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Abstract. This paper develops a degradation tolerant approach based
on optimal control. Compared to classical control design, the aim of this
work is to decelerate the rate of evolution of degradation by minimiz-
ing a quadratic cost function of control input, tracking error and rate
of degradation. A linear quadratic regulator (LQR) and tracker (LQT)
are expanded, in a finite and infinite-horizon, for a discrete-time linear
system in presence of degradation of its components. The performance
of the systems is affected by the degradation in an affine manner. First,
a LQR is developed for finite and infinite horizon, then the structure of
a LQT is designed for finite-horizon. By tuning the weighting matrices,
the performance of the system in closed loop can be modified so that the
system can achieve its mission before the occurrence of component failure
and the remaining useful life can be extended. Electro-Mechanical Actua-
tor (EMA) system is widely used in modern automobiles, transportation
and industrial processes and is adopted to verify the effectiveness of the
proposed control scheme.

Keywords: Linear Quadratic Tracker · Fault-Tolerant Control · Health
Management.

1 Introduction

The evolution of complex and autonomous systems, such as modern aircraft,
unmanned aerial vehicles, and automated industrial processes requires the de-
velopment and the implementation of new control technologies that maintain
system stability and that address incipient failure. Traditional control system
design focuses only on performance and stability without taking into account
the effects of aging, fatigue, and damage to the concerned components. For this
purpose, the implementation of Prognostics and Health Management (PHM)
systems [12] turns out to be an important part of maintenance activities and
the prognostics process becomes one of the main action levers in the search for
global performance.
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Recent approaches have applied modern control techniques such as adaptive
or robust control to address situations where the degree of failure may be un-
known. In [2], an adaptive failure control is developed for incipient failure modes,
which do not affect the stability of the system, but lead to a catastrophic failure.
For various industrial and mission critical systems that operate in closed loop,
Fault Tolerant control design has been developed [10], [1] in order to compen-
sate under passive or active approaches fault occurrence but more recently new
methods are sought such that useful life of critical systems can be extended. In
this context, health-aware control has recently emerged as one of the domains
where control synthesis is sought, based upon the state of health (SOH) and/or
Remaining Useful Life (RUL) prognostics of critical components [8]. RUL prog-
nostics are obtained using degradation models which estimate their parameters
online and adapt the degradation dynamics based upon individual assets. Few
notable works have proposed methods to design control laws that seek to extend
the RUL of component/system as [13], [14] and [5]. Also, [4] proposed Reliability
or RUL based constraints within MPC. In such a framework, a model predic-
tive control (MPC) framework is adopted to produce a controller that adjusts
its reference points and ensures robustness to particular failures, thus reducing
its impact on the system. In the same framework, [3] presents a new method-
ology for failure-tolerant design of electromechanical actuator (EMA), it takes
advantage of online estimates of the remaining useful life (RUL) of a defaulted
component and reconfigures the existing MPC control authority. In [11], a com-
prehensive framework for monitoring the RUL of the system is developed by
using the post-prognostic information. The RUL controller uses a cost function
that adjusts the performance requirements and the desired RUL values.

This paper examines a degradation tolerant approach based on optimal con-
trol [15], [9] by building a quadratic cost function of control input, tracking error
and rate of degradation. First, it is developed for a general discrete-time linear
system affected by a linear degradation in an affine manner, then implemented
for a specific application. The application example is an EMA, which is widely
used in aerospace and industrial processes in place of hydraulic actuators, where
a system failure would be potentially dangerous and extremely costly. The usage
of EMA brings some specific problems associated to thermal balance, reflected
inertia, parasitic motion due failure response [7]. Another important damage
mechanism for EMA is the degradation of friction coefficient due to usury. Slid-
ing and rolling friction cause material wear, which enhances the coefficient of
friction [6].

This paper is arranged as follows. Section 2 introduces the problem state-
ment and the issue addressed. Section 3 presents the proposed reconfiguration
approach in finite and infinite horizon. Section 4 examines the feasibility of the
proposed approach using an example of an EMA. Finally, the conclusion sum-
marizes the significant advances and includes plans for future work.
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2 Problem Formulation

The degradation of components of an active system affects directly the remaining
useful life of the system and consequently its usability and productivity. The state
of degradation or deterioration considered as a health indicator are affected by
the action of the controller. Hence the importance of development of an optimal
approach for performing a control action that takes into account the stability
and the performance requirements of the system and also the SOH.
This paper focuses on linear MIMO discrete-time systems represented by the
state transition, control and observation matrices, A1 ∈ Rn×n, A2 ∈ Rn×l, B1

∈ Rn×m and C1 ∈ Rp×n.

xk+1 = A1xk +A2dk +B1uk (1)

yk = C1xk (2)

where u ∈ Rm, x ∈ Rn, d ∈ Rl and y ∈ Rp correspond respectively to the
input, state of the system, state of degradation and measurement vectors. The
system is supposed to be affected by the degradation in an affine manner and the
degradation evolution is described by the following state-space representation:

dk+1 = A3xk +A4dk (3)

with A3 ∈ Rl×n and A4 ∈ Rl×l. In most cases, the evolution of the degrada-
tion is monotonic and irreversible, moreover, it is unknown. In this work, the
current state of degradation is assumed to be dependent on the previous state
of degradation and also the previous state of the system. The evolution of the
degradation is controlled implicitly by the input since it is sensitive to the state
of the system.
In order to maintain the performance of the system while minimizing the energy
and the speed of evolution of degradation, a quadratic utility function is defined
by:

Uk = xT
kQxk + uT

kRuk +∆dTkQ1∆dk (4)

where ∆dk is the rate of evolution of degradation described by(5).

∆dk = dk+1 − dk = (A4 − I)dk +A3xk (5)

The utility function (4) is used to develop the performance index of a linear
quadratic regulator problem, which gives the following quadratic cost function :

(6)J0 =
1

2
(xT

N S̄NxN +∆dTN P̄N∆dN ) +
1

2

N−1∑
k=0

xT
kQxk + uT

kRuk +∆dTkQ1∆dk

Q, Q1, R, S̄N and P̄N are symmetric positive definite cost-weighting matrices
and |R|≠ 0. The initial plant and degradation state are given as x0 and d0
respectively.
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3 Optimal Reconfiguration Control

In this bellowing section, an optimal control based approach is developed that
allows the synthesis of a state feedback control law using the minimization of
a quadratic criterion involving the state, the control and the rate of evolution
of degradation. The problem posed is to bring the state of equilibrium (zero)
starting from a non-zero initial condition. This problem is equivalent to bringing
the state to any reference track. Hence, in section 3.1, the solution of the problem
is developed for a LQR and then in section 3.2 the solution is extended to a LQT
problem.

3.1 Linear Quadratic Regulator

The solution for the LQR is reached by determining the control sequence u0, u1,
...,uN−1 that minimizes J0 in (6). Using (5) to eliminate ∆d in (6) gives:

(7)

J0 =
1

2
[xT

N (S̄N +AT
3 P̄NA3)xN + dTN (A4 − I)T P̄N (A4 − I)dN

+ dTN (A4 − I)T P̄NA3xN + xT
NAT

3 N (A4 − I)dN ]

+
1

2

N−1∑
k=0

[xT
k (Q+AT

3 Q1A3)xk + uT
kRuk + xT

kA
T
3 Q1(A4 − I)dk

+ dTk (A4 − I)TQ1A3xk + dTk (A4 − I)TQ1(A4 − I)dk]

To solve the problem of LQR, we have first to begin with the Hamiltonian in
order to derive the necessary conditions. The Hamiltonian function is defined by
the following equation:

Hk =
1

2
[xT

k (Q+AT
3 Q1A3)xk+uT

kRuk+xT
kA

T
3 Q1(A4−I)dk+dTk (A4−I)TQ1A3xk

+ dTk (A4 − I)TQ1(A4 − I)dk] + λk+1[A1xk +A2dk +B1uk]

(8)

where the costate of the system λk ∈ Rn and it’s given by:

λk =
∂Hk

∂xk
= (Q+AT

3 Q1A3)xk +AT
1 λk+1 +AT

3 Q1(A4 − I)dk (9)

Solving the stationarity condition ∂Hk

∂uk
= 0, yields to:

uk = −R−1BT
1 λk+1 (10)

If the optimal λk can be found, (10) can therefore be used to find the optimal
control. Moreover, the boundary condition is given by:

λN =
∂ΦN

∂xN
= (S̄N +AT

3 P̄NA3)xN +AT
3 P̄N (A4 − I)dN (11)
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with

(12)ΦN =
1

2
[xT

N (S̄N +AT
3 P̄NA3)xN + dTN (A4 − I)T P̄N (A4 − I)dN

+ dTN (A4 − I)T P̄NA3xN + xT
NAT

3 P̄N (A4 − I)dN ]

Thus, assuming that a linear relation like (11) holds for all times k ≤ N :

λk = Skxk + Pkdk (13)

for a sequence of n×n matrices Sk and n× l vectors Pk. If a consistent formula
for these postulated Sk and Pk can be found, then (13) is a valid assumption.
To do this, use (10) and (13) in (1) to get:

(14)xk+1 = (I +B1R
−1B1TSk+1)

−1[(A1 −B1R
−1BT

1 Pk+1A3)xk

+ (A2 −B1R
−1BT

1 Pk+1A4)dk]

Using (13) and (14) in the costate equation (9) gives:

Skxk + Pkdk = (Q+AT
3 Q1A3)xk

+AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1(A1 −B1R
−1BT

1 Pk+1A3)xk

+AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1(A2 −B1R
−1BT

1 Pk+1A4)dk

+AT
1 Pk+1A4dk +AT

1 Pk+1A3xk +AT
3 Q1(A4 − I)dk

(15)

This equation must hold for all state sequences xk and dk given any x0 and d0,
therefore we can write :

Sk = Q+AT
3 Q1A3 +AT

1 Sk+1(I +B1R
−1BT

1 Sk+1)
−1(A1 −B1R

−1BT
1 Pk+1A3)

+AT
1 Pk+1A3

(16)

and
(17)Pk = AT

1 Sk+1(I +B1R
−1BT

1 Sk+1)
−1(A2 −B1R

−1BT
1 Pk+1A4)

+AT
1 Pk+1A4 +AT

3 Q1(A4 − I)

By comparing (11) and (13), the boundary conditions for these recursions are
SN = S̄N +AT

3 P̄NA3 and PN = AT
3 P̄N (A4−I). Since the auxiliary sequences Sk

and Pk can now be computed, assumption (13) was a valid one, and the optimal
control is:

uk = −R−1BT
1 (Sk+1xk+1 + Pk+1dk+1) (18)

Substituting (1) and (3) in (18) yields to:

(19)uk = −(R+BT
1 Sk+1B1)

−1BT (Sk+1A1 + Pk+1A3)xk

− (R+BT
1 Sk+1B1)

−1BT (Sk+1A2 + Pk+1A4)dk
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Defining the gains sequences :

(20)Kx
k = (R+BT

1 Sk+1B1)
−1BT (Sk+1A1 + Pk+1A3)

(21)Kd
k = (R+BT

1 Sk+1B1)
−1BT (Sk+1A2 + Pk+1A4)

The control takes the form:

uk = −Kx
kxk −Kd

kdk (22)

Equations (16) and (17) are solved backwards in time starting from time N . As
k → −∞, the sequences Sk and Pk converge to a steady-state matrices S∞ and
P∞, then the corresponding steady-state gains are:

Kx
∞ = (R+BT

1 S∞B1)
−1BT (S∞A1 + P∞A3) (23)

Kd
∞ = (R+BT

1 S∞B1)
−1BT (S∞A2 + P∞A4) (24)

Note: The augmented system is formed by the state of the system and the degra-
dation, and A ∈ R(n+l)×(n+l), B ∈ R(n+l)×m and C ∈ Rp×(n+l) are respectively
the state transition, the control and the observation matrices of the augmented
system. If (A,B) is stabilizable and (A,C) is detectable, Sk and Pk converge to
unique steady-state matrices S∞ and P∞.

3.2 Linear Quadratic Tracker

This section synthetizes an optimal control law that forces the system to track
a desired reference trajectory rk over a specified time interval [0, N ]. The cost
function must involve the tracking error, the input, and ∆d to force the state to
reach the reference and to decelerate the speed of evolution of degradation:

(25)
J0 =

1

2
[(C1xN − rN )T S̄N (C1xN − rN ) + ∆dTN P̄N∆dN ]

+
1

2

N−1∑
k=0

(C1xk − rk)
TQ(C1xk − rk) + uT

kRuk +∆dTkQ1∆dk

In this case, the Hamiltonian function becomes:

Hk =
1

2
[xT

k (C
T
1 QC1+AT

3 Q1A3)xk+uT
kRuk+dTk (A4−I)TQ1(A4−I)dk+rTk Qrk

− xT
kC

T
1 Qrk − rTk QC1xk + dTk (A4 − I)TQ1A3xk + xT

kA
T
3 Q1(A4 − I)dk]

+ λk+1[A1xk +A2dk +B1uk]

(26)

The costate equation (9) and the boundary condition (11) are replaced by:

λk =
∂Hk

∂xk
= (CTQC+AT

3 Q1A3)xk+AT
1 λk+1+AT

3 Q1(A4−I)dk−CT
1 Qrk (27)
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λN =
∂ΦN

∂xN
= (CT

1 S̄NC1 +AT
3 P̄NA3)xN +AT

3 P̄N (A4 − I)dN − CT
1 S̄NrN (28)

with

ΦN =
1

2
[xT

N (CT
1 S̄NC1 +AT

3 P̄NA3)xN + dTN (A4− I)T P̄N (A4 − I)dN + rTN S̄NrN

− xT
NCT

1 S̄NrN − rTN S̄NC1xN + dTN (A4 − I)T P̄NA3xN

+ xT
NAT

3 P̄N (A4 − I)dN ]

(29)

From the looks of (28), it seems reasonable to assume that for all k ≤ N , the
costate equation can be written as:

λk = Skxk + Pkdk − vk (30)

Using (30) in the state equation (1) to get:

(31)xk+1 = (I +B1R
−1B1TSk+1)

−1[(A1 −B1R
−1BT

1 Pk+1A3)xk

+ (A2 −B1R
−1BT

1 Pk+1A4)dk +B1R
−1BT

1 vk+1]

Using (31) and (30) in the costate equation (27) gives

Skxk + Pkdk − vk = [CT
1 QC1 +AT

3 Q1A3]xk

+AT
1 Sk+1[I+B1R

−1BT
1 Sk+1]

−1[A1−B1R
−1BT

1 Pk+1A3]xk

+AT
1 Sk+1[I+B1R

−1BT
1 Sk+1]

−1[A2−B1R
−1BT

1 Pk+1A4]dk

+AT
1 Sk+1[I +B1R

−1BT
1 Sk+1]

−1B1R
−1BT

1 vk+1

+AT
1 Pk+1A4dk +AT

1 Pk+1A3xk

+AT
3 Q1(A4 − I)dk −A1vk+1 − CT

1 Qrk

(32)

This equation must hold for all state sequences xk and dk given any x0 and d0,
therefore allows to write:

Sk = CTQC +AT
3 Q1A3

+AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1(A1 −B1R
−1BT

1 Pk+1A3) +AT
1 Pk+1A3

(33)

(34)Pk = AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1(A2 −B1R
−1BT

1 Pk+1A4)

+AT
1 Pk+1A4 +AT

3 Q1(A4 − I)

(35)vk = AT
1 vk+1 −AT

1 Sk+1(I +B1R
−1BT

1 Sk+1)
−1B1R

−1BT
1 vk+1 + CTQrk

By comparing (28) and (30), the boundary conditions for these recursions are
SN = CT

1 S̄NC1 + AT
3 P̄NA3, PN = AT

3 P̄N (A4 − I) and vN = −CT S̄NrN . Since
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the sequences Sk, Pk and vk can be computed, assumption (30) is valid, and the
optimal control is:

uk = −Kx
kxk −Kd

kdk +Kv
kvk+1 (36)

with
Kx

k = (R+BT
1 Sk+1B1)

−1BT (Sk+1A1 + Pk+1A3) (37)

Kd
k = (R+BT

1 Sk+1B1)
−1BT (Sk+1A2 + Pk+1A4) (38)

Kv
k = (R+BT

1 Sk+1B1)
−1BT (39)

If (A,B) is stabilizable and (A,C) is detectable, the tracker gains Kx
k , Kd

k

and Kv
k reach steady-state values Kx

∞, Kd
∞ and Kv

∞ as N → ∞.
A disadvantage of this formulation is the need of computing vk using back-

ward recursion (35) (Fig. 1). To solve this problem, an infinite-horizon LQT in
a causal manner was proposed in [6]. In the following, to verify the effectiveness
of the developed control schemes, a finite horizon LQT is implemented on an
EMA linear model.

Fig. 1: LQT design

4 EMA Application Example

4.1 Actuator Model

A 5th order state-space model [4] was developed by using (1) and (2) to represent
the actuator dynamics. The state vector x = [im θm ωm θl ωl ]

T is described by
the motor current, motor position, motor speed, load position and load speed,
the control input u = [θref ] is constitute of the reference position ( the external
load disturbance is supposed to be negligible), and the output vector y = [im
θl]

T is defined by the motor current and the load position. The coefficients of
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the EMA model are given in Table 1. The transition and the control matrices
are provided respectively in (40), (41) .

A1 =


−Rtt

Ltt
−Kp1Kp2

Ltt
−Kp1+Ke

Ltt
0 0

0 0 1 0 0
Kt

Jm
− Kcs

JmN2
cm

− bm
Jm

KcsNcl

JmNcm
0

0 0 0 0 1

0 KcsNcl

JlNcm
0 −Kl+KcsN

2
cl

Jl
− bl

Jl

 (40)

B1 =
[
Kp1Kp2Ncm

LttNcl
0 0 0 0

]T
(41)

All the state of the system and the degradation are supposed to be measurable,
but we only want to track the load position, thus :

C1 =
[
0 0 0 1 0

]
(42)

4.2 Model of degradation

The winding temperature is proportional to the power loss in the copper windings
[2], [3], [4], thus proportional to the absolute value of motor current. The rela-
tion between the motor current and the winding-to-ambient temperature can be
described by a first order thermo-electrical model with R0 = 2.4×10−1A.K/W.s
and T0 = 10−3s:

ḋ(t) = R0|im(t)|+T0d(t) (43)

Temperature and time affect the electrical endurance qualities of insulation.
Moreover, an increase of temperature leads to winding insulation breakdown,
which is a primary failure mechanism for the EMA’s motors. In the following,
only the rate of evolution of temperature is intended to be decelerated.

Remark: The augmented system formed by the EMA system and the state
of the winding temperature is stabilizable and detectable. The continuous aug-
mented system is discretized using the Zero-Order Hold method (ZOH) for
Ts = 0.01s.

4.3 Results and Simulation

The weight matrices Q and R are chosen in such a way to get a null steady
state error. When increasing the value of matrix R, a larger penalty is applied
to the aggressiveness of the control action, and the control gains are decreasing.
Choosing a large value of R means trying to stabilize the system with less energy
and by choosing a large value of Q, the error between the load position and the
reference has vanished. The main purpose of this work is to decelerate the rate of
evolution of winding temperature, this can be achieved by increasing the value
of Q1. In the following, Q and R are fixed and have the values :
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Fig. 2: Evolution of load position and winding temperature for different Q1
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Fig. 3: Evolution of load position and winding temperature for a constant refer-
ence track
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R = I[1] ; Q = 40.102.I[5]

and
S̄N = Q ; P̄N = Q1

For different value of Q1 and for a finite horizon N = 30000, the results are
represented in Fig. 2. It can be seen that by increasing the value of Q1 the
steady state error increases and the maximal temperature value decreases.

Moreover, for a constant reference track and for N = 300000, Fig. 3 shows
that for Q1 = 109 the settling time is greater than for Q1 = 102 and Q1 = 108,
and the steady state error is bigger, than it starts to decrease with time. To
reduce more the rate of evolution of degradation, the value of Q1 can be increased
but this will increase the rising and the response time.

5 Conclusion and Future Work

Reconfigurable control strategies have gained attention in the control community
in recent years to improve the survivability of critical systems under failure
conditions. This paper proposed a degradation tolerant control design, a finite
and an infinite horizon optimization approach was developed. This approach was
examined for a linear electromechanical actuator system and simulation results
show its feasibility. By tuning the matrix Q1, the rate of evolution of winding
temperature can be decreased thus prevents winding insulation breakdown.
Future work will focus on how to implement LQG control to estimate non-
measurable states. Furthermore, the integration of remaining useful life in the
cost function to extend its value.

Table 1: List of used symbols and constants [4].
Sym Description Units Value
bl Load damping in·lbf/rad/s 2.5× 10−1

bm Motor damping in·lbf/rad/s 1× 10−4

Kcs Coupling stiffness rad/rad 1× 105

Ke Back-emf coef. V/rad/s 1.1× 10−1

Kl Load stiffness in·lbf/rad/s 2× 10−3

Kp1 Motor speed gain V/rad/s 1
Kp2 Motor position gain s−1 1
Kt Motor torque coef. in·lbf/A 1.01
Jl Load inertia in·lbf·s^2 2× 10−3

Jm Motor inertia in·lbf·s^2 2.1× 10−3

Ltt Turn-to-turn induct. H 3× 10−4

Rtt Turn-to-turn resist Ω 1.6× 10−1

Ncl Load coupling – 1
Ncm Motor coupling – 1
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