
Complementary reward function based learning
enhancement for Deep Reinforcement learning

George Claudiu ANDREI, Mayank Shekhar JHA, Didier THEILLOL

Abstract Several complex sequential decision-making problems have been success-
fully implemented using reinforcement learning (RL) for continuous optimal control.
However, the sample efficiency of data collection process during the learning phase
is still not well addressed. The convergence rate to the optimal policy as well as
the time of the learning process are strongly influenced by the efficiency of the data
collected by the agent during the learning phase. This paper proposes a method to
generate efficient sample data which allows the agent to collect high reward trajec-
tories more frequently, decreasing the learning phase time. The proposed method
consists of Complementary reward (CR) function augmented to the traditional re-
ward function. The CR tends to infinity when the control input leads to the system
performance that meets the given requirements very accurately. Consequently, the
control policy which maximizes the reward function can render the system to opti-
mal performance. The main contributions of this study include the following aspects:
(1) a new proposed Complementary reward that is augmented to the reward func-
tion which improves performance of the reinforcement learning based controller in
terms of system requirements; (2) speed-up of training phase via generation of more
efficient data resulting in a better learned policy.

Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, CNRS
Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
George Claudiu ANDREI, e-mail: george.andrei@etu.unilim.fr
Mayank Shekhar JHA, e-mail: mayank-shekhar.jha@univ-lorraine.fr
Didier THEILLIOL, e-mail: mayank-shekhar.jha@univ-lorraine.fr

1

1 Introduction

Reinforcement Learning (RL) has become one of the most important and useful ap-
proach in control engineering. RL uses a trial-and-error learning process to maximize
a decision-making agent’s total reward observed from the environment. Compared to
optimal control theory, this maximization problem can be viewed as minimizing the
cost function since the reward function is designed based on the control problem and
system requirements. Recently, significant progress has been made by combining
advances in deep learning (DL) with RL methods for solving optimal control prob-
lems resulting in the ”Deep Q Network” (DQN) algorithm [1] [2]. DQN solves RL
problems with high-dimensional observation spaces but it can deal only with discrete
action spaces. Deep Deterministic Policy Gradient (DDPG) method was introduced
in 2015 in order to overcome the curse of dimensionality problem as well as to deal
with continuous spaces [1]. DDPG requires an actor-critic framework making the al-
gorithm easy to implement and applicable to optimal control problems characterized
by continuous spaces. A key mechanism used in the DDPG algorithm is the use of
replay buffers to store trajectories of experience in order to extract a batch of samples
during training phase as well as break the correlation between data. A prioritized
experience replay buffer was introduced as improvement of the previous technique in
order to make the samples characterized by high rewards be selected more frequently
[1]. The efficiency of the stored trajectories in terms of reward defines training phase
duration and convergence of the policy: more efficient collected trajectories in terms
of high reward are and the faster the agent will learn the optimal policy. This process
could make the training phase very slow and increases the agent’s ability to learn
a rather sub-optimal policy. This paper proposes an approach to generate efficient
sampled data during the learning phase which consists of a Complementary reward
(CR) function augmented to the traditional reward function in order to guide control
learning for speeding it up and favouring the convergence to the optimal policy.
Similar to the Barrier function concept [3], the proposed CR tends to infinity when
the control input leads to the system performance meet its requirements very accu-
rately. The main contributions of this study include the following aspects: (1) a new
proposed Complementary reward that is augmented to the reward function which
improves performance of the reinforcement learning based controller in terms of
system requirements; (2) speed-up of training phase via generation of more efficient
data resulting in a better learned policy.
The rest of the paper is organized as follows. Section 2 provides a general state-of-the-
art of reinforcement learning including DDPG algorithm. Section 3 provides more
details on RL-based control for balancing a rotary inverted pendulum formulation
problem. The proposed method using Complementary function-based reinforcement
learning will be discussed in Section 4. Finally, the results of simulation and its anal-
ysis in comparison with traditional reward function method is discussed in Section
5. Conclusions are outlined in Section 6.

2

2 Preliminaries

RL involves an agent exploring an unknown environment to achieve a goal: the
agent builds up its knowledge of the environment by gaining experience. Beyond
the agent and the environment, it is required to identify four main sub-elements that
need to be defined in a RL problem: a policy, a reward signal, a value function
and optionally a model of the environment [2]. A policy 𝜋(𝑠𝑡) defines the learning
agent’s way of behaving at a given time 𝑡. A reward signal 𝑟𝑡+1 = 𝑟 (𝑠𝑡 , 𝑎𝑡) is sent to
the agent at any time 𝑡 by the environment. It defines the goal in a RL setting and
it is used for measuring the performance of the agent based on the same concept
as cost function in control theory. The objective of the agent is to learn an optimal
policy by maximizing the accumulated discounted reward

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑟 (𝑠𝑡 , 𝑢𝑡) from
current time step 𝑡 to a future time step 𝑇 , where 𝛾 ∈ (0 1) is the discount factor
which discounts the value of future rewards. A value of a state usually denoted as
𝑉𝜋 (𝑠𝑡) is the expected accumulated reward over the future following the policy 𝜋 and
starting from a particular system state 𝑠𝑡 :𝑉𝜋 (𝑠𝑡) = 𝐸𝜋 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ...|𝑠𝑡],
where 𝐸𝜋 is the expected value under policy 𝜋. By considering how good it is to
be in a state by taking into account the action taken by the agent, it is necessary to
refer to the action-value function, also known as Q-function or Q-value function as
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡).
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡) gives the expected return for performing action 𝑎𝑡 in state 𝑠𝑡 at time step
𝑡, under the policy 𝜋: 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝐸𝜋 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ...|𝑠𝑡 , 𝑎𝑡]. The fourth
and final element is a model of the system to be controlled. Methods for solving
reinforcement learning problems that use models are called model-based methods,
as opposed to simpler model-free methods that are explicitly trial-and-error learners.
Even in model-free methods, the system model may be required in order to simulate
the system making the agent able to collect data if the hardware is not available.
Generally, RL algorithms are based on Markov decision process (MDP) framework
for modeling the environment, the policy and the agent. It is defined by the tuple
(𝑆, 𝐴, 𝑟, 𝑃):

1. A set of states, 𝑆, which contains all possible states of the environment. In other
terms, all the possible discrete or continuous measurable outputs.

2. A set of possible actions, 𝐴(𝑠), which contains all possible actions or control
inputs which can be applied to the system in each state.

3. A reward function 𝑟𝑡+1 = 𝑟 (𝑥𝑡 , 𝑢𝑡), which is the immediate reward perceived
after transition from state 𝑠𝑡 to 𝑠𝑡+1 as consequences of taking an action 𝑎𝑡 .

4. A transition model, 𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡), which denotes the probability of reaching
state 𝑠𝑡+1 when performing action 𝑎𝑡 in state 𝑠𝑡 in case of stochastic environ-
ments. It can be assumed equal to one in deterministic environments.

3

2.1 Deep Deterministic Policy Gradient method

DDPG is a model-free, off-policy and actor-critic framework based algorithm with
continuous action spaces, proposed by Dr. Lillicrap et al. in 2015. This method
is an extension of two other algorithms, Deep Q-Networks (DNQ) and Deter-
ministic Policy Gradient (DPG) which uses the experience replay and target net-
work as main techniques. DDPG uses two neural networks in the actor-critic
and it employs the use of off-policy data and the Bellman equation to learn
the Q-function 𝑄(𝑠𝑡 , 𝑎𝑡) which is then used to derive and learn the policy 𝜋:
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝐸𝑠𝑡+1∼𝐸 [𝑟𝑡+1 + 𝛾𝐸𝑎𝑡+1∼𝜋 [𝑄 𝜋 (𝑠𝑡+1, 𝑎𝑡+1)], where 𝑟𝑡+1 is the reward
observed from the environment after the action 𝑎𝑡 at time step 𝑡, 𝑠𝑡+1 ∼ 𝐸 means that
the transition is sampled from the environment defined as 𝐸 , and 𝑎𝑡+1 ∼ 𝜋 means
that the action is sampled from policy 𝜋. If the policy is deterministic, it is usually
denoted as `, and the inner expectation of the Bellman equation can be avoided:
𝑄` (𝑠𝑡 , 𝑎𝑡) = 𝐸𝑠𝑡+1∼𝐸 [𝑟𝑡+1 + 𝛾𝑄𝜙 (𝑠𝑡+1, `(𝑠𝑡+1)]. 𝑄` can be learned off-policy, by
using transitions generated by a different policy 𝛽 since the expectation only depends
on the environment. The function approximator is represented by the critic neural
network parameterized by \𝜙 and it is used to approximate the Q-function. The
mean-squared error can be used as loss function to be minimized in the optimization
process: 𝐿 (\𝜙) = 𝐸𝑠𝑡𝜌

𝛽 ,𝑎𝑡∼𝛽,𝑟𝑡+1∼𝐸 [(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡) |\𝜙)2]. 𝑦𝑡 is the target value:
𝑦𝑡 = 𝑟𝑡+1 + 𝛾𝑄` (𝑠𝑡+1, `(𝑠𝑡+1) |\`), where 𝜌𝛽 is the discounted state transition for
the policy 𝛽, and `(𝑠𝑡+1) = argmax

𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1) is the policy defined by acting

greedily. The deterministic policy `(𝑠𝑡) is represented by the actor neural network
parameterized by \`. The Bellman equation is then used as in a conventional RL
method to update the critic network. The actor neural network is updated using the
following sampled policy gradient to maximize the expected discounted reward:
∇\` 𝐽 ≈ 𝐸 [∇\`𝑄(𝑠𝑡 , `(𝑠𝑡 |\`) |\𝜙)]. The off-policy data defined as experience tuple
𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) is generated during the training phase and then is stored in a
replay buffer in order to break the inter-correlations between experiences which are
sampled from the memory during the updating phase of the networks. This proce-
dure makes the training phase easier to converge by leading the target value as well
as Q-function prediction be independent from each other resulting in a more stable
learning. The idea is that the weights of the target networks are initialized as copies
of the actor and critic networks weights, but updated more slowly to keep them fixed
for some time steps. Finally, the parameters of the target network are updated using
moving averages for both actors and critics:

\𝜙′ ← 𝜏\𝜙 + (1 − 𝜏)\𝜙′

\`′ ← 𝜏\` + (1 − 𝜏)\`′

where 𝜏 << 1 is the soft target update rate which makes the target networks change
slowly improving learning stability.
An important problem in RL is the trade-off between exploration and exploitation.
To achieve high rewards, the agent has to choose actions by applying a control

4

input it has tried before and knows to be a good one. Exploration refers to the RL
agent exploring the environment to collect unseen trajectories with high rewards.
Exploitation means simply following the current better policy from the experiences
collected in the past to gain as much reward as possible. Thus, DDPG uses a noise
sampled from a noise process 𝑁 is added to the actor policy when selecting an action
during training as exploration law: 𝜋(𝑠𝑡) = `(𝑠𝑡 |\`) +𝑁 . This is called action noise.
Different noise processes can be used. The original DDPG paper suggest a time
correlated one known as Ornstein-Uglenbeck process [1]. It is common practice to
employ a variance of the action noise between 1% and 10% of the maximum control
input action to reduce the training failure rate.

3 Problem formulation

In this paper, the balance control of a rotary inverted pendulum system based on
the DDPG algorithm has been implemented. The control of a pendulum has been
one of extensively applied problems in control field and its choice is justified by the
fact that balancing an inverted pendulum in up-right position from its stable position
is not a trivial task. The rotary inverted pendulum consists of a motor arm, which
is actuated by a DC servo motor, with a swinging pendulum arm attached to its
end. The measured output coming from the system is defined by the motor angle
\ ∈ [− 𝜋

2
𝜋
2] and by the inverted pendulum angle 𝛼 ∈ [−2𝜋 2𝜋]. The set of

all possible values of the two angles among with their rate of change defines the
continuous observation space: 𝑆 ∈ [\ 𝛼 ¤\ ¤𝛼]. The unstable equilibrium point
defines the reference point positioned at the origin of the reference system: 𝛼0 = 0
and \0 = 0. The control input 𝑢𝑡 is the applied voltage by the DC Motor and the set
of all possible values defines the continuous action space: 𝐴 ∈ [−10 10] V. The
reward function indicates whether the task is successful or not during the training
phase and it is one of the most critical part of the RL design.
The reward function is then designed: 𝑟𝑡+1 = −

(
𝑞11\

2
𝑡 + 𝑞22𝛼

2
𝑡 + 𝑞33 ¤\2

𝑡 + 𝑞44 ¤𝛼2
𝑡

)
.

The quadratic reward function indicates the agent how far or close his performance
is from the reference position. It has been designed in such a way as to explicitly
emphasizes the importance of minimizing the control error with respect to the up-
right position of the inverted pendulum (𝛼𝑟𝑒 𝑓 = 0 and \𝑟𝑒 𝑓 = 0) positioned at
reference system origin. Consequently, the learned policy has to make the control
error 𝑒𝑡 converge to zero as close as possible at each time step 𝑡 as shown in Eq. 1.

𝑒𝑡 = |𝑒𝛼 | ≃ 0 with 𝑒𝛼 = |𝛼𝑟𝑒 𝑓 − 𝛼 | = |0 − 𝛼 |. (1)

The absolute value is used to not differentiate between positive (counter clockwise)
or negative rotations (clockwise) of the inverted pendulum.
Additionally, the motor angle’s position needs to be controlled as addition system
requirement: \ ∈ [-30 30] [deg] when balancing the inverted pendulum.

5

4 Complementary reward function method

In RL problems, the agent learns the optimal control policy which maximizes the
reward function by exploring the range of control strategies and selecting the optimal
control strategy which maximizes the reward function. In this context, a new method
is proposed to speed-up the control learning process and favouring the convergence
to the optimal policy by generating more trajectories with high rewards. Such trajec-
tories are generated by a CR included in the reward function which tends to infinity
when the system response leads to optimal performance making the agent collect
a higher reward during the learning phase. In this sense, in the case of balancing
control problem defined in section 3, the CR defined in Eq. 2 is proposed:

C(𝑠𝑡 , 𝑒𝛼, ¤𝛼) :

{
𝑞55𝑒

(1
𝛾 |𝛼𝑟𝑒 𝑓 −𝛼|) + 𝑞66𝑒

(1
𝛾 | ¤𝛼|) if \ < ± A and 𝛼 < ± B and ¤𝛼 < ± D

0 otherwise
(2)

where 𝛾 is the damping coefficient defining the speed divergence of the function
with respect to the control error 𝑒𝑡 , 𝑞55 and 𝑞66 are weighted parameters while A
and B and D are CR conditions to be fixed based on the control problem or system
requirements.

Zoom

Fig. 1: Complementary function with different damping coefficient

As shown in Fig. 1, the proposed CR is inversely proportional control error (see
Eq. 1) tending to infinity when 𝑒𝛼 is very close to zero. The rate of convergence of
the CR is dictated by the damping coefficient as shown in the zoom sub-figure. The
choice of 𝛾 is very important and must be chosen according to system requirements
and control problem.
The CR is included in the DDPG agent reward function defined in Section 3 as
shown in Eq. 3:

𝑅𝑡+1 = 𝑟𝑡+1 + 𝐶 (𝑠𝑡 , 𝑒𝛼, ¤𝛼) (3)

6

where 𝑟𝑡+1 is the reward function defined in Eq. 3, 𝐶 (𝑠𝑡 , 𝛼, ¤𝛼) in Eq. 2 respectively.
The traditional reward function becomes negligible when at least 𝑒𝛼 is close to zero:
𝑅𝑡+1 = 𝑟𝑡+1 + 𝐶 (𝑠𝑡 , 𝑒𝛼, ¤𝛼) ≃ 𝐶 (𝑠𝑡 , 𝑒𝛼, ¤𝛼) if at least 𝑒𝛼 ≃ 0 and ¤𝛼 ≃ 0.

The corresponding pseudo-algorithm concerning the proposed method imple-
mented with DDPG algorithm is given below 1 with 𝑀 , 𝑇 and 𝑛 being the total
number of episodes, episode duration and number of samples respectively.

Algorithm 1 DDPG using Complementary reward function
Step 1. Initialization
Randomly initialize actor network ` (𝑠𝑡 | \`) and critic network 𝑄 (𝑠𝑡 , 𝑎𝑡 | \𝜙)
with weights \` and \𝜙 respectively
Copy the weights to target network `

′ and 𝑄
′ , \`′ ← \` , \𝜙′ ← \𝜙

Initialize replay buffer
Step 2. Exploration
for episode = [1:M]
Initialize the noise process N ∼ OU for exploration
for t = [1:T]
Obtain the current system state 𝑠𝑡 from the environment
Generate control input action 𝑎𝑡 = ` (𝑠𝑡 | \`) + 𝑁 based on the current actor policy
exploration action noise
Execute action 𝑎𝑡 , then if: 𝑒\ < A and 𝑒𝛼 < B, receive reward 𝑅𝑡+1(3) otherwise 𝑟𝑡+1
Obtain the resulting system state 𝑠𝑡+1
Store experience (𝑠𝑡 , 𝑎𝑡 , 𝑅𝑡+1 𝑜𝑟 𝑟𝑡+1, 𝑠𝑡+1) into the replay buffer
Step 3. Update
Extract a mini-batch of 𝑛 experiences (𝑠𝑡 , 𝑎𝑡 , 𝑅𝑡+1 or 𝑟𝑡+1, 𝑠𝑡+1) from replay buffer
Compute the target value: 𝑦𝑡 = 𝑟𝑡+1 + 𝛾𝑄 (𝑠𝑡+1, ` (𝑠𝑡+1) | \𝜙)
Update critic network by minimizing the loss 𝐿 = 1

𝑛

∑
𝑖 (𝑦𝑖 − 𝑄 (𝑠𝑖+1, 𝑎𝑖+1 | \𝜙))2

Update the actor policy by using the policy gradient
∇\` 𝐽 ≈ 1

𝑛
∇\`𝑖

𝑄 (𝑠𝑖 , ` (𝑠𝑖 | \`𝑖) | \𝜙)
Update the target networks
\𝜙′ ← 𝜏\𝜙 + (1 − 𝜏) \𝜙′
\`′ ← 𝜏\` + (1 − 𝜏) \`′
end
end

To demonstrate the effectiveness of the proposed approach while using DDPG
algorithm for optimal control, a comparison between traditional method and the pro-
posed one has been carried out. The training settings, hyper and weighted parameters,
neural networks configuration remain the same. The training phase duration is set to
600 episodes whose duration is defined by 2500 number of steps each resulting in 25
seconds since the sample time is set to 0.01. The learned policy by the agent is then
tested on the same simulink model that was used to train the agent for both methods
with simulation time of 10 [sec]. The position of the pendulum and motor angles are
always initialized in the same way at the beginning of each training episode: 𝛼0 = ±𝜋
[rad] and \0 = 0 which consist on vertically down position for the pendulum and
motor angle positioned at the origin of the reference frame respectively. During each
episode, the agent will generate online trajectories by observing the measured output

7

and reward coming from the environment and will subsequently use them to improve
and update their policy.

4.1 Traditional reward function approach

The trained agent performance without using CR function is first analyzed. Fig. 2
shows the output response of the inverted pendulum angle 𝛼 with respect to the
unstable equilibrium point 𝛼𝑟𝑒 𝑓 = 0. As it can be noticed, the trained agent is not
able to balance the pendulum in up-right position but leads to oscillations around
the stable equilibrium point which is positioned at 𝛼 = +180 [deg] as well as 𝛼 =

-180 [deg] depending on the rotation sense. On the other hand, Fig. 3 shows that \
output response is respecting the system requirements of keeping the motor angle
in between ± 30 [deg]. These performances demonstrate that the agent learnt a
sub-optimal policy and it would need to be trained for more than 600 episodes for
converging to a better policy. The sub-optimal convergence can be observed in the
episode reward function as shown in Fig. 6 where the steady state response has an
offset of -500 with respect to zero episode reward which is the maximized one.

4.2 Complementary function approach

The implementation of the proposed method via CR is carried out with the same
training and structure of the neural networks and a damping coefficient 𝛾 = 0.7.
Fig. 4 shows the inverted pendulum angle 𝛼 with respect to the reference position
𝛼𝑟𝑒 𝑓 = 0. As it can be noticed, the trained agent is able to keep the inverted pendulum
in up-right position in less than 1 [sec]: 𝛼 ± 5 [deg]. However, the trained agent is
not able to balance the pendulum for more than one 1.5 [sec] since the learned
policy is not optimal. Fig. 5 shows that \ output response is respecting the system
requirements of keeping the motor angle in between ± 30 [deg]. This improvement
in terms of performance and convergence to a better policy in the same amount of
episodes took place thanks to the introduction of the CR which allowed the agent to
collect higher rewards with respect to the traditional approach resulting in a better
performance. From episode reward shown in Fig. 7 is possible to notice that at
the beginning of the training phase the reward function response is similar to the
traditional approach until the agent is within the CR conditions. As soon as the
agent collects high trajectories, he focuses on generating others with higher reward
by updating the policy. Consequently, CR speed-up the convergence rate to a better
policy with respect to the traditional approach.

8

Fig. 2 Inverted Pendulum
angle response with no CR

0 1 2 3 4 5 6 7 8 9 10

 Time [sec]

-200

0

200

 a
n

d

re
f [

d
e
g

]

 [deg]

ref
 [deg]

Fig. 3 Motor angle response
with no CR

0 1 2 3 4 5 6 7 8 9 10

 Time [sec]

-40

-20

0

20

40

,
m

in
,

m
a
x
 [

d
e

g
]

 [deg]

min
 = - A [deg]

max
 = +A [deg]

Fig. 4 Inverted Pendulum
angle response with CR and
𝛾 = 0.7

Fig. 5 Motor angle response
with CR and 𝛾 = 0.7

9

Fig. 6: Episode reward function with
no CR

Fig. 7: Episode reward function with
CR and 𝛾 = 0.7

5 Conclusions and Future work

The proposed approach improves the policy learning by speeding up its convergence
rate via Complementary reward function making the agent able to learn a better
policy in less amount episodes thanks to its capability of rewarding the agent with
high values when the control task achieves the required performance levels. The
proposed approach can be implemented in any kind of RL problems since it acts at
the level of reward function design which is a step inherent to all the RL algorithms.
Thus, the proposed CR function concept can be viewed as a general contribution to
RL based approach. Numerical issues that might occur when the CR tends to infinity
represent a mathematical constraint of this method. For this reason, the CR must be
up bounded accurately based on the weighted parameter and damping coefficient so
the CR function diverges to the up bound which can only be reached when the control
error is very close to zero. However, the comparison between the traditional method
and the proposed one demonstrates that CR function based approach can provide a
better performance under similar conditions. The next step will be to tune the hyper
parameters of the CR function, in particular, the damping coefficient in order to
speed-up the convergence of the optimal policy in as few episodes as possible.

References

[1] Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning. 2015. doi: 10.48550/ARXIV.
1509.02971. url: https://arxiv.org/abs/1509.02971.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Second edition. Adaptive com-
putation and machine learning series. Cambridge, Massachusetts: The MIT Press, 2018. isbn: 9780262039246.

[3] Thanh Long Vu et al. Barrier Function-based Safe Reinforcement Learning for Emergency Control of Power
Systems. 2021. doi: 10.48550/ARXIV.2103.14186. url: https://arxiv.org/abs/2103.14186.

10

