ
ŷ

ŷ

Batch update (One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information can be fed back, to adjust the weights.

• Repeated with other data inputs.

84Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

Batch update (One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information can be fed back, to adjust the weights.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

85Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Rationale: The global error
is backward propagated to
network nodes, weights are
modified proportional to
their contribution.

Batch update (One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information can be fed back, to adjust the weights.

86Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Batch update (One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information will be fed back, to adjust the weights.

• Repeated with other data inputs.

.

.

• Total loss → cost function

• The weights adjusted ‘at the same time’ using total loss.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

87Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Batch update (One iteration)

• Consider a data input

• Feed in the information (foreword propagation)

• Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal

weights.

• Information will be fed back, to adjust the weights.

• Repeated with other data inputs.

.

.

• Total loss → cost function

• The weights adjusted ‘at the same time’ using total loss.

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

88Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Objective : To minimize this loss,

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

89Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Objective : To minimize this loss, find optimal sets of weights.

How to minimise the loss and update the weights??

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Gradient Descent

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
90

Gradient Descent

91Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• GD: iterative method of finding minimum of any given function. Why iterative method preferred?

• NNs involve non-linear functions, close solutions of min of loss functions not available.

• Objective: To minimize the loss function (cost function) or mean error between neural network output and actual values
(chosen by user, Example: mean square error) .

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Gradient Descent

92Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• GD: iterative method of finding minimum of any given function. Why iterative method preferred?

• NNs involve non-linear functions, close solutions of min of loss functions not available.

• Objective: To minimize the loss function or mean error between neural network output and actual values (chosen by user,
Example: mean square error) .

• Intuition behind GD: Climbing down the hill to find its bottom or minimum value given by best parameters.

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Gradient Descent

93Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• GD: iterative method of finding minimum of any given function. Why iterative method preferred?

• NNs involve non-linear functions, close solutions of min of loss functions not available.

• Objective: To minimize the loss function or mean error between neural network output and actual values (chosen by user,
Example: mean square error) .

• Intuition behind GD: Climbing down the hill to find its bottom or minimum value given by best parameters.

Basic steps:

Given the loss function

• Compute the slope (gradient) that is the first-order

derivative of the function at the current point.

• Move-in the opposite direction of the slope increase

from the current point by the computed amount.

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

(,)J w b

((,))

((,))

J b

J w b
b b

b

 −

 −

w
w w

w

Batch Gradient Descent

94Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

ŷ

ŷ
ŷ

ŷ y

y

y y

y y

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

Update all the weights

Saw earlier: Weights were updated using total loss of a data batch ➔ Batch

GD.

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Gradient Descent

95Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• GD: iterative method of finding minimum of any given function. Why iterative method preferred?

• NNs involve non-linear functions, close solutions of min of loss functions not available.

• Objective: To minimize the loss function or mean error between neural network output and actual values (chosen by user,
Example: mean square error) .

• Intuition behind GD: Climbing down the hill to find its bottom or minimum value given by best parameters.

Basic steps:

Given the loss function

• Compute the slope (gradient) that is the first-order

derivative of the function at the current point.

• Move-in the opposite direction of the slope increase

from the current point by the computed amount.

𝐸𝑡𝑜𝑡 = σ
1

2
𝑦 − ො𝑦 2

(,)J w b

((,))

((,))

J b

J w b
b b

b

 −

 −

w
w w

w

s

learning rate.

What happens when learning rate is very low?

What happens when learning rate is very high?

Gradient Descent

• When learning rate too low ➔ slow convergence.

• When learning rate too high ➔ minima will be overshot ➔ slow or no convergence.

• Learning rate is a Hyperparameter.

• It must be fine tuned. Neither too high, nor too low. We see hyperparameter tuning later.

• GD works well when the total loss function is a convex function.

96Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Gradient Descent

• When learning rate too low ➔ slow convergence.

• When learning rate too high ➔ minima will be overshot ➔ slow or no convergence.

• Learning rate is a Hyperparameter.

• It must be fine tuned. Neither too high, nor too low. We see hyperparameter tuning later.

• GD works well when the total loss function is a convex function.

• What happens when function is non-convex?

97Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Gradient Descent

• GD works well when the total loss function is a convex function.

• What happens when function is non-convex?

Usually, the case, when millions of data are considered for training,

with millions of parameters (weights in many layers of NNs).

98Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: Taig et al.

Stochastic Gradient Descent

• GD : Consider a batch (set) of training data samples:

• calculate loss

• update weights based on total loss.

• Curse of dimensionality: Need more data for training, updating for whole set → extremely slow updates.

• To avoid getting stuck in local minima, a certain “jittering” or noise /exploration is needed.

99Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

100Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ

y

𝐸 =
1

2
𝑦 − ො𝑦 2

Update all the weights

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs and

update done for each data inputs until convergence.

• Probability to get unstuck from local minima and converge towards global minima.

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Stochastic Gradient Descent

101Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ
ŷ

y
y

𝐸 =
1

2
𝑦 − ො𝑦 2

Update all the weights

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Stochastic Gradient Descent

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs and

update done for each data inputs until convergence.

• Probability to get unstuck from local minima and converge towards global minima.

102Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ
ŷ

y
y y

𝐸 =
1

2
𝑦 − ො𝑦 2

Update all the weights

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Stochastic Gradient Descent

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs and

update done for each data inputs until convergence.

• Probability to get unstuck from local minima and converge towards global minima.

103Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ ŷ
ŷ

y y

y y

𝐸 =
1

2
𝑦 − ො𝑦 2

Update all the weights

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Stochastic Gradient Descent

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs and

update done for each data inputs until convergence.

• Probability to get unstuck from local minima and converge towards global minima.

104Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ŷ ŷ
ŷ

y y

y y

𝐸 =
1

2
𝑦 − ො𝑦 2

Update all the weights

One epoch = training done on entire data set once.

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Stochastic Gradient Descent

ŷ

ŷ y

y

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs and

update done for each data inputs until convergence.

• Probability to get unstuck from local minima and converge towards global minima.

• Iterate until convergence detected.

105Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Stochastic GD (SGD) : Updating weights after each training data sample.

• “Jittering” Provided by SGD : presence of diverse and many data inputs and

update done for each data inputs until convergence.

• Probability to get unstuck from local minima and converge towards global minima.

• Iterate until convergence detected.

Batch GD Stochastic GD

Batch GD : stores all data loss, updates after all data loss taken into

account.

SGD : updates after each data sample.

• less time consuming

• NN updated after each data,

• memory not allocated to all data at once.

• but, cannot vectorize the computations. (as only one
 data input treated once).

What happens when millions of data samples? but limited memory

resources?

Mini batch GD

• Blends advantages of both GD and SGD.

• Mini-batches of fixed size are created.

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5.

106Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Mini batch GD

• Blends advantages of both GD and SGD.

• Mini-batches of fixed size are created.

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1–4 for all the mini-batches

107Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Mini batch GD

• Blends advantages of both GD and SGD.

• Mini-batches of fixed size are created.

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1–4 for all the mini-batches.

108Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Mini batch GD

• Blends advantages of both GD and SGD.

• Mini-batches of fixed size are created.

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1–4 for the mini-batches we created.

Great!! We now know how NNs update weights …..using:

batch-GD, SGD or mini batch SGD….but…

109Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

((,))

((,))

J b

J w b
b b

b

 −

 −

w
w w

w

Mini batch GD

• Blends advantages of both GD and SGD.

• Mini-batches of fixed size are created.

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1–4 for the mini-batches we created.

Great!! We now know how NNs update weights …..using:

batch-GD, SGD or mini batch SGD….but…

how to calculate the gradient of the cost function!!

110Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

((,))

((,))

J b

J w b
b b

b

 −

 −

w
w w

w

Backpropagation (Backprop)

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
111

Back propagation

112Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

(1)W ŷ

y

()1
()

m

i ii
w x b z

=
+ =

(2)W

x
x

h

(2)W h

Loss

• Intuition: the global error is backward propagated to network nodes, weights are modified proportional to their contribution

• Objective: Calculate rate of change of Error with respect to each weights, to correct the weights.

• Backpropagation rediscovered in 1986, efficient way of propagating backwards the error gradient and updating the weights.

but first, Forward Propagation : Illustration using 2 Hidden layer Deep NN.

113Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

X

(1)W
ŷ

y

()1
()

m

i ii
w x b z

=
+ =

(2)W

x
x

h

(2)W h

Loss

x

(1)W

Forward propagation

Forward propagation

114Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

X

(1)W
ŷ

y

()1
()

m

i ii
w x b z

=
+ =

(2)W

x
x

h

(2)W h

Loss

x

(1)W

𝑧

Forward propagation

115Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

X

(1)W
ŷ

y

()1
()

m

i ii
w x b z

=
+ =

(2)W

x
x

h

(2)W h

Loss

x

(1)W

𝑧 h X

(2)W

Foreword propagation

116Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

X

(1)W
ŷ

y

()1
()

m

i ii
w x b z

=
+ =

(2)W

x
x

h

(2)W h

Loss

x

(1)W

𝑧 h X

(2)W

ŷ

y

L

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

117
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

118
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

119
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

120
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

121
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

122
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Back propagation

• Calculate the gradient with respect to all parameters.

• Intermediate values and gradients are calculated.

• Reminder: Chain rule

123
Introduction to Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Objective of Backprop:

Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

124Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the computational graph in the direction of dependencies and compute
all the variables on its path.

125Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the computational graph in the direction of dependencies and compute
all the variables on its path.

3. Compute Deep NN output

4. Back propagation of errors

5.Update all the weights using Gradient descent:

126Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the compute graph in the direction of dependencies and compute all the variables on its
path.

3. Compute Deep NN output

4. Back propagation of errors

5. Update all the weights using Gradient descent:

6. Repeat the steps from 2 , until acceptable error levels observed .

Remarks:

• intermediate values must be stored until backpropagation

• backpropagation requires significantly more memory than plain inference.

• Gradients as tensors variables must be stored to invoke the chain rule.

• Minibatches → GD on several data inputs together ➔ more intermediate activations need to be stored.

127Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights. How? what is the best way?

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the compute graph in the direction of dependencies and compute all the variables on its
path.

3. Compute Deep NN output

4. Back propagation of errors

5.Update all the weights using Gradient descent:

6. Repeat the steps from 2 , until acceptable error levels observed.

Remarks:

• intermediate values must be stored until backpropagation

• backpropagation requires significantly more memory than plain inference.

• Gradients as tensors variables must be stored to invoke the chain rule.

• Minibatches → GD on several data inputs together ➔ more intermediate activations need to be stored.

128Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

How to access? What is the best model? When is training over?

Summary

• Forward propagation sequentially calculates and stores intermediate variables within the compute

graph defined by the neural network. It proceeds from input to output layer.

• Back propagation sequentially calculates and stores the gradients of intermediate variables and

parameters within the neural network in the reversed order.

• When training deep learning models, forward propagation and back propagation are interdependent.

• Training requires significantly more memory and storage.

129Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Training data, Test Data and Validation data

Rich and large data sets: Different data sets for training, parameter tuning and testing of the model.

When amount of data is large

130Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Available Examples

Training

Set

Test

Set

70% 30%

Test error

Divide randomly

Generalization error

= test error

Training Set

70%

Validation Set

15%

Test Set

15%

Generalization: Underfitting and Overfitting

• Under fitting: model is unable to reduce training errors.

• Overfitting: model test error is significantly higher than

training error.

131Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Generalization: Underfitting and Overfitting

• Under fitting: model is unable to reduce training errors.

• Overfitting: model test error is significantly higher than

training error.

How does it depend on Model complexity?

132Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Underfitting and Overfitting

• Under fitting: model is unable to reduce training errors.

• Overfitting: model test error is significantly higher than

training error.

How does it depend on Model complexity?

What is model complexity?

• number of hyper-parameters (tunable parameters)

• number of layers, hidden nodes in each layer

• number of weights, range of values taken by weights

• Minibatch size

133Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases

How to ensure that a network has been well trained??

1. Rich and large data sets: Different data sets for training, parameter tuning and testing of the
model.

• Monitor error on the test set as network trains.

• Stop network training just prior to over-fit error occurring - early stopping or tuning

2. Number of effective weights is reduced : Number of weights and value range.

134Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases

How to ensure that a network has been well trained??

1. Rich and large data sets: Different data sets for training, parameter tuning and testing of the model.

When amount of data is large

135Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Available Examples

Training

Set

Test

Set

70% 30%

Test error

Divide randomly

Generalization error

= test error

Training Set

70%

Validation Set

15%

Test Set

15%

Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases

How to ensure that a network has been well trained??

1.Rich and large data sets: Different data sets for training, parameter tuning and testing of the
model.

When amount of data is small: Cross-Validation (K-fold)

• original training data set is split into K noncoincident sub-data sets

• use the K -1 sub-data set to train the model.

• validate the model using a sub-data set

• Repeat model training and validation

process k times.

136Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Available Examples

Training

Set
Validation

 Set

1division

k-1 divisions

Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

• Manually or automatically select optimum number of hidden nodes and connections.

• Not scalable, often needs expert opinion.

• Regularization methods

• Adjust the bp error function to penalize the growth of unnecessary weights

• Keep the weight vector small magnitude ➔add its value as a penalty to the problem of minimizing the loss.

137Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

• Manually or automatically select optimum number of hidden nodes and connections.

• Not scalable, often needs expert opinion.

• Regularization methods

• Adjust the bp error function to penalize the growth of unnecessary weights

• Keep the weight vector small magnitude ➔add its value as a penalty to the problem of minimizing the loss.

• Weight vector becomes too large, ➔ the learning algorithm prioritizes minimizing w over minimizing

the training error.

138Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

• Manually or automatically select optimum number of hidden nodes and connections.

• Not scalable, often needs expert opinion.

• Regularization methods

• Adjust the bp error function to penalize the growth of unnecessary weights

• Keep the weight vector small magnitude ➔add its value as a penalty to the problem of minimizing the loss.

• Weight vector becomes too large, ➔ the learning algorithm prioritizes minimizing w over minimizing

the training error.

• Squared Norm Regularization:

• Gradient Descent update becomes :

139Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Weights decay by an amount
 proportional to its magnitude

 weight-cost parameter

another Hyperparameter

Training

1. Network Design (Architecture of NN networks.) #layers, #hidden nodes, activation functions,
model ..

2. Initialize model parameters.

3. Choose Loss function

4. Training and Backpropagation : Mini batch, batch, or stochastic GD.

5. Monitor the loss function and error .

When no overfitting observed (epochs of training)

• Stop if the error fails to improve (has reached a minimum)

• Stop if the rate of improvement drops below a certain level

• Stop if the error reaches an acceptable level

• Stop when a certain number of epochs have passed

When overfitting observed: fine tune the NN network

(initialize parameters, prune or regularize the weights, …)

140Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Types of Activation functions

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
141

Activation functions

142Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Threshold function (binary step function)

Sigmoid function TanH / Hyperbolic Tangent

ReLu (Rectified Linear Unit)

Activation Functions

Threshold function (binary step function)

• If the input value is above or below a certain threshold,

the neuron is activated and sends the same signal to the next layer.

• Good for Binary outputs → 2 class classifications.

• Does NOT allow multi value outputs → does not support classification of input into multiple
categories.

143Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()
1 0

0 0

if x
x

if x

=

Activation Functions : Non-linear functions (why linear functions not preferred?

Sigmoid function

• Smooth gradient, preventing “jumps” in output values.

• Output values bound between 0 and 1, normalizing the output of each neuron.

• Clear predictions—For X above 2 or below -2, tends to bring the Y value (the prediction) to the edge of the
curve, very close to 1 or 0. This enables clear predictions.

• The Sigmoid function used for binary classification in logistic regression model.

• While creating artificial neurons sigmoid function used as the activation function.

Disadvantages

• Vanishing gradient—for very high or very low values of X, there is almost no change to the prediction, causing a
vanishing gradient problem.

• This can result in the network refusing to learn further, or being too slow to reach an accurate prediction.

• Computationally expensive

• Not Zero centered !!

144Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()
1

1 x
x

e−
=

+

Activation Functions

TanH / Hyperbolic Tangent

Zero centred ➔making it easier to model inputs that have strongly negative, neutral, and strongly
positive values.

All advantages of Sigmoid function preserved.

Computationally expensive.

145Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()
2

2

1

1

x

x

e
x

e

−

−

 −
=

+

Activation Functions

ReLu (Rectified Linear Unit)

• Computationally efficient—allows the network to converge very quickly

• Non-linear—although it looks like a linear function, ReLU has a derivative function and allows for
backpropagation.

• Avoids vanishing or exploding gradient problems unless…

Disadvantages:

The Dying ReLU problem—when inputs approach zero, or negative,

the gradient of the function becomes zero, the network cannot perform backpropagation and cannot learn.

146Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

() max(,0)x x=

Activation Functions

Leaky ReLu

• Computationally efficient—allows the network to converge very quickly (faster than Sigmoid/tanh)

• Does not Saturate/

• Does not “die”

147Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

() max(,0)x x=

[Mass et al., 2013] [He et al., 2015]

Activation function

Softmax function

• Calculates the probabilities distribution of the event over ‘n’ different events.

• In general, calculates the probabilities of each target class over all possible target classes.

• Later the calculated probabilities will be helpful for determining the target class for the given inputs.

• The range will 0 to 1, and the sum of all the probabilities will be equal to one.

Remark: Useful for output neurons—typically Softmax is used only for the output layer,

for neural networks that need to classify inputs into multiple categories.

• Very often used for multi-class classification.

148Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()
0

exp()
1,2,3....

exp()

i

i j k

jj

x
x for i k

x
=

−

= =

Loss functions

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
149

Common Loss functions

Regression

Mean Square Error (MSE) Loss: measured as the average of squared difference between predictions
and actual observations.

Also known as: L2 loss, Quadratic loss, MSE loss, ..

Remarks:

• Predicted values that are far from actual values are penalized heavily.

• Squaring : positivity, quadratic function→ nice properties helpful in finding gradients.

150Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()
2

1

1
ˆ

n

MSE i i

i

L y y
n =

= −

Common Loss functions

Classification (recall: binary classification and multi class classification

Softmax function)

• Often, for classification: outputs are probabilities of belonging to each class.

• Thus, loss must be calculated based on assessment of probabilities.

151Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()
0

exp()
1,2,3....

exp()

i

i j k

jj

x
x for i k

x
=

−

= =

Common Loss functions

Classification Loss (recall: binary classification and multi class classification

Softmax function)

Cross Entropy Loss (log loss, logistic loss, logarithmic loss, negative log loss..)

(Binary Class , or 2 classes)

152Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

()ˆ ˆlog() (1 y) log(1)CEL y p p= − + − −

• Cross-entropy loss, or log loss, measures the performance of a classification model

whose output is a probability value between 0 and 1.

• Cross-entropy loss increases as the predicted probability diverges from the actual

label.

• Notice that when actual label is 1 (y = 1), second half of function disappears whereas

in case actual label is 0 (y = 0) first half is dropped off.

• A perfect model would have a log loss of 0.

Common Loss functions

Classification Loss (multi class classification, Softmax function)

Cross Entropy Loss

(Multi Class)

153Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Cross-entropy can be calculated for multiple-class classification.

• The classes have been one hot encoded, meaning that there is a binary feature for each class value.

• The predictions must have predicted probabilities for each of the classes (Example: Softmax).

• The cross-entropy is then summed across each binary feature and averaged across

 all examples in the dataset.

Suggestion: Read this thread of discussion on forum on using Cross entropy in practice.
()

0

exp()
1,2,3....

exp()

i

i j k

jj

x
x for i k

x
=

−

= =

, ,

1

log()
M

CE i c i c

c

L y p
=

= −
M : Number of classes
yi,c : true probability of belonging to that class
pi,c : predicted probability of belonging to that class.

https://datascience.stackexchange.com/questions/9302/the-cross-entropy-error-function-in-neural-networks

Loss functions: Best practices

Regression Problem

• A problem where you predict a real-value quantity.

• Output Layer Configuration: One node with a linear activation unit.

• Loss Function: Mean Squared Error (MSE).

Binary Classification Problem

• A problem where you classify an example as belonging to one of two classes.

• The problem is framed as predicting the likelihood of an example belonging to class one, e.g. the
class that you assign the integer value 1, whereas the other class is assigned the value 0.

• Output Layer Configuration: One node with a sigmoid activation unit.

• Loss Function: Cross-Entropy

Multi-Class Classification Problem

• A problem where you classify an example as belonging to one of more than two classes.

• The problem is framed as predicting the likelihood of an example belonging to each class.

• Output Layer Configuration: One node for each class using the softmax activation function.

• Loss Function: Cross-Entropy.

154Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Summary

• Simple NN functioning, analogy with linear regressions

• Feed foreword Deep NN functioning

• Weight updates through backprop and gradient descent (batch, mini batch and stochastic GD)

• Generalization :Training /validation/test set

• Generalization and Training issues: overfitting, underfitting, finding the right tradeoff.

• Weights initializations: Exploding and Vanishing gradients, Xavier initilisations.

• Note on Activation functions.

155Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Convolutional Neural Networks

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
156

Images are just numbers for computer!

157Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: OpenFrames

Images are matrix of numbers.

Gray Scale Images ➔ One channel Grey Scale ➔ 2D matrix of numbers (pixel values).

Each pixel =[0,255],

No of pixels proportional to image size → No of rows and columns.

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html

Color images

Colored Images: 3 channels of colors: 3D array

RGB channels ➔ 3D Arrays

Red: 2-D matrix

Green: 2-D matrix

Blue: 2-D matrix

158Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: Broher

Source: Medium

https://brohrer.github.io/convert_rgb_to_grayscale.html
https://towardsdatascience.com/understanding-images-with-skimage-python-b94d210afd23

Drawbacks

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
159

Drawbacks

160Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

16 X 16 Image GreyScale

Colored Images: 3 channels of colors: 3D array

RGB channels ➔ 3D Arrays

Red: 2-D matrix

Green: 2-D matrix

Blue: 2-D matrix

Deep Hidden layers Multi class output

Explosion of training parameters

Drawbacks

161Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

16 X 16 Image GreyScale

Colored Images: 3 channels of colors: 3D array

RGB channels ➔ 3D Arrays

Red: 2-D matrix

Green: 2-D matrix

Blue: 2-D matrix

Deep Hidden layers Multi class output

Simple calculation for 1 layer , 100 hidden units:
 256 inputs → 256 weights
100 hidden units → 256 x 100=25600 input weights
Bias → 100 bias
26 Outputs (A-Z)→ 26 X 100 output weights
Biases → 26
Total: 25600 + 100+ 2600 + 26 = 28326

That is just with one layer !!

Explosion of training parameters

Drawbacks: Trainable parameter explosion

• Most images → high resolution (1MB or more) → several thousands of pixels ➔ several thousands
inputs.

• Several hundreds of hidden layers with several hundreds of units.

• Total parameters to train → Extremely large → Computation intractable !!

• Strong regularization needed → difficult and little reproducibility.

162Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Drawbacks: Variance to distortions

• The orientation / location of object within an image should have little influence over it getting
detected.

This is not true with previous NNs (MLPs, ANNs).

• Variance to scaling, shifting and other distortions, influence of surroundings (global context).

• The topology of the data is ignored.

• Inherent distributions are not learnt well.

163Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

164Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Must avoid parameter explosion in face of large inputs.

• Identification of object should be invariant to scaling, shifting and different orientation.

• The object should be identifiable in any location / orientation ➔ placement of object in an image
should not influence the outcome, only local information about the object should be sufficient.

Convolutional neural networks

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
165

Motivation

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
166

Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995.

• Convolutional Neural Networks are a special kind of multi-layer neural networks.

• Inspired by neuro-biology: brain’s mechanism of understanding different attributes of an object

• Attributes : shape, size, orientation and color.

167Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995.

• Convolutional Neural Networks are a special kind of multi-layer neural networks.

• Inspired by neuro-biology: brain’s mechanism of understanding different attributes of an object

• Attributes : shape, size, orientation and color.

168Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

They can be compressed

 to the same parameters.

“snow-
leopard tail”

detector

“leopard tail
detector”
detector

The Tail
detector!

Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995.

• Convolutional Neural Networks are a special kind of multi-layer neural networks.

• Inspired by neuro-biology: brain’s mechanism of understanding different attributes of an object

• Attributes : shape, size, orientation and color.

Intuition:

• Understanding the inherent data distribution.

• Using local information to extract topological properties from image.

• Implicitly extract relevant features.

Understanding the new data using learnt attributes.

169Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Convolutional layer: Motivation

Proposed by Yann LeCun and Yoshua Bengio in 1995.

• Convolutional Neural Networks are a special kind of multi-layer neural networks.

• Inspired by neuro-biology: brain’s mechanism of understanding different attributes of an object
• Attributes : shape, size, orientation and color.

Intuition:
• Understanding the inherent data distribution.

• Using local information to extract topological properties from image.

• Implicitly extract relevant features.

Understanding the new data using learnt attributes.

Example:

A door is always rectangular in shape,

A ship has a characteristic shape,

a car of any brand shall have a typical shape….

170Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

features

Intuition

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
171

Intuition

172Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Intuition:

Use an image kernel to extract relevant features from the image.

Image kernel = image matrix.

Learn an appropriate filter weights through successive training (BP).

Shape 1 / feature 1

Filter 1

Intuition

173Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Intuition:

Use an image kernel to extract relevant features from the image.

Image kernel = image matrix.

Learn an appropriate filter weights through successive training (BP).

Shape 2 / feature 2

Filter 2

Intuition

Intuition:

Edge Detection: An image kernel for edge detection.

174Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Intuition

Intuition:

Edge Detection: image kernel for edge detection.

Different image kernels to extract different features.

175Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Intuition

Intuition:

Edge Detection: image kernel for edge detection.

Multiple image kernels to extract different features.

Why not multiple kernels to extract set of features expected from object /

required for the objective.

176Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Intuition

Intuition:

How to construct these filters? Edge detection is straight foreword. Not obvious in general.

Essence of CNN :

• learn the values (weights) of these filters (BP).

• stack multiple layers of feature detectors (kernels) on top of each other for abstracted levels of feature
detection.

177Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Intuition

Intuition:

How to construct these filters? Edge detection is straight foreword. Not obvious in general.

Essence of CNN :

• learn the values (weights) of these filters (BP).

• stack multiple layers of feature detectors (kernels) on top of each other for abstracted levels of feature
detection.

• extract relevant features: Convolution operation . What and How?

178Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Convolution Operator

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
179

Convolution Operator

Reminders:

• origins in Signal Processing.

• convolution of two signals produces a third signal

• In signal processing, input signal convolution with impulse response of the system → output response

180Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

Convolution Operator

Reminders:

• origins in Signal Processing.

• convolution of two signals produces a third signal

• input signal * impulse response of the system ➔ output response.

Convolution of a signal by Dirac impulse positioned at t0 ➔ signal shift to t0.

181Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: DSP Guide book

Source: DSP Course by Prof. Garnier,
Polytech Nancy

𝑠 𝑡 ∗ 𝛿 𝑡 − 𝑡0 = 𝑠 𝑡 − 𝑡0

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

http://www.dspguide.com/ch6/2.htm
http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching
http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching

Convolution Operator

Reminders:

• origins in Signal Processing.

• convolution of two signals produces a third signal

• input signal * impulse response of the system ➔ output response.

Convolution of a signal by Dirac train → periodic signal with period Te

182Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: DSP Guide book

Source: DSP Course by Prof. Garnier,
Polytech Nancy

𝑠 𝑡 ∗ 𝛿 𝑡 − 𝑡0 = 𝑠 𝑡 − 𝑡0

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑠 𝑡 ∗ 𝛿𝑇𝑒 𝑡 =

𝑘=−∞

+∞

𝑠 𝑡 − 𝑘𝑇𝑒

http://www.dspguide.com/ch6/2.htm
http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching
http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching

Convolution Operator

Reminders:

• origins in Signal Processing.

• convolution of two signals produces a third signal

• input signal * impulse response of the system ➔ output response.

Convolution of a signal by Dirac train → periodic signal with period Te

• Convolution operation constructs a system response signal.

• Convolution operation fundamental in assessing the similarity between two

signals.

183Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: DSP Guide book

Source: DSP Course by Prof. Garnier,
Polytech Nancy

𝑠 𝑡 ∗ 𝛿 𝑡 − 𝑡0 = 𝑠 𝑡 − 𝑡0

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑠 𝑡 ∗ 𝛿𝑇𝑒 𝑡 =

𝑘=−∞

+∞

𝑠 𝑡 − 𝑘𝑇𝑒

http://www.dspguide.com/ch6/2.htm
http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching
http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching

Convolution Operator

Reminders:

Low pass filtering:

Input: three cycles of sine wave plus a slow increasing ramp.

Low pass filter impulse response (or Convolution kernel / filter kernel)

Output = slow component ramp.

Convolution operation → extracts the weighted feature.

184Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: DSP Guide book

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑆 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 =

𝑎=−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎

http://www.dspguide.com/ch6/2.htm

Convolution Operator

Reminders:

High pass filtering:

Input: three cycles of sine wave plus a slow increasing ramp.

High pass filter impulse response (or Convolution kernel / filter kernel)

Output = Fast component ramp.

Convolution operation → extracts the weighted feature.

185Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: DSP Guide book

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑆 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 =

𝑎=−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎

http://www.dspguide.com/ch6/2.htm

Convolution Operator

Thus, convolution measures the overlap between

any two functions.

186Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

𝑥 𝑡 ∗ 𝑦 𝑡 = න

−∞

+∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

𝑠 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 = න

−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎 𝑑𝑎

𝑆 𝑡 = 𝑥 ∗ 𝑤 × 𝑡 =

𝑎=−∞

∞

𝑤 𝑎 𝑥 𝑡 − 𝑎

Source :Blog AndrewSzot

Green curve is the value of the convolution f∗g, the red is f, the
blue g and the shaded area is the product f(a)g(t−a) where t is
the x-axis.

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Convolution

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
187

Convolution: CNN context.

Back to CNNs:

188Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

10-1

10-1

10-1

Convolve with Threshold

Conv/filter Kernel: Edge detection

Convolution Operator : CNN context.

Back to CNNs:

Images can be represented as 2D array.

Consider (i,j) → any position in an image.

Consider Hidden layers as 2-D array ,

Then, dense layers → 4D tensors (Weights in a hidden layer X no of layers)

Weights matrices become weight tensors

189Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

10-1

10-1

10-1

Convolve with

Conv/filter Kernel: Edge detection

ℎ 𝑖, 𝑗 =

𝑎,𝑏

𝑊 𝑖, 𝑗, 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

Convolution Operator : CNN context.

190Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ℎ 𝑖, 𝑗 =

𝑎,𝑏

𝑊 𝑖, 𝑗, 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

For any location, (i,j), consider an activation value in

hidden layer h[i,j]

 h[i,j] is computed by summing over pixels in x and

centered around (i,j).

10-1

10-1

10-1

Convolve with

Conv/filter Kernel: Edge detection

Convolution Operator : CNN context

191Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

ℎ 𝑖, 𝑗 =

𝑎,𝑏

𝑊 𝑖, 𝑗, 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

w13w12w11

w23w22w21

w33w32w31

w13w12w11

w23w22w21

w33w32w31

For any location, (i,j), consider an activation value in

hidden layer h[i,j]

 h[i,j] is computed by summing over pixels in x and

centered around (i,j).

Run the image kernel (filter kernel, convolution) over

entire a and b.

10-1

10-1

10-1

Convolve with

Conv/filter Kernel: Edge detection

Animation Source: slides Abin - Roozgard

Convolution Operator

Invoke Translation invariance:

Now, activation h should only change with shift in inputs x .

Or, filter kernel (weights) should be same for all (i,j)(pixel positions)

➔This means same feature is searched over whole image.

➔In this way all neurons detect the same feature at different positions in the input image.

192Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

𝑊 𝑖, 𝑗, 𝑎, 𝑏 = 𝑉 𝑎, 𝑏

ℎ 𝑖, 𝑗 =

𝑎,𝑏

𝑉 𝑎, 𝑏 .· 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

Convolution Operator

Invoke Locality:

The feature should be recognized using local aspects, look in

proximity and not very far.

i.e. constrain the size of the kernel filter.

193Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source :Blog AndrewSzot

𝑊 𝑖, 𝑗, 𝑎, 𝑏 = 𝑉 𝑎, 𝑏

ℎ 𝑖, 𝑗 =

𝑎,𝑏

𝑉 𝑎, 𝑏 .· 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

𝑓𝑜𝑟 𝑎 , 𝑏 > 𝛥

𝑝𝑢𝑡 𝑉 𝑎, 𝑏 = 0

ℎ 𝑖, 𝑗 =

𝑎=−𝛥

𝛥

𝑏=−𝛥

𝛥

𝑉 𝑎, 𝑏 · 𝑥 𝑖 + 𝑎, 𝑗 + 𝑏

w13w12w11

w23w22w21

w33w32w31

w13w12w11

w23w22w21

w33w32w31

Animation Source: slides Abin - Roozgard

https://www.andrewszot.com/blog/machine_learning/deep_learning/convolutional_neural_networks/2_convolution_layers

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1 Filter 2
……

Each filter detects a

small feature (3 x 3).

Example:

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

3

convolve (slide) over all

spatial locations

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

convolve (slide) over all

spatial locations

stride=1

3 -1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

convolve (slide) over all

spatial locations

stride=1

3 -1 -3

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

3 -1 -3 -1

convolve (slide) over all

spatial locations

stride=1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

3 -1 -3 -1

-3

convolve (slide) over all

spatial locations

stride=1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

3 -1 -3 -1

-3 1 0

convolve (slide) over all

spatial locations

stride=1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

convolve (slide) over all

spatial locations

stride=1

3 -1 -3 -1

-3 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1 ……

Each filter detects a

small feature (3 x 3).

Example:

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 1

convolve (slide) over all

spatial locations

stride=1

Feature Map

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Filter 2

……

Each filter detects a

small feature (3 x 3).

Example:

-1 1 -1

-1 1 -1

-1 1 -1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 1

Feature Map

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Filter 2

……

Each filter detects a

small feature (3 x 3).

Example:

-1 1 -1

-1 1 -1

-1 1 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 4 3

Feature Maps

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Filter 2

……

2 images of 4 x 4 matrix is

produced.

This procedure is repeated for

each filter

Example:

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 4 3

-1 1 -1

-1 1 -1

-1 1 -1
Feature Maps

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

H x W image

1 -1

Edge detector kernel

Kernel: if

horizontally elements are same , output is 0.

Else, non-zero.

Example: Edge detection

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

0 1 0 0 0 -1 0

Detected:

 1 for edge from white to black

-1 for edge from black to white

Difficult to handcraft such filters.

Thus, filter kernel weights must be learnt !!

Feature Map

Remarks:

Output shape determined by shape of input and convolutional kernel window.

Small convolution with filter kernels → “smaller” outputs (feature maps).

207Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

𝑛ℎ − 𝑘ℎ + 1 × 𝑛𝑤 − 𝑘𝑤 + 1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

𝑛ℎ

𝑛𝑤

𝑘ℎ

𝑘𝑤

Padding and Strides

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
208

Padding

• Multiple layers of convolution may reduce the information available at boundary.

• Padding prevents this problem.

• Adding zeros around the edges such that multiple convolution operation does not lead to information
loss.

• Pixels added around edges.

• These pixels are zero in value.

209Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 1 × 𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 1

𝑝ℎ

𝑝𝑤

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

Padding: In practice

• 𝑝ℎ = 𝑘ℎ − 1 ,

• 𝑝𝑤 = 𝑘𝑤 − 1,

• Kernel dimensions : 𝑘𝑤, 𝑘ℎ are chosen odd numbers (Ex: 1,3,5,7..)

• Padding dimensions are even. 𝑝 = 𝑘 − 1 ,

• then, each side padded with 𝑝/2 zeros

• or, padding dimensions = (k-1)/2

210Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 1 × 𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 1

𝑝ℎ

𝑝𝑤

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=1

Output =5 x5

211Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

Number of rows and columns per slide → stride.

• Useful in reducing information (resolution) drastically.

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=1

Output =5 x5

212Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=1

Output =5 x5

213Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=1

Output =5 x5

214Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

0 0 1 0 1 0 0

215
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=1

Output =5 x5

216Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=1

Output =5 x5

217Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=1

Feature Map

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3

218Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3

219Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3

220Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3

221Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3

222Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3

223Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3 Feature map matrix

224Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=2

Output =3 x3 Feature map matrix

225Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=2

𝑛ℎ − 𝜅ℎ + 𝑝ℎ

𝑠
+ 1 ×

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤

𝑠
+ 1

In general, with stride =s

output size:

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=3 ?? (stride increased)

Cannot apply 3x3 filter kernel on 7X7 input → Does not fit.

226Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=3

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=3 ?? (stride increased)

Cannot apply 3x3 filter kernel on 7X7 input → Does not fit.

227Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=3

0 0 1 0 1 0 0

Convolution : Strides

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=3 ?? (stride increased)

Cannot apply 3x3 filter kernel on 7X7 input → Does not fit.

228Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 0 0 0 0 1 1

0 1 0 0 1 0 0

0 0 1 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 1 0 0

Stride=3
𝑛ℎ − 𝜅ℎ + 𝑝ℎ

𝑠
+ 1 ×

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤

𝑠
+ 1

0 0 1 0 1 0 0

In general, with stride =s

output size:

Apply padding

Input : 7x7 (spatially)

Filter kernel: 3X3

Stride=3 ?? (stride increased)

Output= 3 X 3

229Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0

0 0 1 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0

𝑛ℎ − 𝜅ℎ + 𝑝ℎ

𝑠
+ 1 ×

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤

𝑠
+ 1

In general, with stride =s

output size:

Apply Padding: 1 pixel border on each side (ph=2 , pw=2)

Kernel =3X3, Stride =1 ,

output =7 X 7 !!

In practice:

Stride =1,

kernel dim: F X F where F is an odd number (Ex: 1,3,5,7..)

Padding on each side = (F-1)/2

Multi input and output channels

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
230

Multi input channels

so far, greyscale images→ One channel.

Most images are colorful → 3 channels RGB

➔Input as multi-dimensional array : 3 X h X w

➔construct a convolution kernel with the same number of input channels as the input data (3 here)

231Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

Multi input channels

so far, greyscale images→ One channel.

Most images are colorful → 3 channels RGB

➔Input as multi-dimensional array : 3 X h X w

➔construct a convolution kernel with the same number of input channels as the input data (3 here)

➔Assign a 2-D kernel to each channel → concatenation gives 3D conv kernel.

232Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

1 -1 -1

-1 1 -1

-1 -1 1 Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

Multi input channels

Convolution with 3 input channels:

• slide the 2D filter kernel on 2D input , for each channel.

233Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

*

Multi input channels

Convolution with 3 input channels:

• slide the 2D filter kernel on 2D input , for each channel.

234Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

*
1 -1 -1

-1 1 -1

-1 -1 1

Multi input channels

Convolution with 3 input channels:

• slide the 2D filter kernel on 2D input , for each channel.

235Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

*
1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

Multi input channels

Convolution with 3 input channels:

• slide the 2D filter kernel on 2D input , for each channel.

• add the three 2D feature maps to get the output➔ feature map (a 2D array).

• generalizable to n input channels.

236Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

*
1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1 1

Multi input channels: Summary

Convolution of image (3 channels)

with 3 channel filter ➔ 1-D feature map.

237Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

32

32

3

5

5

3

32 X 32 x 3 Image

5 X 5 x 3 filter kernel

Multi input channels: Summary

Convolution of image (3 channels)

with 3 channel filter ➔ 1-D feature map.

238Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

32

32

5

5

3

28

28

1

32 X 32 x 3 Image

5 X 5 x 3 filter kernel

28 X 28 X 1 feature map

Multi input channels: Summary

Convolution of image (3 channels)

with 3 channel filter ➔ 1-D feature map.

239Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

32

32

5

5

3

28

28

1

32 X 32 x 3 Image

5 X 5 x 3 filter kernel

28 X 28 X 1 feature map

Multi outputs

When more than one feature is to be extracted → multiple filters are used.

Output for each filter is desired. Output has multiple channels.

Convolution is performed with each filter kernel , for each output channel.

Output is concatenated along number of filter (output channel) dimension.

2 different filters ➔ convolution with each filter kernel and concatenated along output channel dimension.

240Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

28

28

1
1

5

5

3

Multi outputs

When more than one feature is to be extracted → multiple filters are used.

Output for each filter is desired. Output has multiple channels.

241Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Convolution with 4 filters

Each filter (5 x 5 x 3)

3

32

32

Feature Maps: 28 x 28 x 4 : New image!

1
1

1 1

28

28

5

5

3

• So far: Just Convolutions!

242Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

10-1

10-1

10-1

Convolve with Threshold

Conv/filter Kernel: Edge detection

Summary

• Apply Non-linearity (as seen earlier) : features pass thru activation functions → activation maps
(terminology is loose , feature maps/activation maps both are used often to mean the same)

• In practice: ReLu is mostly preferred (fast convergence, no zero-gradient problem..

243Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

10-1

10-1

10-1

Convolve with Threshold

Conv/filter Kernel: Edge detection

Summary

Convolution Layers with Non linearity Activation

244Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Conv and
ReLU

4 filters (5 x 5 x3)

5

5

3
1

1

1

28

28

Feature Maps / Activation maps
: 28 x 28 x 4

Feature Maps: 28 x 28 x 4 : New image!

32

3

3

32

Convolution
Layers

245Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

32

Conv and
ReLU

4 filters (5 x 5 x3)

5

5

3

4

28

28

Feature Maps / Activation maps
: 28 x 28 x 4

3

32

Convolution Layers

246Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

32

32

Conv and
ReLU

4 filters (5 x 5 x3)

5

5

3

4

28

28

Feature Maps / Activation maps
: 28 x 28 x 4

Conv and
ReLU

10 filters (5 x 5 x 4)

Convolution Layers

247Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

32

32

Conv and
ReLU

4 filters (5 x 5 x3)

5

5

3

4

28

28

Feature Maps / Activation maps
: 28 x 28 x 4

Conv and
ReLU

10 filters (5 x 5 x 4)

10

24

24

Convolution Layers

248Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

32

32

Conv and
ReLU

4 filters (5 x 5 x3)

5

5

3

4

28

28

Feature Maps / Activation maps
: 28 x 28 x 4

Conv and
ReLU

10 filters (5 x 5 x 4)

10

24

24

Conv and
ReLU

6 filters (5 x 5 x 10)

6

20

20

Convolutional neural network
(CovNets) CNNs

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
249

Convolution Layers
Remarks: Observe the reduction in size.

Each feature map = learns features in hierarchical sense. (High level, mid level , low level…)

Convolution Neural networks (why?) : the filter weights + bias (parameters) are learnt at each stage.

Each neuron in a hidden layer: take input (while sliding) → compute weighted sum→ apply bias→ apply non-linear activation.

Repeat for each filter,

Repeat at each stage.

250Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3

32

32

Conv and
ReLU

4 filters (5 x 5 x3)

5

5

3

4

28

28

Feature Maps / Activation maps
: 28 x 28 x 4

Conv and
ReLU

10 filters (5 x 5 x 4)

10

24

24

Conv and
ReLU

6 filters (5 x 5 x 10)

6

20

20

𝑖=1

5

𝑗=1

5

𝑤𝑖,𝑗𝑥𝑖+𝑝,𝑗+𝑞 + 𝑏

251Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: Dr. Fie Fie Li slides

252Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Source: Prof. Fie Fie Li slides

CNNs for classification

• We discussed convolution operation and feature maps.

• Pooling:

253Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Input Image
Convolution

Pooling Fully connected
Layers(feature maps/activation maps)

Filters

Pooling

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
254

Pooling: Motivations

Down sampling:

• We want to reduce the resolution of images.

• The output should not depend on the dimensionality of the original image.

Invariance to translation:

In reality, objects hardly ever occur exactly at the same place.

• Detection should be invariant to translation to some extent.

Example: For instance, image with sharp feature and shifted by one pixel → detection result should
not be vastly different from original image.

Pooling layers:

• reduce the sensitivity of Conv layer to location

• reduce the resolution through the processing pipeline.

255Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Pooling layer : Max pooling or Average Pooling

256Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Max Pooling

Choose the maximum
value in pooling window

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Average Pooling

Choose the average
value in pooling window

Pooling layer : Max pooling or Average Pooling

3

257Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

0 3 1 6

2 1 0 2

-1 1 1

-1 0 -1 3

Max Pooling

Choose the maximum
value in pooling window

1.5
0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Average Pooling

Choose the average
value in pooling window

Pooling layer : Max pooling or Average Pooling

3 6

258Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Max Pooling

Choose the maximum
value in pooling window

1.5 2.25
0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Average Pooling

Choose the average
value in pooling window

Pooling layer : Max pooling or Average Pooling

3 6

1

259Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Max Pooling

Choose the maximum
value in pooling window

1.5 2.25

-0.25

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Average Pooling

Choose the average
value in pooling window

Pooling layer : Max pooling or Average Pooling

260Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Max Pooling

Choose the maximum
value in pooling window

0 3 1 6

2 1 0 2

-1 1 1 1

-1 0 -1 3

Average Pooling

Choose the average
value in pooling window

Strides and padding also available for pooling.

In practice, pooling window size: 2 x 2 , stride = 2.

Note: Zero padding is NOT common for pooling layers.

3 6

1 3

1.5 2.25

-0.25 1

Pooling

Pooling layers / Subsampling pixels does not change the object.

Changes the resolution , fewer parameters to characterize the image.

The subsampling layers reduce the spatial resolution of each feature map

By reducing the spatial resolution of the feature map, a certain degree of shift and distortion
invariance is achieved.

Reduces the effect of noises and shift or distortion

261Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Pooling: multi inputs

So far: Conv + Relu → Feature Map → Pooling (subsampling)

When, multiple filters used:

262Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Conv and
ReLU

filters kernels

Feature Map

Pooling

Pooling: multi inputs / multiple feature maps

So far: Conv + Relu → Feature Map → Pooling (subsampling)

When, multiple filters used: Pooling done on each input feature map.

New set of images but smaller images.

263Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Conv and
ReLU

4 filters kernels

4 Feature Map

Pooling

So far:

264Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Input Image Pooling Fully connected
Layers

(feature maps/
activation maps)

(feature maps/
activation maps)

Pooling

265Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

A new image

Flattening

Fully Connected
Feedforward network

cat , dog , kangaroo……

• At each stage, a new image (reduced resolution) is obtained, ready for convolution.

• At the end, the output structure is “flattened” to create a single long feature vector

to be used by the dense layer for the final classification.

266Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

A new image

Flattening

Fully Connected
Feedforward network

cat , dog , kangaroo……

This can repeat many times
Pooling leads to subsampling

Flattening

For classification, expect the net outputs distribution of probability of each class (multi class ,
softmax)

This has little to do with “spatial” 2D information.

This is abstract representation.

Output information → flatten→ create single long feature vector (like last lecture)→ feed to Dense
ANNs.

Fully connected Dense Feed foreword networks can propagate this information.

267Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Fully Connected
Feedforward network

Demo: training on CIFAR-10 dataset

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.htmlt

268Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet: obtained above par state of art results on ImageNet challenge,

learnt good low level features,

higher level features built upon these.

269Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LeNet-5 (LeCun et al. 1998)

• state-of-the-art performance on hand digit recognition tasks.

270Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LeNet-5 (LeCun et al. 1998)

Advantages :

• convolution with learnable parameters (sharable parameters) ➔ effective way to extract similar features at multiple locations with few parameters .

• correlation with neighboring pixels (data) considered.

• optical character, fingerprint recognition…

Limitations:

• High computational burden: each pixel as separate input .

• Traditional activations functions: slow learning.

271Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Stagnation of CNN : Early 2000

ML paradigm in 1990-1998:

• Typically such datasets were hand generated using very expensive sensors.

• Lacked richness, diversity ➔ insignificant improvement of performance (lack of complex training data, representations etc.

• Till 2012, feature representation had to be thought, or based on intuition.

CNNs:

• Backpropagation → not effective to reach global minima.

• Activation functions: Sigmoid function (variants)

• vanishing gradient problem (exponential decay)

• exploding gradient problem.

272Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.frimage credits (with permission): https://neurohive.io/

Stagnation of CNN : Early 2000

ML paradigm in 1990-1998:

• Typically such datasets were hand generated using very expensive sensors.

• Lacked richness, diversity ➔ insignificant improvement of performance (lack of complex training data, representations etc.

• Till 2012, feature representation had to be thought, or based on intuition.

CNNs:

• Backpropagation → not effective to reach global minima.

• Activation functions: sigmoid function (variants)

• vanishing gradient problem (exponential decay)

• exploding gradient problem (no efficient initialization methods)

• Little attention : object detection, classification/prediction of spatio-temporally complex data

• Limited computational resources (no GPUs)

273Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.frimage credits (with permission): https://neurohive.io/

Revival of CNNs: 2006-2011

• Efficient initialization techniques:

• greedy layer-wise pre-training (Hinton et al. 2006)

• unsupervised/supervised training-based pre-training

• Xavier initialization (Glorot and Bengio, 2010)

• Use of Non-saturating Activation Functions : ReLu (Glorot and Bengio, 2010)

• Max-pooling > Sub-sampling (Ranzato et al, 2007) → learnt better invariant features.

• Late 2006: GPUs for training CNNs.

• 2007: NVIDIA → CUDA programming → harness parallel processing power of GPUs

Revival of CNNs: 2006-2011

• Efficient initialization techniques:

• greedy layer-wise pre-training (Hinton et al. 2006)

• unsupervised/supervised training-based pre-training

• Xavier initialization (Glorot and Bengio, 2010)

• Use of Non-saturating Activation Functions : ReLu (Glorot and Bengio, 2010)

• Max-pooling > Sub-sampling (Ranzato et al, 2007) → learnt better invariant features.

• Late 2006: GPUs for training CNNs.

• 2007: NVIDIA → CUDA programming → harness parallel processing power of GPUs

• 2010: Dr. Fei-Fei Li group (Stanford) → ImageNet platform

today ImageNet → 15 millions, large number categories and classes (target labels).

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (2010-2017)

AlexNet (Krizhevsky et al. 2012)

• Considered first “modern deep architecture”

• Deeper than LeNet-5: from 5 to 8 layers

276Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LeNet AlexNet

AlexNet (Krizhevsky et al. 2012)

• Considered first “modern deep architecture”, deeper than LeNet-5: from 5 to 8 layers,

• 60 Million parameters

• Depth increases overfitting: learning algo: skips some transformational units.

• ReLU : improve convergence ➔ reduce vanishing gradient problem.

• Heavy data augmentation for training: flipping, clipping, color change etc.

• Use of multiple GPUs for training : trained in parallel on two NVIDIA GTX 580

• Use of large filter (11X11, 5X5) as initial layers

• Overlapping pooling layers: (0.5% reduction in overfitting).

• Other adjustments:

• Dropout for regularization

• SGD Momentum

277Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LeNet AlexNet

AlexNet (Krizhevsky et al. 2012)

• Considered first “modern deep architecture”, deeper than LeNet: from 5 to 8 layers,

• 60 Million parameters

• Depth increases overfitting: learning algo: skips some transformational units.

• ReLU : improve convergence ➔ reduce vanishing gradient problem.

• Heavy data augmentation for training: flipping, clipping, color change etc.

• Use of multiple GPUs for training : trained in parallel on two NVIDIA GTX 580

• Use of large filter (11X11, 5X5) as initial layers

• Overlapping pooling layers: (0.5% reduction in overfitting).

• Other adjustments:

• Dropout for regularization: 0.5

• SGD Momentum

• Winner of ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012

• Recognize off-center objects.

• Beginning of Modern era of Deep learning: SOTA

• Deep Learning to new fields: medical imaging, data extraction, end to end learning…

• Missing ➔ A template for Deep NN design.

278Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LeNet AlexNet

Visual Geometry Group or VGG (Simonyan and Zisserman 2015)

19 layers deeper compared to AlexNet

Addition:

• Studied the relation of depth with the representational capacity of the network.

• Replaced: large kernel-sized with small receptive field (multiple 3×3 kernels).

• All hidden layers: ReLu activation.

• Suggested that small size filters can improve the performance of the CNNs

279Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.frimage credits (with permission): https://neurohive.io/

Visual Geometry Group or VGG (Simonyan and Zisserman 2015)

Dataset:

• ImageNet , inputs down-sampled → 256×256

Architecture:

• Image passed through a stack of convolutional (conv.) layers, with filters → with a very small receptive field: 3×3

• The convolution stride is fixed to 1 pixel

• the spatial padding of conv. layer input is such that the spatial resolution is preserved after convolution, i.e. the padding is
1-pixel for 3×3 conv. layers.

• Spatial pooling is carried out by five max-pooling layers, which follow some of the conv. layers (not all the conv. layers are
followed by max-pooling).

• Max-pooling is performed over a 2×2 pixel window, with stride 2.

• Complexity regulation: 1X1 convolutions between conv layers (learn linear combination of resultant feature maps)

• Followed by: Three Fully-Connected (FC) layers : 4096, 4096,1000 (for ILSVRC classification)

• The final layer is the soft-max layer.

• The configuration of the fully connected layers is the same in all networks.

280Photo Source: https://neurohive.io/
image credits (with permission): https://neurohive.io/

Visual Geometry Group or VGG (Simonyan and Zisserman 2015)
19 layers deeper compared to AlexNet

Addition:

• Studied the relation of depth with the representational capacity of the network.

• Replaced: large kernel-sized with small receptive field (multiple 3×3 kernels).

• All hidden layers: ReLu activation.

Advantages:

• Significantly outperformed previous generation models with respect to classification accuracy.

• Representation depth is beneficial for the classification accuracy.

• Suggested that small size filters can improve the performance of the CNNs.

• Several layers of deep and narrow convolutions (i.e., 3×3) were more effective than fewer layers of wider convolutions.

• 2nd Place 2014-ILSVRC

Set the trend: smaller sized filters.

Limitations:

• Very slow to train (For example: VGG16 was trained for weeks , NVIDIA Titan Black GPU’s)

• Large no pf parameters 138 million parameters

• Heavy architecture → 533MB

281
image credits (with permission): https://neurohive.io/

Network in Network (NiN) (Lin et al., 2013)

• Intuition:

• to use an MLP on the channels for each pixel separately.

• Apply a fully-connected layer at each pixel location (for each height and width).

282Source: Alaeddine, H., Jihene, M. Deep network in network. Neural Comput & Applic (2020).

Network in Network (NiN) (Lin et al., 2013)

• Intuition:

• to use an MLP on the channels for each pixel separately.

• Apply a fully-connected layer at each pixel location (for each height and width).

• If we tie the weights across each spatial location becomes ➔ 1X1 convolution layer.

or

fully-connected layer acting independently on each pixel location

283Source: Alaeddine, H., Jihene, M. Deep network in network. Neural Comput & Applic (2020).

Network in Network (NiN) (Lin et al. 2013)

• Architecture:

• inspired from AlexNet.

• Convolutional layers: 11×11, 5×5, and 3×3

• followed by two 1×1 convolutional layers that act as per-pixel fully-connected layers with ReLU
activations

• Each NiN block is followed by a maximum pooling layer (stride 2, window shape of 3×3).

• The convolution window shape of the first layer is typically set by the user.

• Output: number of output channels equal to the number of label classes, followed by a global average pooling
layer.

• Avoids fully-connected layers totally (against AlexNet, LeNet…)

• Advantages:

• 1X1 convolutions ➔ allow for more per-pixel nonlinearity within convolutional stack.

• NiN removes the fully-connected layers and replaces them with global average pooling.

• Removing fully-connected layers reduces overfitting.

• NiN has dramatically less parameters.

284Source: Dive into Deep learning book

Network in Network (NiN) (Lin et al. 2013)

• Architecture:

• inspired from AlexNet.

• Convolutional layers: 11×11, 5×5, and 3×3

• followed by two 1×1 convolutional layers that act as per-pixel fully-connected layers with ReLU
activations

• Each NiN block is followed by a maximum pooling layer (stride 2, window shape of 3×3).

• The convolution window shape of the first layer is typically set by the user.

• Output: number of output channels equal to the number of label classes, followed by a global average pooling
layer.

• Avoids fully-connected layers totally (against AlexNet, LeNet…)

• Advantages:

• 1X1 convolutions ➔ allow for more per-pixel nonlinearity within convolutional stack.

• NiN removes the fully-connected layers and replaces them with global average pooling.

• Removing fully-connected layers reduces overfitting.

• NiN has dramatically less parameters.

285Source: Dive into Deep learning book

GoogLeNet (Szegedy et al., 2015)

• Winner of 2014 ILSVRC

• One focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ?

• Introduced Inception block:

• incorporates multi-scale convolutional transformations using split, transform and merge idea.

• encapsulates filters of different sizes (1x1, 3x3, and 5x5)

• captures spatial information at different scales: fine and coarse grain level.

286Source: Dive into Deep learning book

GoogLeNet (Szegedy et al., 2015)

• Winner of 2014 ILSVRC

• One focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ?

• Introduced Inception block:

• incorporates multi-scale convolutional transformations using split, transform and merge idea.

• encapsulates filters of different sizes (1x1, 3x3, and 5x5)

• captures spatial information at different scales: fine and coarse grain level.

• computation regularization ➔ adding a bottleneck layer of 1x1 convolutional filter, before employing large size kernels.

287Source: Dive into Deep learning book

GoogLeNet (Szegedy et al., 2015) or Inception V1

• Winner of 2014 ILSVRC

• One of the focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ?

• Introduced Inception block:

• Incorporates multi-scale convolutional transformations using split, transform and merge idea.

• Encapsulates filters of different sizes (1x1, 3x3, and 5x5)

• Captures spatial information at different scales: fine and coarse grain level.

• Computation regularization ➔ adding a bottleneck layer of 1x1 convolutional filter, before employing large size kernels.

• Advantages:

• Density reduced → use of global average pooling at the last layer and NOT instead of using a fully connected layer

• Significant decrease in parameters: from 138 Million to 4 Million parameters.

• Other novelties:

• Batch Normalization

• RmsProp as optimizer,…

288Source: Dive into Deep learning book

GoogLeNet (Szegedy et al., 2015) or Inception V1

• Winner of 2014 ILSVRC

• One of the focus: Which sized convolution kernels are best (1X1, 3X3, 11X11 …) ?

• Introduced Inception block:

• Incorporates multi-scale convolutional transformations using split, transform and merge idea.

• Encapsulates filters of different sizes (1x1, 3x3, and 5x5)

• Captures spatial information at different scales: fine and coarse grain level.

• Computation regularization ➔ adding a bottleneck layer of 1x1 convolutional filter, before employing large size kernels.

• Advantages:

• Density reduced → use of global average pooling at the last layer and NOT instead of using a fully connected layer

• Significant decrease in parameters: from 138 Million to 4 Million parameters.

• Other novelties:

• Batch Normalization

• RmsProp as optimizer,…

• Limitations:

• heterogeneous topology that needs to be customized from module to module

• representation bottleneck that drastically reduces the feature space

• in the next layer and thus sometimes may lead to loss of useful information.

• Variants: Inception V2, Inception V3

289Source: Dive into Deep learning book

ResNet (He et al., 2015)

Problem: Deeper networks do not necessarily lead to
better accuracy.

290Source: Dive into Deep learning book

ResNet (He et al. 2015)

Problem: Deeper networks do not necessarily lead to

better accuracy. WHY?

Vanishing gradients? (infinitesimally small gradients?)

291Source: Dive into Deep learning book

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

292Source: Dive into Deep learning book

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Overfitting ?

293Source: Dive into Deep learning book

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

294

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

295

Learning is done

Image Credits: (He et al. 2015)

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

296

Learning is done

more layers

Image Credits: (He et al. 2015)

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

297

Learning is done

more layers
Should behave as Identity Function

(let the input from previous layer

flow ahead)

()f x x=
Image Credits: (He et al. 2015)

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

298

Learning is done

more layers
Should behave as Identity Function

(let the input from previous layer

flow ahead)

()f x x=
Image Credits: (He et al. 2015)

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

Intuition :

• Learn Residual mapping

299

Learning is done

But, more

layers present

Image Credits: (He et al. 2015)

ResNet (He et al. 2015)

Observation: Training accuracy dropped when the count of

layers was increased.

Degradation Problem:

With the network depth increasing, the accuracy saturates

and then begins to degrade rapidly if more layers are introduced.

Intuition :

• Learn Residual mapping

• Use skip connections

• If any layer hurts performance ➔ skip it!

• Easier to learn

so that it behaves as identity function.

300

Learning is done

But, more

layers present

() 0F x =

ResNet (He et al. 2015)
Architecture:

• Identity Block: skip connections

• Conv block: restructure incoming data

• 153 layers Deep

• Less computational complexity (but deeper : 20 X AlexNet, 8 X VGG)

Advantage:

• Residual mapping can learn the identity function more easily

• Stacking more layers ➔ equivalent to stacking identity mappings

• Inputs can forward propagate faster through the residual connections across layers.

301
Image Credits: (He et al. 2015)

Image Credits: Dive into Deep learning

302

Where are we?

Khan et.al. 2020

Context: Predictive Maintenance

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
303

Degradation Models and RNNs

Degradation Models : Sensor signals ➔ time series data ➔ Hidden pattern: ➔ Cyclic

➔ Trend

➔ Seasonal

➔ Trend + Cyclic+seasonal

304
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

PEM Fuell Cells

Lithium-ion battery degradation,
Center for Advanced Life Cycle Engineering (CALCE)
in University of Maryland (He W., Williard N., Osterman
M., & Pecht M., 2011)

Degradation Models and RNNs

305
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Bearing Degradation Dataset

Degradation Data

• Degradation:

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc.

• depends on qualitative+ quantitative factors.

• Raw degradation data → Hidden features / representation:

• Spatially varying

• Temporally varying

• Multimodal characteristics

306JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Photo: Report of Jha

Roller bearing degradation (PRONOSTIA platform)

CNNs

CNNs for Prognostics

307Hybrid Prognostics and Deep Learning (Presentation at KIST),
Email: mayank-shekhar.jha [at] univ-lorraine.fr

Babu et al.2016

CNN for multi-variate time series signals:
• Sliding windows approach
• Segments of time series multi variate signal
(short pieces of signal)

• Highlight: Joint feature learning on each segmented signal
• concatenate MLP at end, for RUL target.

Deep LSTMs for RUL prediction

308JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

308

1 2 1

1 2 2

[, ,..., ,...]

[, ,..., ,...]

t T

t T

X X X X X

X X X X X

−

−

=

=

to estimate
1

2

T

T

RUL

RUL

−

−
to estimate

Deep LSTMs for RUL prediction

309JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

Some issues:

• Independent Windows → to assure assumption of i.i.d

• Dependent windows → claim more realistic.

309

1 2 1

1 2 2

[, ,..., ,...]

[, ,..., ,...]

t T

t T

X X X X X

X X X X X

−

−

=

=

to estimate
1

2

T

T

RUL

RUL

−

−
to estimate

Many variants exist!
Training tuples:

Loss Calculation : Error based cost function

CNNs for Prognostics

• Traditionally, 2D-3D structured data for face/object recognition.

• Application to PHM: 1D grid structured topology of sequential

data.

310Hybrid Prognostics and Deep Learning (Presentation at KIST),
Email: mayank-shekhar.jha [at] univ-lorraine.fr

Jha, course on Deep learning 2020, Polytech Nancy

Diagnostics:
• Input: 1D segments of vibration data
• Highlight: Automatic extraction of features
• Train: several layers CNN + Softmax classification

CNNs for Prognostics

• Automatically learn feature representation, hidden multimodal distributions

[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

&

• Efficient learning with multi-variate sequential (time series) data.

[Babu et al., 2016]

• Hybrid structure

311JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

[Babu et al., 2016]

[Liu et al., 2017]

Turbo jet Fan Engine NASA
CMAPSS

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 312

313
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Sequence Modelling

Recurrent Neural Networks

Long Short Term Memory
(LSTMs)

Application: Prognostics and Deep Learning

314Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Sequence Modelling
Motivations

Challenges

Some ideas

Design

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
315

Sequence modelling : Motivations

• Sequential data:
• time series forecasting,

• motion prediction (human, self driving cars)

• sensor data: machine health monitoring/prediction

• text processing/prediction

• machine translation

316Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Financial market prediction (Dixon et al.) Human Motion Prediction

Martinez et al., 2016

Component Failure Prediction
(Yoo et al., 2018)

I am from London but I live in Paris and I speak fluent English.

Sequence modelling : Motivations > Challenges

• Inputs data

• Variable lengths

• spatially + temporally dependent

• ordered

• output data different length than input (machine translation)

317Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Sequence modelling : Motivations >Challenges > Some ideas

1. Fixed window

• cannot model long term dependencies

2. Use whole sequence as counts (I occurs 3 times)

• no learning of order (what followed by what?)

3. Large window length input

• each has separate parameter

• learning will not transfer at other places

in the sequence.

318Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

I am from London but I live in Paris so I speak fluent …….. .

[00100101000101011000011....]
One hot coding

???

I live in Paris so I speak fluent

Sequence modelling : Motivations >Challenges > Some ideas

1. Fixed window

• cannot model long term dependencies

2. Use whole sequence as counts (I occurs 3 times)

• no learning of order (what followed by what?)

3. Large window length input

• each has separate parameter

• learning will not transfer at other places

in the sequence.

• Feed forward NN, not designed to:

• handle variable data lengths

• parameter sharing (correlation, temporal dependency…)

• track long term dependency + order

• CovNets:

• can share parameters across time but remain shallow.

319Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

I am from London but I live in Paris so I speak fluent …….. .

[00100101000101011000011....]
One hot coding

???

I live in Paris so I speak fluent

Sequence modelling : Motivations
>Challenges > Some ideas > Design• Variable length inputs

• Learn long term dependencies

• Learn the order in data

• Share parameters across sequence

• Make predictions (long term) efficiently.

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 320

Recurrent Neural Networks

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
321

RNNs: Structure
• Recurrence of states. Ex. a dynamical system

• Recursive computation ➔ Computational graph

322Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

3 2

1

(,)

((,),)

s f s w

f f s w w

=

=

1(,)t ts f s w−=

RNNs: Structure
• Recurrence of states. Ex. a dynamical system

• Recursive computation ➔ Computational graph

• When system driven by external input,

323Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1(,)t ts f s w−=

RNNs: Structure
• Recurrence of states. Ex. a dynamical system

• Recursive computation ➔ Computational graph

• When system driven by external input,

New state contains information about history.

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure)

Unrolling →

• Captures dependency in input data.

• Same weights at each time step : some weight sharing.

324Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1 1(, ,)t t th f h x w− −=

Rewritten

1 1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

− −

− −

=

= +

1(,)t ts f s w−=

RNNs: Structure
• Recurrence of states. Ex. a dynamical system

• Recursive computation ➔ Computational graph

• When system driven by external input,

New state contains information about history.

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure)

Unrolling →

• Captures dependency in input data.

• Same weights at each time step : some weight sharing.

• Outputs from RNN:

325Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Rewritten

(,)

()

t t t

h

t

y g h x

W h

=

=

1(, ,)t t th f h x w−=

1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

−

− −

=

= +

1(,)t ts f s w−=

RNNs: Structure
• Recurrence of states. Ex. a dynamical system

• Recursive computation ➔ Computational graph

• When system driven by external input,

New state contains information about history.

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure)

Unrolling →

• Captures dependency in input data.

• Same weights at each time step : some weight sharing.

• Outputs from RNN:

326Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Rewritten

(,)

()

t t t

h

t

y g h x

W h

=

=

1(, ,)t t th f h x w−=

1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

−

− −

=

= +

1(,)t ts f s w−=

RNNs: Structure
• Recurrence of states. Ex. a dynamical system

• Recursive computation ➔ Computational graph

• When system driven by external input,

New state contains information about history.

RNNs : Output of node fed back into the hidden nodes (recurrent, cyclic structure)

Unrolling →

• Captures dependency in input data.

• Same weights at each time step : some weight sharing.

• Outputs from RNN:

327Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Rewritten

(,)

()

t t t

h

t

y g h x

W h

=

=

1(, ,)t t th f h x w−=

1 1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

− −

− −

=

= +

1(,)t ts f s w−=

RNNs: Structure
• Depending upon application:

• h needs to be rich,

• capture all historical trends {cyclicity, seasonality, trend, fluctuations, global/local}

• Advantage:

• learnt model has same size (regardless of input size)

• possible to use same transition function f

328Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

RNNs: Structure
• Depending upon application:

• h needs to be rich,

• capture all historical trends {cyclicity, seasonality, trend, fluctuations, global/local}

• Advantage:

• learnt model has same size (regardless of input size)

• possible to use same transition function f

• Learning → Back-propagation through time (BPTT)

• errors calculated/back-propagated over time = BP over unrolled network

• gradients calculated in time.

• Training slower than MLP:

• repeated multiplication of weights in sequence length

• repeated product of derivative of activation function.

329Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Challenges:

Vanishing gradients: Many values <<1

• activation gradient products

• small weights

• negligible gradient ➔ negligible learning.

330Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Challenges:

Vanishing gradient problem: Many values <<1

• activation gradient products

• small weights

• negligible gradient ➔ negligible learning.

Long range Learning:

• hidden units modify with new information

• vanishing gradient problem ➔ new information not preserved over long ranges.

• time series forecasting: seasonality etc.

331Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Challenges:

Vanishing gradient problem: Many values <<1

• activation gradient products

• small weights

• negligible gradient ➔ negligible learning.

Long range Learning:

• hidden units modify with new information

• vanishing gradient problem ➔ new information not preserved over long ranges.

• time series forecasting: seasonality etc.

• machine translation: relation of first word to context

• prognostics: prediction of state of health at long time range

Prediction Drift:
• next step prediction ➔ recurrence of h learnt

• long range prediction → recurrence of h over multiple steps

• error cumulation over multiple time steps

332Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

I am from London but I live in Paris so I speak fluent …….. .

Solution:

• Efficient parameter initialization

• Non-saturating activation functions: ReLU, Leaky ReLu…

• Gradient clipping

• Gated Cells:

• “control” the information flow

• allow more useful information, forget non-useful information…

• track information through many time steps to filter out the useless ones.

333Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Long Short Term Memory
(LSTMs)

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
334

LSTMs (Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

335Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

−

− −

=

= +

cleverly designed

Gated RNNs: let selective information through

RNNS:

LSTMs (Hochreiter & Schmidhuber 1997)

336Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

−

− −

=

= +

cleverly designed

LSTMs (Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

LSTMs:

337Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1

1 1

(,)

()

t t t

h x

t t

h f h x

W h W x

−

− −

=

= +

cleverly designed

LSTMs (Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

Gates:

338Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LSTMs (Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates:

Cell state : Information highway.

339Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

LSTMs (Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates:

Cell state : Information highway.

1. Forget:

340Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1([,])f

t t t ff W h x b −= +

LSTMs (Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates:

Cell state : Information highway.

1. What to Forget:

2. what to Store:

341Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1

1

([,])

tanh([,])

i

t t t i

C

t t t C

i W h x b

C W h x b

 −

−

= +

= +

LSTMs (Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates:

Cell state : Information highway.

1. What to Forget:

2. what to Store:

3. Update old cell state:

342Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1t t t t tC f C i C−= +

LSTMs (Hochreiter & Schmidhuber 1997)

Cell state: let selective information through

Gates:

Cell state : Information highway.

1. What to Forget:

2. What to Store:

3. Update old cell state:

4. Generate output:

343Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

1([,])

tanh()

o

t t t o

t t t

o W h x b

h o C

 −= +

=

LSTMs (Hochreiter & Schmidhuber 1997)

Gated RNNs: let selective information through

LSTMs:

344Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Backpropagation: Uninterrupted gradient flow

Learning:

Faster than RNNs,

Long range dependency conserved..

1 1

1 1

1 1

([, ,])

([, ,])

([, ,])

f

t t t t f

i

t t t t i

o

t t t t o

f W C h x b

i W C h x b

o W C h x b

− −

− −

− −

= +

= +

= +

LSTM Variants:

• Peephole connections

• Gated Recurrent Units (GRUs) (Cho et al. 2014)

• etc.

345Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Deep (Stacked) LSTMs (Fernández, Graves, & Schmidhuber,2007):

LSTM Variants:

• Peephole connections

• Gated Recurrent Units (GRUs) (Cho et al. 2014)

• etc.

346Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Deep (Stacked)LSTMs (Fernández, Graves, & Schmidhuber,2007):

Unroll

Image credits: Fernández, Graves, & Schmidhuber,2007

Deep LSTMs

• Advantages over RNNs:

• Learn long term dependencies easily.

• Avoid vanishing gradient problem through easy information flow.

• Replaced RNNs for Identification of Non-linear systems (dynamical systems).

• Benchmarking performance LSTM > RNN > MLP > CNN (different datasets/ factors)

(A Richard et al. 2019)

347Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Application:
Prognostics and Deep Learning

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
348

System degradation

• Machines (dynamical systems) degrade with:

• time

• operational load cycles

• operational conditions etc.

349JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostics

• Prognostics:

• Estimate (state of health) → identification of degradation model.

350JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostics

• Prognostics:

• Estimate (state of health) → identification of degradation model.

• Prediction of future health + Remaining Useful Life (RUL)

351JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostics

• Prognostics:

• Estimate (state of health) → identification of degradation model.

• Prediction of future health + Remaining Useful Life (RUL)

352JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostics

• Prognostics:

• Estimate (state of health) → identification of degradation model.

• Prediction of future health + Remaining Useful Life (RUL)

353JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Prognostics

• Prognostics:

• Estimate (state of health) → identification of degradation model.

• Prediction of future health + Remaining Useful Life (RUL)

• Evaluate: Decision “when failure occurs ???” “what maintenance strategy”

354JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Degradation Data

• Degradation:

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc.

• depends on qualitative+ quantitative factors.

355JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Degradation Data

• Degradation:

• unknown, non-linear varying dynamics

• sensor data: non-stationary → trend, seasonality, cyclic etc.

• depends on qualitative+ quantitative factors.

356JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

PEM Fuel Cell degradation (Jha et al. 2016)

Degradation Data

• Degradation:

• unknown, non-linear varying dynamics

• sensor data: non-stationary → trend, seasonality, cyclic etc.

• depends on qualitative+ quantitative factors.

357JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

PEM Fuel Cell degradation (Jha et al. 2016)

Lithium-ion battery degradation,
Center for Advanced Life Cycle Engineering (CALCE)

in University of Maryland (He W., Williard N., Osterman

M., & Pecht M., 2011)

Roller bearing degradation (PRONOSTIA platform)

Degradation Data

• Degradation:

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc.

• depends on qualitative+ quantitative factors.

• Raw degradation data → Hidden features / representation:

• Spatially varying

• Temporally varying

• Multimodal characteristics

358JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Photo: Report of Jha

Roller bearing degradation (PRONOSTIA platform)

Degradation Data

• Degradation:

• unknown, non-linear varying dynamics

• sensor data: non-stationary process → trend, seasonality, cyclic etc.

• depends on qualitative+ quantitative factors.

• Raw degradation data → Hidden features / representation:

• Spatially varying

• Temporally varying

• Multimodal characteristics

359JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Photo: Report of Jha

Roller bearing degradation (PRONOSTIA platform)

Deep LSTMs

CNNs

Deep LSTMs for Prognostics

Basic Architecture

360JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Samples

T
im

e
 S

te
p
s

3D- Input

Deep LSTMs for RUL prediction

Basic Architecture

361JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Samples

T
im

e
 S

te
p
s

Deep LSTM
+ dropout schemes

Image credits: Fernández, Graves, & Schmidhuber,2007

3D- Input

Deep LSTMs for RUL prediction

Basic Architecture: LSTMs: Temporal features + FNNs: Map features in RULs

362JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Samples

T
im

e
 S

te
p
s

Deep LSTM
+ dropout schemes

Image credits: Fernández, Graves, & Schmidhuber,2007

Fully connected Layer
3D- Input

Target Vector

tRUL

Deep LSTMs for RUL prediction

363JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

363

1 2 1

1 2 2

[, ,..., ,...]

[, ,..., ,...]

t T

t T

X X X X X

X X X X X

−

−

=

=

to estimate
1

2

T

T

RUL

RUL

−

−
to estimate

Deep LSTMs for RUL prediction

364JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

• Degradation data➔ Time Series sequence ➔ segmented into sliding windows.

• Each sliding window is assigned a target RUL value [Zeng et al, 2017]

Some issues:

• Independent Windows → to assure assumption of i.i.d

• Dependent windows → claim more realistic.

364

1 2 1

1 2 2

[, ,..., ,...]

[, ,..., ,...]

t T

t T

X X X X X

X X X X X

−

−

=

=

to estimate
1

2

T

T

RUL

RUL

−

−
to estimate

Many variants exist!
Training tuples:

Loss Calculation : Error based cost function

LSTM training

• Inputs : Sensor data at time t

• Output: RUL at time t

365
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

RUL prediction training How??

366
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

RUL prediction Example: C-MAPSS dataset (NASA)

367
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

MAPSS stands for 'Commercial Modular Aero-Propulsion
System Simulation' and it is a tool for the simulation of realistic
large commercial turbofan engine data.

The fault was injected at a given time in one of the flights and
persists throughout the remaining flights, effectively increasing
the age of the engine.

Some applications:

368JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

[Gugulothu et al 2017]

PEM Fuel Cell degradation

Lithium-ion battery RUL prediction
(He W., Williard N., OstermanM., & Pecht M., 2011)

Engine prognostics (NASA) : CMAPSS

'Commercial Modular Aero-Propulsion System Simulation’

[Zhang et al, 2017]

• unknown non-linear dynamics,

• non-stationary (multi modal degradation,

• multiple modes of degradation)

CNNs for Prognostics

• LSTMs: good sequence learning

but good input sequence needs to be provided!!

• Feature extraction needs domain knowledge.

• Labelled data → difficult !

• CNNs → Hidden features / representation of sequence:

• Spatially varying

• Temporally varying

• Multimodal characteristics

369JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Photo: Report of Jha

Roller bearing degradation (PRONOSTIA platform)

CNNs

CNNs for Prognostics

• CNNs → Traditionally, 2D-3D structured data for face/object recognition

• Prognostics → 3D structured topology for sequence data

370JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

tRUL

Stacked LSTMsDeep CNNs

CNNs for Prognostics

• Automatically learn feature representation, hidden multimodal distributions

[Liu et al., 2017] [Jing et al., 2017] [Li et al., 2018]

&

• Efficient learning with multi-variate sequential (time series) data.

[Babu et al., 2016]

• Hybrid structure

371JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

[Babu et al., 2016]

[Liu et al., 2017]
[Kong et al. 2019]

PEM Fuell Cell Degradation

372
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Gugulothu et al.

Battery degradation RUL prediction ((He W., Williard N., OstermanM., &
Pecht M., 2011)

373
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Lithium-ion battery RUL prediction

LSTM based RUL
prediction

Basic Approach

AI enhances Tribology , KTH, Sweden
 Email: mayank-shekhar.jha [at] univ-lorraine.fr

374

Raw Data

Dimensionality
Reduction

Feature Extraction

Supervised /Unsupervised Training of Classifier

Cross validation

Data Preparation :
• fill missing values

• data sorting..
• Test set, Train Set

Classification/PredictionNew Data

Decision
/

Output

Principle Component Analysis (PCA),
t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Time domain
• frequency (FFT)
• Time-frequency (Wavelet transforms)
• STFFT

Offline

Trained classifier Model

References

Kattan, Ali, and Rosni Abdullah. "Training of feed-forward neural networks for pattern-classification
applications using music inspired algorithm." International Journal of Computer Science and Information
Security 9.11 (2011): 44.

Taig, Efrat, and Ohad Ben-Shahar. "Gradient Surfing: A New Deterministic Approach for Low-Dimensional
Global Optimization." Journal of Optimization Theory and Applications 180.3 (2019): 855-878.

Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep learning and its application to LHC physics. Annual
Review of Nuclear and Particle Science, 68, 161-181.

Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Bergauer, T., ... & Del Valle, A. E. (2019).
Search for the Higgs boson decaying to two muons in proton-proton collisions at s= 13 TeV. Physical review
letters, 122(2), 021801.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540), 529.

Cully, Antoine, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015. “Robots That Can Adapt like
Animals.” Nature 521 (7553): 503.

Park, Y., & Kellis, M. (2015). Deep learning for regulatory genomics. Nature biotechnology, 33(8), 825.

Gugulothu, N., TV, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life
using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.

Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement learning. Vol. 135. Cambridge: MIT
press, 1998.

375Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Bibliography

• Rueckert, E., Nakatenus, M., Tosatto, S., & Peters, J. (2017, November). Learning inverse dynamics
models in o (n) time with lstm networks. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids) (pp. 811-816). IEEE.

• Fernández, S., Graves, A., & Schmidhuber, J. (2007b). An application of recurrent neural networks to
discriminative keyword spotting. In Proceedings of the International Conference on Artificial Neural
Networks (pp. 220–229). Berlin: Springer

• Liu, N., Li, L., Hao, B., Yang, L., Hu, T., Xue, T., & Wang, S. (2019). Modeling and simulation of robot
inverse dynamics using LSTM-based deep learning algorithm for smart cities and factories. IEEE
Access, 7, 173989-173998.

• Gugulothu, N., TV, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining
useful life using time series embeddings based on recurrent neural networks. arXiv preprint
arXiv:1709.01073.

• Systems. Springer, Cham, 2017. 233-270Jha, Mayank-Shekhar; 2017. “Algorithm Architectures for
Intelligent Communications, Control and Monitoring Systems, Rolls Royce University Technology
Centre Sheffield.”

• Jha, Mayank Shekhar, et al. "Particle filter based hybrid prognostics of proton exchange membrane
fuel cell in bond graph framework." Computers & Chemical Engineering 95 (2016): 216-230.

• Jha, Mayank S., Geneviève Dauphin-Tanguy, and B. Ould-Bouamama. "Particle Filter Based Integrated
Health Monitoring in Bond Graph Framework." Bond Graphs for Modelling, Control and Fault
Diagnosis of Engineering .

376Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Bibliography

• Learning algorithms for classification: A comparison on handwritten digit recognition. Neural networks Stat
Mech Perspect 261:276

• Simonyan K, Zisserman A (2015) VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE
IMAGE RECOGNITION. ICLR 75:398–406. doi: 10.2146/ajhp170251

• Lin M, Chen Q, Yan S (2013) Network In Network. 1–10. doi: 10.1109/ASRU.2015.7404828

• He K, Zhang X, Ren S, Sun J (2015) Deep Residual Learning for Image Recognition. Multimed Tools Appl
77:10437–10453. doi: 10.1007/s11042-017-4440-4

• Khan, A., Sohail, A., Zahoora, U. et al. A survey of the recent architectures of deep convolutional
neural networks. Artif Intell Rev 53, 5455–5516 (2020)

• Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In:
Proceedings of the thirteenth international conference on artificial intelligence and statistics. pp 249–256

• Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8
(1997): 1735-1780.

• Richard, A., Mahé, A., Pradalier, C., Rozenstein, O., & Geist, M. (2019). A Comprehensive Benchmark
of Neural Networks for System Identification.

• Woo, J., Park, J., Yu, C., & Kim, N. (2018). Dynamic model identification of unmanned surface
vehicles using deep learning network. Applied Ocean Research, 78, 123-133.

377Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Bibliography

• Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017, June). Long short-term memory network for
remaining useful life estimation. In 2017 IEEE international conference on prognostics and health
management (ICPHM) (pp. 88-95). IEEE.

• Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks.
In European conference on computer vision (pp. 818-833). Springer, Cham.

378Introduction to Deep Learning
JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

	Default Section
	Diapositive 1 Introduction to Artificial Intelligence for Prognostics
	Diapositive 2 Contents
	Diapositive 3 Introduction and Few Reminders
	Diapositive 4 Motivation:
	Diapositive 5 RUL prediction Methods
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19 Motivation: Degradation Models (Roller Bearing)
	Diapositive 20 Motivation: Degradation Models (Roller Bearing)
	Diapositive 21 Motivation: Degradation Models (Roller Bearing)
	Diapositive 22 Motivation: Degradation Models (Roller Bearing)
	Diapositive 23 Motivation for Predictive Maintenance: Engine RUL Prediction based on Data
	Diapositive 24 Motivation for Predictive Maintenance: Battery SOH Prediction using Data
	Diapositive 25 Lithium Ion Battery RUL prediction
	Diapositive 26 Artificial Intelligence (AI) Domains
	Diapositive 27 AI
	Diapositive 28 Domains of AI
	Diapositive 29 Domains of AI
	Diapositive 30 Domains of AI
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35 Types of Learning
	Diapositive 36 Learning : Supervised vs Unsupervised
	Diapositive 37 Learning : Supervised
	Diapositive 38 Learning : Unsupervised
	Diapositive 39
	Diapositive 40
	Diapositive 41 Basic Processes: Classification and Regression
	Diapositive 42 Basic Processes: Regression
	Diapositive 43 Basic Processes: Regression
	Diapositive 44 Ordinary Least Square (OLS) based regression
	Diapositive 45 Relation AI, ML and DL
	Diapositive 46 Machine Learning techniques for AI
	Diapositive 47 Learning Using Deep Neural networks : Supervised Learning
	Diapositive 48 The Neuron
	Diapositive 49 The Neuron
	Diapositive 50 The Neuron
	Diapositive 51 The Neuron
	Diapositive 52 The Neuron
	Diapositive 53 The Neuron: Basic Perceptron
	Diapositive 54 Artificial Neural Networks (ANNs)
	Diapositive 55 Artificial Neural Networks (ANNs)
	Diapositive 56
	Diapositive 57 The Artificial Neural Network (ANN)
	Diapositive 58 Activation functions (discussed later)
	Diapositive 59 Multi Layered (Deep) Feed Foreword Neural Networks
	Diapositive 60 Multi Layered (Deep) Feed Foreword Neural Networks
	Diapositive 61
	Diapositive 62
	Diapositive 63 Basic functioning of NNs
	Diapositive 64 How do NNs work : Illustrative Example Apartment Price
	Diapositive 65 How do NNs work : Illustrative Example Apartment Price
	Diapositive 66 How do NNs work : Illustrative Example Apartment Price
	Diapositive 67 How do NNs work : Illustrative Example Apartment Price
	Diapositive 68 How do NNs work : Illustrative Example Apartment Price
	Diapositive 69 How do NNs work : Illustrative Example Apartment Price
	Diapositive 70 How do NNs work : Illustrative Example Apartment Price
	Diapositive 71 Learning in NNs
	Diapositive 72 How do NNs learn?
	Diapositive 73 How do NNs learn?
	Diapositive 74
	Diapositive 75
	Diapositive 76
	Diapositive 77
	Diapositive 78
	Diapositive 79
	Diapositive 80
	Diapositive 81
	Diapositive 82
	Diapositive 83
	Diapositive 84
	Diapositive 85
	Diapositive 86
	Diapositive 87
	Diapositive 88
	Diapositive 89
	Diapositive 90 Gradient Descent
	Diapositive 91 Gradient Descent
	Diapositive 92 Gradient Descent
	Diapositive 93 Gradient Descent
	Diapositive 94 Batch Gradient Descent
	Diapositive 95 Gradient Descent
	Diapositive 96 Gradient Descent
	Diapositive 97 Gradient Descent
	Diapositive 98 Gradient Descent
	Diapositive 99 Stochastic Gradient Descent
	Diapositive 100 Stochastic Gradient Descent
	Diapositive 101 Stochastic Gradient Descent
	Diapositive 102 Stochastic Gradient Descent
	Diapositive 103 Stochastic Gradient Descent
	Diapositive 104 Stochastic Gradient Descent
	Diapositive 105
	Diapositive 106 Mini batch GD
	Diapositive 107 Mini batch GD
	Diapositive 108 Mini batch GD
	Diapositive 109 Mini batch GD
	Diapositive 110 Mini batch GD
	Diapositive 111 Backpropagation (Backprop)
	Diapositive 112 Back propagation
	Diapositive 113
	Diapositive 114 Forward propagation
	Diapositive 115 Forward propagation
	Diapositive 116 Foreword propagation
	Diapositive 117 Back propagation
	Diapositive 118 Back propagation
	Diapositive 119 Back propagation
	Diapositive 120 Back propagation
	Diapositive 121 Back propagation
	Diapositive 122 Back propagation
	Diapositive 123 Back propagation
	Diapositive 124 Deep NN Training Algorithm
	Diapositive 125 Deep NN Training Algorithm
	Diapositive 126 Deep NN Training Algorithm
	Diapositive 127 Deep NN Training Algorithm
	Diapositive 128 Deep NN Training Algorithm
	Diapositive 129 Summary
	Diapositive 130 Training data, Test Data and Validation data
	Diapositive 131 Generalization: Underfitting and Overfitting
	Diapositive 132 Generalization: Underfitting and Overfitting
	Diapositive 133 Underfitting and Overfitting
	Diapositive 134 Generalization : Preventing over-fitting (over-training)
	Diapositive 135 Generalization : Preventing over-fitting (over-training)
	Diapositive 136 Generalization : Preventing over-fitting (over-training)
	Diapositive 137 Generalization : Preventing over-fitting (over-training)
	Diapositive 138 Generalization : Preventing over-fitting (over-training)
	Diapositive 139 Generalization : Preventing over-fitting (over-training)
	Diapositive 140 Training
	Diapositive 141 Types of Activation functions
	Diapositive 142 Activation functions
	Diapositive 143 Activation Functions
	Diapositive 144 Activation Functions : Non-linear functions (why linear functions not preferred?
	Diapositive 145 Activation Functions
	Diapositive 146 Activation Functions
	Diapositive 147 Activation Functions
	Diapositive 148 Activation function
	Diapositive 149 Loss functions
	Diapositive 150 Common Loss functions
	Diapositive 151 Common Loss functions
	Diapositive 152 Common Loss functions
	Diapositive 153 Common Loss functions
	Diapositive 154 Loss functions: Best practices
	Diapositive 155 Summary
	Diapositive 156 Convolutional Neural Networks
	Diapositive 157 Images are just numbers for computer!
	Diapositive 158 Color images
	Diapositive 159 Drawbacks
	Diapositive 160 Drawbacks
	Diapositive 161 Drawbacks
	Diapositive 162 Drawbacks: Trainable parameter explosion
	Diapositive 163 Drawbacks: Variance to distortions
	Diapositive 164
	Diapositive 165 Convolutional neural networks
	Diapositive 166 Motivation
	Diapositive 167 Convolutional layer: Motivation
	Diapositive 168 Convolutional layer: Motivation
	Diapositive 169 Convolutional layer: Motivation
	Diapositive 170 Convolutional layer: Motivation
	Diapositive 171 Intuition
	Diapositive 172 Intuition
	Diapositive 173 Intuition
	Diapositive 174 Intuition
	Diapositive 175 Intuition
	Diapositive 176 Intuition
	Diapositive 177 Intuition
	Diapositive 178 Intuition
	Diapositive 179 Convolution Operator
	Diapositive 180 Convolution Operator
	Diapositive 181 Convolution Operator
	Diapositive 182 Convolution Operator
	Diapositive 183 Convolution Operator
	Diapositive 184 Convolution Operator
	Diapositive 185 Convolution Operator
	Diapositive 186 Convolution Operator
	Diapositive 187 Convolution
	Diapositive 188 Convolution: CNN context.
	Diapositive 189 Convolution Operator : CNN context.
	Diapositive 190 Convolution Operator : CNN context.
	Diapositive 191 Convolution Operator : CNN context
	Diapositive 192 Convolution Operator
	Diapositive 193 Convolution Operator
	Diapositive 194 Example:
	Diapositive 195 Example:
	Diapositive 196 Example:
	Diapositive 197 Example:
	Diapositive 198 Example:
	Diapositive 199 Example:
	Diapositive 200 Example:
	Diapositive 201 Example:
	Diapositive 202 Example:
	Diapositive 203 Example:
	Diapositive 204 Example:
	Diapositive 205 Example:
	Diapositive 206 Example: Edge detection
	Diapositive 207
	Diapositive 208 Padding and Strides
	Diapositive 209 Padding
	Diapositive 210 Padding: In practice
	Diapositive 211 Strides
	Diapositive 212 Convolution : Strides
	Diapositive 213 Convolution : Strides
	Diapositive 214 Convolution : Strides
	Diapositive 215
	Diapositive 216 Convolution : Strides
	Diapositive 217 Convolution : Strides
	Diapositive 218 Convolution : Strides
	Diapositive 219 Convolution : Strides
	Diapositive 220 Convolution : Strides
	Diapositive 221 Convolution : Strides
	Diapositive 222 Convolution : Strides
	Diapositive 223 Convolution : Strides
	Diapositive 224 Convolution : Strides
	Diapositive 225 Convolution : Strides
	Diapositive 226 Convolution : Strides
	Diapositive 227 Convolution : Strides
	Diapositive 228 Convolution : Strides
	Diapositive 229 Apply padding
	Diapositive 230 Multi input and output channels
	Diapositive 231 Multi input channels
	Diapositive 232 Multi input channels
	Diapositive 233 Multi input channels
	Diapositive 234 Multi input channels
	Diapositive 235 Multi input channels
	Diapositive 236 Multi input channels
	Diapositive 237 Multi input channels: Summary
	Diapositive 238 Multi input channels: Summary
	Diapositive 239 Multi input channels: Summary
	Diapositive 240 Multi outputs
	Diapositive 241 Multi outputs
	Diapositive 242 Summary
	Diapositive 243 Summary
	Diapositive 244 Convolution Layers with Non linearity Activation
	Diapositive 245 Convolution Layers
	Diapositive 246 Convolution Layers
	Diapositive 247 Convolution Layers
	Diapositive 248 Convolution Layers
	Diapositive 249 Convolutional neural network (CovNets) CNNs
	Diapositive 250 Convolution Layers
	Diapositive 251
	Diapositive 252
	Diapositive 253 CNNs for classification
	Diapositive 254 Pooling
	Diapositive 255 Pooling: Motivations
	Diapositive 256 Pooling layer : Max pooling or Average Pooling
	Diapositive 257 Pooling layer : Max pooling or Average Pooling
	Diapositive 258 Pooling layer : Max pooling or Average Pooling
	Diapositive 259 Pooling layer : Max pooling or Average Pooling
	Diapositive 260 Pooling layer : Max pooling or Average Pooling
	Diapositive 261 Pooling
	Diapositive 262 Pooling: multi inputs
	Diapositive 263 Pooling: multi inputs / multiple feature maps
	Diapositive 264 So far:
	Diapositive 265
	Diapositive 266
	Diapositive 267 Flattening
	Diapositive 268
	Diapositive 269
	Diapositive 270 LeNet-5 (LeCun et al. 1998)
	Diapositive 271 LeNet-5 (LeCun et al. 1998)
	Diapositive 272 Stagnation of CNN : Early 2000
	Diapositive 273 Stagnation of CNN : Early 2000
	Diapositive 274 Revival of CNNs: 2006-2011
	Diapositive 275 Revival of CNNs: 2006-2011
	Diapositive 276 AlexNet (Krizhevsky et al. 2012)
	Diapositive 277 AlexNet (Krizhevsky et al. 2012)
	Diapositive 278 AlexNet (Krizhevsky et al. 2012)
	Diapositive 279 Visual Geometry Group or VGG (Simonyan and Zisserman 2015)
	Diapositive 280 Visual Geometry Group or VGG (Simonyan and Zisserman 2015)
	Diapositive 281 Visual Geometry Group or VGG (Simonyan and Zisserman 2015)
	Diapositive 282 Network in Network (NiN) (Lin et al., 2013)
	Diapositive 283 Network in Network (NiN) (Lin et al., 2013)
	Diapositive 284 Network in Network (NiN) (Lin et al. 2013)
	Diapositive 285 Network in Network (NiN) (Lin et al. 2013)
	Diapositive 286 GoogLeNet (Szegedy et al., 2015)
	Diapositive 287 GoogLeNet (Szegedy et al., 2015)
	Diapositive 288 GoogLeNet (Szegedy et al., 2015) or Inception V1
	Diapositive 289 GoogLeNet (Szegedy et al., 2015) or Inception V1
	Diapositive 290 ResNet (He et al., 2015)
	Diapositive 291 ResNet (He et al. 2015)
	Diapositive 292 ResNet (He et al. 2015)
	Diapositive 293 ResNet (He et al. 2015)
	Diapositive 294 ResNet (He et al. 2015)
	Diapositive 295 ResNet (He et al. 2015)
	Diapositive 296 ResNet (He et al. 2015)
	Diapositive 297 ResNet (He et al. 2015)
	Diapositive 298 ResNet (He et al. 2015)
	Diapositive 299 ResNet (He et al. 2015)
	Diapositive 300 ResNet (He et al. 2015)
	Diapositive 301 ResNet (He et al. 2015)
	Diapositive 302 Where are we?
	Diapositive 303 Context: Predictive Maintenance
	Diapositive 304 Degradation Models and RNNs
	Diapositive 305 Degradation Models and RNNs
	Diapositive 306 Degradation Data
	Diapositive 307 CNNs for Prognostics
	Diapositive 308 Deep LSTMs for RUL prediction
	Diapositive 309 Deep LSTMs for RUL prediction
	Diapositive 310 CNNs for Prognostics
	Diapositive 311 CNNs for Prognostics
	Diapositive 312 Turbo jet Fan Engine NASA
	Diapositive 313
	Diapositive 314
	Diapositive 315 Sequence Modelling
	Diapositive 316 Sequence modelling : Motivations
	Diapositive 317 Sequence modelling : Motivations > Challenges
	Diapositive 318 Sequence modelling : Motivations >Challenges > Some ideas
	Diapositive 319 Sequence modelling : Motivations >Challenges > Some ideas
	Diapositive 320 Sequence modelling : Motivations >Challenges > Some ideas > Design
	Diapositive 321 Recurrent Neural Networks
	Diapositive 322 RNNs: Structure
	Diapositive 323 RNNs: Structure
	Diapositive 324 RNNs: Structure
	Diapositive 325 RNNs: Structure
	Diapositive 326 RNNs: Structure
	Diapositive 327 RNNs: Structure
	Diapositive 328 RNNs: Structure
	Diapositive 329 RNNs: Structure
	Diapositive 330 Challenges:
	Diapositive 331 Challenges:
	Diapositive 332 Challenges:
	Diapositive 333 Solution:
	Diapositive 334 Long Short Term Memory (LSTMs)
	Diapositive 335 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 336 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 337 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 338 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 339 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 340 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 341 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 342 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 343 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 344 LSTMs (Hochreiter & Schmidhuber 1997)
	Diapositive 345 LSTM Variants:
	Diapositive 346 LSTM Variants:
	Diapositive 347 Deep LSTMs
	Diapositive 348 Application: Prognostics and Deep Learning
	Diapositive 349 System degradation
	Diapositive 350 Prognostics
	Diapositive 351 Prognostics
	Diapositive 352 Prognostics
	Diapositive 353 Prognostics
	Diapositive 354 Prognostics
	Diapositive 355 Degradation Data
	Diapositive 356 Degradation Data
	Diapositive 357 Degradation Data
	Diapositive 358 Degradation Data
	Diapositive 359 Degradation Data
	Diapositive 360 Deep LSTMs for Prognostics
	Diapositive 361 Deep LSTMs for RUL prediction
	Diapositive 362 Deep LSTMs for RUL prediction
	Diapositive 363 Deep LSTMs for RUL prediction
	Diapositive 364 Deep LSTMs for RUL prediction
	Diapositive 365 LSTM training
	Diapositive 366 RUL prediction training How??
	Diapositive 367 RUL prediction Example: C-MAPSS dataset (NASA)
	Diapositive 368 Some applications:
	Diapositive 369 CNNs for Prognostics
	Diapositive 370 CNNs for Prognostics
	Diapositive 371 CNNs for Prognostics
	Diapositive 372 PEM Fuell Cell Degradation
	Diapositive 373 Battery degradation RUL prediction ((He W., Williard N., OstermanM., & Pecht M., 2011)
	Diapositive 374 Basic Approach
	Diapositive 375 References
	Diapositive 376 Bibliography
	Diapositive 377 Bibliography
	Diapositive 378 Bibliography

