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Abstract

Control systems influence our society enormously. Although they are invisible to most users, they

are essential to the functioning of almost all devices, be they basic household appliances, aircraft or

nuclear power plants. A common denominator among those different applications of control is the

need to influence or modify the behavior of dynamical systems to achieve specified goals. In this

context, one of the main objective of Artificial Intelligence is to solve complex control problems with

high-dimensionality of observation spaces or system models which are unavailable. Recent research

has shown that Deep Learning techniques can be combined with Reinforcement Learning methods to

learn useful representations allowing to solve the problems mentioned above. In particular, due to

the recent progress in Deep Neural Networks, Reinforcement Learning (RL) has become one of the

most important and useful new technology in Control Engineering. It is a type of Machine Learning

technique in which a computer agent learns to perform a specific task by replacing the classic con-

troller of the traditional control, through these repeated trials and error interactions with a dynamic

environment by selecting control inputs sequence based on measured outputs. This thesis intends to

provide an in-depth introduction of Deep Learning using Neural Networks combined with Reinforce-

ment Learning methods and then apply them to learn an intelligent controller able to meet specific

system requirements without any kind of human supervision. In particular, the application of Deep

Deterministic Policy Gradient (DDPG) model-free method to autonomous control such as DC Motor

speed control to an inverted pendulum will be presented based on Reinforcement Learning MATLAB

Toolbox.

Keywords: Reinforcement Learning, Dynamical Systems, Deep Deterministic Policy Gradient, Deep

Learning.
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Chapter 1

Introduction

Optimal control theory is a mature mathematical discipline that finds optimal control policies for

dynamical system by optimizing used-defined cost functional that capture desired design objectives.

One of the main principle for solving such problems is the dynamic programming (DP) principle. DP

provides a sufficient condition for optimality by solving a partial differential equation, known as the

Hamilton-Jacobi-Bellman equation. Classical optimal control solutions are offline and require complete

knowledge of the system dynamics. Artificial Intelligence (AI) has been used for enabling adaptive

autonomy and it is a branch of computer science involved in the creation of computer programs capable

of demonstrating intelligence. Traditionally, any piece of software which displays cognitive abilities such

as perception, planning and learning is considered part of AI. Particularly, the area of AI concerned

with creating computer programs that can solve problems, which requires intelligence by learning from

data, and this is called Machine Learning (ML)[19]. ML is grouped in three main categories depending

on the amount and quality of feedback about the system or task:

1. Supervised learning;

2. Unsupervised learning;

3. Reinforcement learning;

In Supervised learning, the feedback information provided to learning algorithms is a labeled training

data set, and the objective is to build the system model representing the learned relation between

the input, output and system parameters in order to enable the learning agent with the capability to

generalize its responses to cases not included in the training set.

While in Unsupervised learning, no feedback information is provided to the algorithm and it uses

unlabeled data as input and detects hidden patterns in the data such as clusters or anomalies. It

receives no feedback from the supervisor.[19]

Finally, Reinforcement learning (RL) is the type of learning in which an agents apply actions, also

called decisions, to a system considered as environment over an extended period of time in order to
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CHAPTER 1. INTRODUCTION

achieve the desired goal. The time variable can be discrete or continue and actions are taken at every

time step, leading to a sequential decision-making problem. The actions are taken in a closed loop,

which means that the outcome of earlier actions is monitored and taken into account when choosing new

actions. Rewards are provided in order to evaluate the one or more step decision-making performance,

and the goal is to optimize the long-term performance, measured by the total reward accumulated over

the course of interaction between the agent and the system. Such decision-making problems appear in

a wide variety of fields, including automatic control, operations research, economics, and medicine.

In particular, unlike traditional optimal control, RL finds the solution to the HJB equation online in

real time. This has motivated control system researchers to enable adaptive autonomy in an optimal

manner by developing RL-based controllers. [3][16]

How is RL different from Supervised (or Unsupervised) Learning?

• Training phase is not done with a large (labeled or unlabeled) pre-collected static data-set.

Rather, controller’s “data” is provided to him dynamically via feedback from the real world

environment in which the controller is interacting.

• Interactively decisions are made over a sequence of time-steps. In a classification problem, the

controller runs inference once on the input-data to produce an output prediction. With RL, the

controller runs inference repeatedly, navigating through the real-world environment as he goes.

What problems are solved using RL?

Rather than the typical ML problems such as Classification, Regression, Clustering and so on, RL

is most commonly used to solve a different class of real-world problems, such as control systems by

finding an optimal way to achieve a given and specific task:

• Eg. A robot or a drone that has to learn the task of picking a divide from one box and putting

it in a container.

• Manipulating a robot to navigate the environment and perform various tasks.

• Fault Tolerant Control.

1.1 Goals

The underlying motivation for this master’s thesis was to explore Deep Reinforcement Learning based

on the control design for dynamical systems using Reinforcement Learning Matlab Toolbox. In order to

investigate this, some subtasks were given:

1. Conduct a literature study into the realm of Deep Reinforcement Learning and identify a suitable

algorithm for control;

2



CHAPTER 1. INTRODUCTION

2. Learning the use of Reinforcement Learning Matlab Toolbox;

3. For reference, implement a controller with reasonable tuning for both linear and non linear

systems;

1.2 Thesis Outline

Following this introductory chapter, the thesis branches between two main concepts, Reinforcement

Learning and Deep Learning and finally their implementation on Matlab.

In particular, the thesis is structured as follows:

1. Introduction: presents the background and goals of the thesis

2. Reinforcement Learning: presents a detailed description about Reinforcement Learning state-

of-the-art in order to provide the reader useful tools to enter in this research field and a comparison

with traditional control from a nomenclature point of view

3. Deep Reinforcement Learning: presents Deep approach to Reinforcement Learning, provid-

ing an outline of Deep Learning and presenting Deep Deterministic Policy Gradient (DDPG)

algorithm

4. DDPG Implementation using RL MATLAB Toolbox: presents the design of a linear

and then a non linear control system to perform reinforcement learning experiments in real

applications in simulated environment using Reinforcement Learning Matlab Toolbox

5. Conclusions: presents a summary of the results obtained from experiments with some consid-

erations

6. Perspectives: presents a conclusions from a possible future work point of view

3



Chapter 2

Reinforcement Learning

Reinforcement learning (RL) offers powerful algorithms to search for optimal controllers for both linear

and non linear systems with deterministic or even stochastic dynamics that are unknown or highly un-

certain. Reinforcement learning (RL) is a model-free framework for solving optimal control problems

stated as Markov decision processes (MDPs). This chapter mainly covers AI approaches to RL, from the

the control engineer point of view. First, some general concepts of reinforcement learning with respect

to control theory will be presented, and the rest will mostly focus on reinforcement learning specifically.

2.1 Reinforcement learning for optimal control applications

Broadly speaking, the goal of a control system is to determine the correct control inputs (actions) into

a system that will generate the desired system behavior. Figure 2.1 shows that with feedback control

systems, the controller uses measured output to improve performance and correct random disturbances

and errors. Engineers use that feedback, along with a model of the plant and environment, to design

the controller to meet the system requirements.

The goal of reinforcement learning is similar to the control system one but with a different approach

and it can be summarized as follows: an agent attempts to learn a policy, sequence of actions or

control inputs (i.e voltage applied to a DC Motor) which will allow to control a dynamic environment

to maximize some objective function. Despite the simplification, this formulation is constructed mainly

to catch the attention of anyone with experience in the field of control theory, as this should seem very

similar to what their own field of study attempts to accomplish. However, the two fields have different

approaches to the problem of controlling dynamic systems, with control theory being mainly model-

driven, and machine learning being mainly data-driven.

The schema block shown in Figure 2.1 represents a general control system block representation which

can be translated to a Reinforcement Learning representation:

4



CHAPTER 2. REINFORCEMENT LEARNING

Figure 2.1: Reinforcement Learning vs Traditional Control

From RL point of view, the environment is everything which is not included by the controller: the

plant, the reference signal, and the error computation. In general, the environment can also include

additional elements such as measurement noise, disturbance signals, filters and converters. In addition,

the observation is any measurable value coming from the environment that is visible to the agent which

depends on the available sensors for example the state system, measured output and so on, while the

control input is defined by the action taken by the controller itself. The sequence of actions is called

policy usually denoted as π the best ones are learned by the agent which is the controller based on a

reinforcement learning method.

The reward is a function used for measuring the performance of the agent such as cost function in

control theory. For example, it is possible to implement reward functions which minimize the steady-

state error while minimizing control effort.

Most of the material in this chapter is distilled from various books, papers and articles from the web.

Worth mentioning specifically are the books "Artificial Intelligence: A Modern Approach" by Russel

and Norvig [19], "Reinforcement Learning: An Introduction" by Sutton and Barto [22], the UCL

reinforcement learning course by Dr. David Silver, the papers "Human-level control through deep

reinforcement learning" by Mnih et al. [13], "Deterministic policy gradient algorithms" by [20], and

"Continuous control with deep reinforcement learning" by Dr. Lillicrap et al. [11]. Once the basic

definition of what RL is and its comparison with control theory has been given, in the next section

the main mathematical concepts that define the formulation of the RL problem with the possible

approaches and resolution algorithms will be explored.

2.2 Reinforcement Learning fundamentals

Reinforcement learning is a computational approach to sequential decision making. It provides a

framework that is exploitable with decision-making problems that are unsolvable with a single action

and need sequence of actions, a broader horizon, to be solved. This section aims to present the

5
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fundamental ideas and notions behind this research field in order to help the reader to develop a

baseline useful to approach the main algorithms.

2.2.1 Trial-error-learning

In all the approaches and algorithms that solve the RL problems, the interactions between the agent and

the environment go on for several cycles because the RL agents will improve their behavior through

trial-and-error learning cycles. The environment is represented by a set of variables related to the

problem. The combination of all the possible values this set of variables can take is referred to as state

space. A state is a specific set of values the variables take at any given time t.

Agents may or may not have access to the actual environment’s state; however, one way or another,

agents can observe something from the environment. The set of variables the agent perceives at any

given time t is called an observation. The combination of all possible values these variables can take

is the observation space. Know that state and observation are terms used interchangeably in the RL

community. This is because usually agents are allowed to see the internal state of the environment, but

this is not always the case. At every state, the environment makes available a set of actions the agent

can choose from. Often the set of actions is the same for all states, but this is not required. The set of

all actions in all states is referred to as the action space. Figure 2.2 shows graphically the interaction

between the agent and environment which is repeated sequentially over time where at each time step t

the agent observes a state st ∈ state space S, then selects an action at by applying the control input ∈

action space A, according to a policy, which is a rule used by the agent to decide which control input

to apply to the system. The policy might be deterministic, in which case it is usually denoted as π(st),

or stochastic, in which case it is usually denoted as π(at|st):

π(st, at) = P [at|st] (2.1)

where the policy π returns a probability P [at|st] of taking an action in presence of stochastic environ-

ments otherwise directly the action is taken for each possible state.

Then the agent receives a new observation from the environment, which contains bot a scalar reward

rt+1 defined in eq 2.2, and the next state st+1. The scalar signal reward represents the instantaneous

benefit after transition from state st to st+1 and taking a particular action at.

rt+1 = ρ(xt, ut) (2.2)

6
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Figure 2.2: Trial-error-learning cycle

The set of the state, the action, the reward, and the new state is called experience:

et =< st, at, rt+1, st+1 > (2.3)

Every experience has an opportunity for learning and improving agent performance. The task which

is being solved by the agent is may or may not have a natural ending. Tasks with natural ending, such

as a game, are called episodic tasks. Conversely, tasks without natural ending are called continuing

tasks, such as learning forward motion. The sequence of time steps from the beginning to the end of an

episodic task is called an episode. Agents may take several time steps and episodes to learn the desired

behavior. As it happens with human beings decisions, receiving conspicuous reward at a specific time

step t does not exclude the possibility to receive a small reward immediately afterwards and sometimes

it may be better to sacrifice immediate reward to gain greater ones later.

2.2.2 Return

The return value gt which is defined in eq. 2.4 is the accumulated reward

gt(τ) = rt+1 + γrt+2 + ... =
∞∑
k=0

γkrt+k+1 γ ∈ [0, 1] (2.4)

where γ is the discount factor. This parameter shows a preference for immediate rewards rather than

for the future ones but also mathematically is necessary in order to be sure that this quantity converge

to a finite value in case of an infinite-horizon sum of rewards. The main goal of the agent is to maximize

the cumulative reward. On the other hand, τ is a trajectory which is a sequence of states and actions

in the environment defined in eq. 2.5:

τ = (s0, a0, s1, a1, ...) (2.5)

where s0 is the measured output or state at time step t = 0, a0 is the control input applied to the

system or the action taken at time step t = 0, s1 is the measured output or state at time step t = 1,

7
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a1 is the control input applied to the system or the action taken by the agent at time step t = 1 and

so on.

2.2.3 Markov Decision Process

The Markov Decision Process (MDP) provides a mathematical framework for modeling the environ-

ment, the policy and the agent.

An MDP framework is made by:

1. A set of states, S, which contains all possible states of the environment. In other terms, all the

possible discrete or continuous measurable outputs.

2. A set of possible actions, A(s), which contains all possible actions or control inputs to be applied

to the system in each state.

3. A transition model, P (st+1|st, at), which denotes the probability of reaching state st+1 when

performing action at in state st.

4. A reward function rt+1 = ρ(xt, ut), which is the immediate reward perceived after transition

from state st to st+1 with action at.

The transition states of the environment are assumed to satisfy the Markov property, which means that

the probability of reaching state st+1 only depends on s, and not on the history of any earlier states. If

the complete states of the environment are available to the agent through the state, the environment

is fully observable otherwise is partially observable. In this thesis fully observable environments will be

used. Different environments and systems allow different kinds of action and a set of actions is called

the action space. Eg, in the DC motor environment the action space could be the the voltage range

that can be physically applied to the system. This example is characterized by an environment which

could be with both discrete or continuous action space depending on the system. In case of discrete

action space the number of possible actions are finite. On the other hand, a continuous action space

is characterized by infinite number of possible actions. The type of action space will determine the

possible approach to be applied to solve the RL problem. The main mathematical quantities will be

discussed in the following sections.

2.2.4 Value function

The value function Vπ(st) defined in eq. 2.6 is the expected (ref. to eq. 2.17) Eπ return value of state

st when following policy π. Practically, it represents what is the expected reward that the agent can

presume to collect in the future, starting from the current state st. The reward signal rt+1 represents

8
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only a local value of the reward in the sense that it takes in to account only the state while the value

function provides a broader view of future rewards: it is a sort of prediction of rewards.

Vπ(st) = Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|st] = Eπ[rt+1 + γGt+1|st] (2.6)

In other words, the value function estimates how good a state is and it is represented by the expected

value Eπ under policy π and also does not takes into account actions but only the goodness to be in

that particular state Vπ(st). By considering how good it is to be in a state by taking into account

also the action taken by the Agent, it is necessary to refers to the action-value function, also known as

Q-function or Q-value function defined in eq. 2.7 and denoted as Qπ(st, at), which gives the expected

return for performing action at in state st at a generic time step t, under the policy π:

Qπ(st, at) = Eπ[Gt|st, at] = Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|st, at] = Eπ[rt+1 + γGt+1|st, at] (2.7)

In both of these value functions, gt(st) is the return value as defined in eq. 2.4. The optimal value

function denoted as V ∗(st) and defined in eq. 2.9, is the one which yields maximum value compared

to all other value function:

V ∗(st) = max
π

Vπ(st) ∀s ∈ S (2.8)

V ∗(st) = max
a

∑
st+1∈S

P (st+1, rt+1|st, at) + [rt+1 + γV ∗(st+1)] ∀s ∈ S (2.9)

In other words, it gives the maximum expected return when starting in state st, and acting according

to the optimal policy π∗ afterwards. On the other hand, the optimal action-value function denoted as

Q∗(st, at) and defined in eq. 2.10 is the one which yields the maximum value compared to all other

action-value functions:

Q∗(st, at) = max
π

Qπ(st, at) ∀s ∈ S, a ∈ A (2.10)

Q∗(st) = max
a

∑
st+1∈S

P (st+1, r|st, at) + [rt+1 + γ ∗max
at+1

Qπ(st+1, at+1)] ∀s ∈ S, a ∈ A (2.11)

and it gives the expected return when starting from state st, performing action at, and then acting

according to the optimal policy π∗ afterwards. There is an important connection between the optimal

action-value function and the optimal action: the optimal policy in st will select the action which

maximizes the expected return when starting in state st. Therefore, if Q∗(st, at) is known, the optimal

action a∗(st) can be obtained directly:

a∗(st) = argmax
a

Q∗(st, at) (2.12)
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2.2.5 Bellman Equation

The goal of the agent is to approximate an optimal policy π∗ which maximizes the value of each state

yielding V ∗ and Q∗ as the optimal state value function and action value function.

Dynamic Programming (DP), which is an optimization method which simplifies a complicated problem

such as RL by recursively breaking it into simpler sub-problems, which can then be solved. The

idea is to exploit the fact that said value functions satisfy Bellman Optimality Equation (Barto and

Mahadevan, 2003)[2], which yield:

V ∗(st) = max
π

Vπ(st) ∀s ∈ S (2.13)

V ∗(st) = max
a

∑
st+1∈S

P (st+1, r|st, at) + [rt+1 + γV ∗(st+1)] ∀s ∈ S (2.14)

Q∗(st, at) = max
π

Qπ(st, at) ∀s ∈ S, a ∈ A (2.15)

Q∗(st) = max
a

∑
st+1∈S

P (st+1, rt+1|st, at) + [rt+1 + γmax
at+1

Qπ(st+1, at+1)] ∀s ∈ S, a ∈ A (2.16)

where P (st+1) is the transition state probability which is the probability of reaching state st+1 from

state st performing action at while rt+1 is the reward function.

2.2.6 Expectation

The expectation defined in eq. 2.17 is used because the goal is to optimize long term future rewards

and it represents the weighted sum of all possible outcomes multiplied by their probabilities (expected

reward). In other words, the expectation, also known as the mean, is computed by the summation of

the product of every state value and its probability:

E[f(x)] =
∑
x

P (x)f(x) (2.17)

where P (x) represents the probability of the occurrence of a general random variable x, and f(x) is a

general function denoting the value of the state x.

2.2.7 Exploration vs. Exploitation

An important problem in RL is the trade-off between exploration and exploitation. To achieve high

rewards, the agent has to choose actions by applying a control input it has tried before and knows to

be a good one. To discover these actions, the agent must choose actions that have not been tested

using observed consequences from the environment. Exploration refers to the RL agent exploring the

environment to collect more information, and exploitation means simply following the current best

policy from the experiences collected in the past and available to the agent to gain as much reward as
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possible. In other words, short-term rewards have to be sacrificed in order to be able to find a good

policy in the long run by exploring states that are not seen yet by the agent.

There are some solutions such as naive explorations and the most used one is called ϵ-greedy, which is

fairly straight-forward:

let ϵ ∈ (0,1):


a∗(st) = argmaxQ∗(st, at)

a
with probability (1− ϵ)

random action with probability ϵ.
(2.18)

The action a∗(st) expressed in eq. 2.18 is taken by the agent according to the best current policy π.

2.2.8 Approaches to RL

Every Agent consists of an RL algorithm that exploits to maximize the reward it receives from the

environment. Each type of algorithm has its own peculiarity and understanding differences between

them is useful to adequately understand what type of algorithm satisfies better the needs of the specific

problem. Nowadays, RL algorithms are numerous, and drawing the complete picture behind them could

be a complicated purpose. The distinctions presented in this section aim to describe the most crucial

distinctions that are useful in the context of the thesis without claiming to be exhaustive.

2.2.8.1 Learning Components

The first worthy distinction among RL algorithms can be made by analyzing how the algorithms ex-

ploit the different components of the agent: indeed it is possible to explain the main strategies in RL

using policy, model and value function defined in Section 2.2.4. One of the most crucial aspects of an

RL algorithm is the question of whether the agent has access to or learns the model of the environment:

this element enables the agent to predict state transitions and rewards. A method is model-free when

it does not exploit the model of the environment to solve the RL problem. All the actions control input

applied by the agent to the system results from direct observation of the current situation in which the

agent is. It takes the observation, does computations on them and then select the best control input to

feed into the system. This last representation is in contrast with the model-based methods where the

agent has the full knowledge of the environment including the system plant. Both groups of methods

have strong and weak sides. Ordinarily, model-based methods show their potential in a deterministic

environment by making the agent able to extract all the knowledge from the environment and learn

an optimal policy to follow. However, the opportunity of having the knowledge about the environment

and in particular about the plant is not always possible due to many factors such as the knowledge of

the system parameters or systems which are too complex to model. At this time, model-free methods

are more popular and have been more extensively developed and tested than model-based methods [6].

This thesis focuses mainly on the model-free approaches. On the other hand, model-free methods tend
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to be more straightforward to train and tune because it is usually hard to design and build models of

complex systems.

The use of policy or value function as the central part of the method represents another essential

distinction among RL algorithms. The approximation of the agent’s policy is the base of policy-based

methods. In this case, the policy representation is usually a probability distribution over available

actions. This method aims to optimize the agent’s behaviour directly and may require multiple ob-

servations from the environment which makes this method not so sample efficient. On the opposite

side, methods could be value-based. In this case, the agent is still involved in finding the optimal be-

haviour and sequence of control input to follow in an indirectly way by exploiting the value functions

2.2.4. Particularly, it is not interested anymore about the probability distribution of actions but on

determining the value of all actions available by choosing the best one. The main difference from the

policy-based method is that this one can benefit from other sources such as old policy data or replay

buffer.

2.2.8.2 Learning approaches

The most basic approach is to learn no politics and to use pure planning methods such as predictive

model control (MPC), which is widely used in control theory. In MPC, an optimal plan with respect

to the model is computed over some finite time-horizon, and then discarded in the next time step, and

computed again. In RL, the learning setting of the agent’s behaviour could be online or offline. In the

first case, the learning process is done in parallel while the agent continues to gather new information

to use from the system, while the second one progresses toward learning using limited data. Gener-

alization becomes a critical problem in the latter approach because the agent is not able to interact

anymore with the environment. In the context of this thesis online learning will be considered: the

learning phase is not bound to already gathered data, but the whole process goes on using both old

data coming from replay buffers and brand new data obtained in the most recent episode.

Another significant difference in RL algorithms is the distinct use of policy to learn. on-policy algo-

rithms profoundly depend on the training data sampled according to the current policy because they

are designed to use only data gathered with the last learned policy. On the other hand, an off-policy

method can use a different source of valuable data for the learning process instead of direct experience.

For instance, this feature allows the agent to use large experience buffers of past episodes. In this con-

text, these buffers are usually randomly sampled in order to make the data closer to being independent

and identically distributed.

In the following sub-section the common used model-based approach Dynamic Programming (DP)

will be explained. DP is very important to understand because it is relatively straightforward and it

contains all the main ideas and frame bases used by most RL algorithms.
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2.2.9 Model-based approach: Dynamic Programming

Dynamic Programming (DP) is one of the approaches used to solve RL problems. Formally, it is

a general method used to explain complex problems by breaking them into more manageable sub-

problems. After solving all sub-problems, it is possible to sum them up in order to obtain the final

solution to the whole original problem. This technique provides a practical framework to solve MDP

based problems by observing what is the best result achievable from them and assuming full knowledge

about the system of the specific problem. For this reason, it applies primarily to model-based problems.

Furthermore, DP methods are based on bootstrapping means that these strategies use one or more values

estimated at the update stage for the same type of estimated value, making the results more sensitive

to the original values. The way of bootstrapping and update step define the DP methods which mainly

are policy iteration and value iteration.

2.2.9.1 Policy Iteration

The policy iteration aims to find the optimal policy π∗ by directly manipulating the starting random

policy in order to do a proper evaluation of the current policy and then by iteratively following the

policy iteration algorithm in Figure A.1 iteration where θ is the parameter which defines the accuracy:

the more the value is closer to 0, the more the evaluation would be precise. Subsequently, policy im-

provement represents the second step towards policy iteration where a new better policy than previous

one is sought by changing the action to select in a specific state with a more rewarding one. It is

possible to check if a new policy π
′ is better than the previous one π by using the action-value function

Qπ(st, at). As explained in 2.7, this function returns the value of taking action at in the current state

st and, after that, following the existing policy π.

If:

Qπ′ (st, at) > Qπ(st, at) (2.19)

where π′ is the new policy and π is the previous one, it follows that the selected actions coming from the

new policy π
′ is better with respect to action chosen by the current policy π in terms of performances,

reward and consequently, the new policy would be better overall. Based on that, it is reasonable to

act greedily to find a better policy starting from the current one iteratively selecting the action which

produces the higher Qπ(st, at) for each state. This iterative application of policy improvement stops

after an improvement step which not modify the initial policy, returning the optimal policy found.

2.2.9.2 Value Iteration

The second approach used by DP to solve MDPs is value iteration. As it can be see in Figure A.2,

value iteration algorithm is an iterative technique that alternate evaluation and improvement until it

converges to the optimal policy. On the other hand, value iteration uses a modified version of policy
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evaluation to determine the V-function V (st) and then it computes the policy from it.

The policy evaluation and policy improvement steps could be resuming as follows:

1. Policy Evaluation = evaluate V-function with a given policy π (v1 → v2 → . . . → vπ) using

synchronous backups by iterating Bellman Equation explained in Section 2.2.5. Practically, it

starts from some arbitrary V-function Vπ(st) for all the states and looking at a step forward and

iterating the Bellman equation, the V function of the initial states can be updated.

V (st)← Eπ[rk+1 + γVπ(st+1)] (2.20)

2. Policy Improvement = improve the policy by acting greedily with respect to Vπ(st) of the

current evaluated policy π. In other words, the best action for each state is extracting in order

to improve π and ensure that it measures up to the best possible action. In this way it is the

current policy π is improved and by repeating all those loops until the policy will not change

anymore it is possible to find the optimal policy.

π(st)← argmax
a

Eπ[rt+1 + γVπ(st+1)] (2.21)

For a more in-depth discussion of model-based RL and their implementation, see " Deep Reinforcement

Learning " by Dr. Li. [10], chapter 6. However, DP algorithms are limited by the high calculation

cost caused by the analysis of the entire state space as well as the need for states and/or Q-functions

storage in lookup tables. RL seeks to solve these issues by the limitation of the exploration to the

more probable states only, based on the learning experience, and the later employment of function

approximators such as neural networks, [2].

2.2.10 Model-free approaches

The main hypothesis of DP methods is to have a comprehensive knowledge of the environment which is

not always accurate from a practical point of view especially for very complex systems to be modelled

or highly uncertain environments. In these cases, the agent or the controller, has to infer information

using its experience by exploiting model-free methods, based on the assumption that there is no prior

knowledge about state transition and rewards.

This section intends to provide a brief description of main model-free approach used for Control

Systems:Temporal Difference (TD).
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2.2.11 Temporal Difference Learning

Temporal Difference (TD) learning is a very central topic in reinforcement learning. TD learning

methods are model-free and they can learn directly from experiences without a model of the environ-

ment. In this context, the Agent learns by bootstrapping from the estimation of the present V-function

or Q-function, which means estimates are updated in part by using other learned estimates without

waiting for the actual outcome. TD learning often refers to the prediction problem with an update rule

for the value function given as:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.22)

where α is known as the learning rate ∈ (0,1) while γ is the discount factor. Notice that, the agent takes

into account more recent reward for α = 1 and learns nothing when α = 0. rt+1 + γV (st+1) − V (st)

defined in 2.22 is known as the TD error :

δt = rt+1 + γV (st+1)− V (st) (2.23)

and arises in various forms in many areas of reinforcement learning.

The term,

δt = rt+1 + γV (st+1) (2.24)

is denoted as TD Target.

The TD learning method for prediction is used in two different methods for doing TD control, which

are discussed below:

• SARSA (State-Action-Reward-next State-next Action)

• Q-Learning

2.2.11.1 SARSA learning

SARSA is an on-policy and online techniques TD learning and it gets its name from the quintuple

representing a transition from one state-action pair to the next: (st, at, rt+1, st+1, at+1). It works by

taking the principle of TD prediction and applying it in order to learn a Q-function Q(st, at), instead of

a V-function V(st). It is an on-policy method, because it estimates Qπ(st, at) for the current policy π,

and in simultaneously update the π greedily with respect to the estimated Qπ(st, at). The Q-function

is updated by bootstrapping (ref. to eq. 2.22 is given as:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.25)
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and is used after every transition to a non-terminal state st. If a state st+1 is found to be terminal,

Q(st+1, at+1) is set to zero. It can be shown that SARSA converges to an optimal Q-function Q∗(st, at)

and policy when all state-action pairs are visited an infinite number of times, and the policy converges

to be purely greedy. In other words, an agent interacts with the given environment and performs policy

update based on actions selected.

2.2.11.2 Q-learning

One of the early breakthroughs in reinforcement learning is the off-policy control algorithm Q-learning.

It takes the Q-function Q(st, at) and updates it very analogously to SARSA where the only difference

is how the bootstrapping is done. In the Q-learning algorithm, the future action is taken using greedy

policy i.e choose an action which maximize the Q-function of the next state as shown in eq. 2.26.

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, at+1)] (2.26)

where α is the learning rate and γ is the discount factor. The following table highlights the main

differences in the algorithm between Q-Learning and SARSA:

Figure 2.3: SARSA vs Q-Learning

2.3 Conclusion: limitations of Reinforcement Learning

The algorithms explained so far work with systems characterized by well-defined and time-discrete

states and actions. In this context, a state-value function or Q-value function table is created with a

number of rows equal to the size of the state space and a number of columns equal to the action space.

It is easy to see that there may be some non-negligible problems as the value-state function V has an

entry for each state while the Q-function has an entry for each state-action pair. This setting can be

problematic in case of continuous action spaces over time (e.g. pendulum) or with a large number of

action or state spaces from a computation point of view and memory availability as it becomes difficult

to manage the storage of a large number of states and actions. Furthermore, there may be obstacles

regarding the slowness in learning the value of each state individually. This problem is called the

curse of dimensionality. A solution to this problem can be the use Artificial Neural Networks (ANNs)
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as function approximators. The intersection of neural networks theory (known as Deep Learning as

approximation functions with Reinforcement Learning is called Deep Reinforcement Learning.

In the next chapter some basic concepts from Deep Learning will be first explained in order to go more

in detail about Deep Reinforcement Learning methods.
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Chapter 3

Deep Reinforcement Learning

Reinforcement Learning has evolved a long way with the enhancements from Deep Learning. Recent

research efforts into combining Deep Learning with Reinforcement Learning have led to the develop-

ment of some very powerful Deep Reinforcement Learning (DLR) systems, algorithms, and agents [5]

which have already achieved some extraordinary accomplishment. The basic idea of DLR is to no

longer directly compute the value of V-function or Q-function as RL problems, but to estimate their

values in order to solve the curse of dimensionality problem:

V (st) ≈ Vπ(st)

Q(st, at) ≈ Qπ(st, at)
(3.1)

The use of Artificial Neural Networks as estimators reduces the training time for high dimensional

systems, and it requires less space in memory. This point represents the bridge between traditional

reinforcement learning and recent discoveries in the theory of deep learning. One of the first steps

towards DRL and general AI broadly applicable to a different set of various environments was done by

DeepMind with their pioneering paper [14] and the consequent [13]. Because of the nature of this work,

the focus of this chapter will be on model-free algorithms. The following sections aims to explain the

state-of-the-art and the leading theory behind Deep RL framework together with an overview about

deep learning and the presentation of two deep actor-critic algorithms used in the experiments of this

thesis: Deep Deterministic Policy Gradient method.

3.1 Deep Learning fundamentals

Deep Learning (DL) involves using multi-layered non-linear function approximation, typically neural

networks. DL is not a separate branch of ML, so it’s not a different task than those described above.

DL is a collection of techniques and methods for using neural networks to solve ML tasks. Deep

Reinforcement Learning is simply the use of DL to solve RL problems.
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This section focuses the attention to the Deep Learning fundamentals providing an outline of the basic

concepts used by Deep Learning in combination with Reinforcement Learning.

3.1.1 Artificial Neural Networks

Artificial neural networks (ANNs) were created as an attempt to mimic how the animal and human

brain functions. They turned out to be a oversimplification, but remain very useful as function ap-

proximators. ANNs are called networks, because they contain multiple neurons (i.e nodes) which are

connected together as well as human brain. Each neuron consists of numerous inputs called dendrites

coming from proceeding neurons. When a linear combination of the inputs exceeds a specific potential,

it fires through its single output called axon. Mathematically, the elaboration phase of each neuron j

consists in taking the inputs and elaborate them by taking the weighted sum and then adding a bias b:

inj =
n∑

i=0

wxsi,j + b (3.2)

where the index i ranges over all nodes in the previous layer connected to it. Then, an activation

function g is applied, producing the output (see Figure 3.1):

aj = g(inj) = g(
n∑

i=0

wxi,j + b) (3.3)

Figure 3.1: Example of a simple model for a neuron. From [19]

These neurons are arranged in different layers, which can be divided into three broad categories:

input layers, hidden layers, and output layers. Every neural network has one input layer, where the

input data is fed to the network, and one output layers, which produces the resulting specific output

based on the network’s task. Networks can have any number of hidden layers, including zero and its

number depends on the complexity of the function to be approximate. In a feed forward network,

nodes in each layer are connected to all the nodes in the next layer (fully connected layers), see Figure

3.2.
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Figure 3.2: Simple example showing a deep neural network with four layers. From [19]

Each node implements a linear classifier, but the network as a whole can approximate nonlinear

functions as well. Dr. Russel [19] showed that two hidden layers can represent any function, and later

proved that a single hidden layer is enough to represent any continuous function, an early version of

the universal approximation theorem. This is done by varying the different weights of the nodes in the

network collectively called network parameters and usually denoted as θ. Next, the problem is to find

a weight combination that will produce a function nearest to the target function that the network is

estimating.

3.1.2 Learning process

The learning process aims to seek the set of parameters θ which results in the best possible function

approximation for a specific objective. The learning process consists in many steps:

1. Forward path: the vector containing the input-features X is forwarded through the neural

network in order to predict or estimate the output value of interest Ŷ = f(X, θ).

2. Loss: the resulting estimated value (Ŷ ) is compared with the actual value y by computing the

loss function L(θ) based on the difference between the output of the neural network for a specific

input data yθ and the actual value y. There are several loss functions but one of the most used

one is the Mean-Squared Error (MSE) defined in 3.4.

L(y, ŷ) = (yθ − y)2 (3.4)

3. Back-propagation: the learning starts by computing the global gradient of the loss function,

which is carried out together with its back-propagation through all the network. The back-

propagation computes the gradient of the loss function with respect to its parameter ∇θL for
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each neuron in the hidden layers by back-propagating using the chain rule showed in 3.5, which

computes derivatives of composed function by multiplying the local derivatives:

y = g(x), z = f(g(x)),
∂z

∂x
=

∂z

∂y
.
∂y

∂x
(3.5)

4. Update: the final step of the learning consists updating the weights of all neurons. The most

common rule used to carry out the update phase is the gradient descent defined with the main

purpose of minimizing the loss function by refreshing the internal parameters of the network in

the negative direction of the gradient loss. This process will bring the function approximation

process closer to the minimum at each iteration. The following equation describes the update

rule based on the gradient descent :

θt+1 ← θt − α∇θL (3.6)

where α is the learning rate ∈ [0, 1] which represents one of the hyperparameters of the neural

networks.

5. Regularization: The final aim of the learning process is to obtain an approximate function

able to generalize over data. This means that a neural network should show performances on

unseen data with respect to the one obtained from training data otherwise the so-called effect

overfitting is produced. On the other hand, if the neural network is not able to show good

performances on both unseen and training data, it causes the opposite phenomenon to overfitting

called underfitting.

Regularization represents an approach to overcome and prevent the problem of overfitting and

underfitting which consists on extending the loss function (see 3.4) with a regularization term:

L
′
(θ) = L(y, ŷ) + λΩ(θ) (3.7)

where λ is the regularization factor.

Equations 3.9 and .3.9 show two examples of regularization terms. The first one is L2-regularization

which exploits the squared sum of the weights θ in order too keep the weights small. The second

approach is known as L2-regularization: in this case, large weights are less penalized, but this

method leads to a sparser solution.

L
′
(θ) = L(y, ŷ) + λ

1

2
||θ||2 (3.8)

L
′
(θ) = L(y, ŷ) + λ

1

2
||θ|| (3.9)
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3.1.2.1 Activation functions

The activation function is the responsible of bringing non linearity to the neural network in order to

improve the approximation of complex and non linear function. Equation 3.10 shows the most common

activation functions:

Sigmoid→ g(x) =
1

1 + e−x

Hyperbolic Tangent→ g(x) =
ex − e−x

ex + e−x

Rectified Linear Unit (ReLu)→ g(x) = max(0, x)

Leaky Rectified Linear Unit (Leaky ReLu)→ g(x) = max(α, x)

(3.10)

where α is an hyperparameter network generally set to 0.01.

Normally, neural networks use ReLu in the hidden layers because it is easy to compute and does not

saturate and the Hyperbolic Target in the output layer in order to normalize the output between 0 and

1.

These elements are the basis of the learning phase of the neural networks used for estimates the

interested RL function. In particular, if the neural network is used for estimating and providing

directly the control input, the algorithm is called Policy Gradient. On the other hand, if the neural

network is used for estimating and providing the Q-function in order to extract in a second step the

action, the algorithm is called value-based.

In the following section both of them will be discussed in detail with a particular attention for the

Deep Deterministic Policy Gradient algorithm, the one used in this thesis.

3.2 Policy Gradient methods

Differently from Q-Learning, policy gradient algorithms has the main objective to generate a trajectory

τ which maximizes the expected reward by learning the optimal policy π∗ and providing directly the

best action starting from any given time step t until the terminal time T .

From a mathematical point of view, policy gradient methods consist of maximizing J(θ) value by

finding a proper policy by updating θ parameters of the neural network which parameterized the

policy function:

J(θ) = E[
T−1∑
t=0

rt+1]

θ∗ = argmax
θ

J(θ)

(3.11)

Since this is a maximization problem, the policy is optimized by taking the gradient ascent with

the partial derivative of the objective with respect to the policy parameter θ in order to refresh the
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parameters of the policy:

θt+1 ← θt + α∇θJ(θ) (3.12)

where α is the learning rate which defines the strength of the steps in the direction of the gradient.

Notice that thegradient ascent is the reverse of the gradient descent defined in eq. 3.6 and updates

parameters θt in the positive direction of the gradient of the policy’s performance measured by the

∇θJ(θ) term.

3.2.1 Deriving the policy gradient

It is possible to expand the expectation as:

J(θ) = E[

T−1∑
t=0

rt+1|πθ] =
T−1∑
t=i

P (st, at|τ)rt+1 (3.13)

where i is an arbitrary starting point in a trajectory, P (st, at|τ) is the probability of the occurrence of

st, at given the trajectory ttau.

Differentiate both side with respect to policy parameter θ and using ∂ log f(x)
∂x = f ′(x)

f(x) :

∂J

∂θ
= ∇θJ(θ) ∼

T−1∑
t=i

∇θ logP (st, at|τ)rt+1 (3.14)

Notice that the expected reward was replaced because random samples of episodes will be taken.

By using the definition of return (2.4 is possible to obtain:

∇θJ(θ) =
T−1∑
t=0

∇θ log πθ(at|st)Gt (3.15)

Notice that the first term measures how likely the trajectory is under the current policy π and by

multiplying it with the return it increases in case of high positive rewards. On the contrary, the

likelihood of a policy is decreasing if it results in a high negative reward. In this context, the essence of

policy gradient is increasing the probabilities for “ good “ actions and decreasing those of “bad” actions

with will not be learned. Since a log of probabilities is computed, it is easy to have noisy gradients

and this could cause unstable learning or convergence to a sub-optimal policy. The flow of Gradient

Policy Methods algorithm is:

1. Perform a trajectory roll-out using the current policy;

2. Store log probabilities (of policy) and reward values at each step;

3. Compute discounted cumulative future reward at each time step;

4. Compute policy gradient and update policy parameter;
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5. Repeat 1-4 until the optimal policy π∗ is reached.

The main advantage of policy gradient approaches consists in the stability of their convergence: these

methods work updating their policy directly at each time step t instead of renewing value functions

from which to derive the policy like value-based methods. Furthermore, policy gradient algorithms

can face infinite and continuous action space because the agent estimates the action directly instead

of computing the Q-value for each possible action. The third feature is their ability to learn stochastic

policies, useful in uncertain contexts or partially observable environments. Despite the presence of the

advantages just mentioned, policy gradient methods have a substantial disadvantage: they tend to

converge to a local maximum instead of the global optimum. In this context, a better mix approached

called Actor-Critic method was introduced in order to solve this disadvantage.

3.2.2 Actor-Critic architecture

Pure policy gradient methods tent to learn slowly due to estimates with high variance, and are incon-

venient to implement for online problems. However, the TD methods discussed in chapter 2.2.11 can

be used to oppose these problems. Actor-critic methods combine these two approaches to learn both

a policy and a state value function simultaneously, and use the value function for bootstrapping. The

policy is the actor neural network, and controls how the agent behaves and act, while the learned value

function is the critic neural network, and measures how good or bad an action chosen by the actor

is. In particular, the actor relates to the policy, while the critic deals with the estimation of a value

function (e.g Q-value function). In this context of deep reinforcement learning, they can be represented

using neural networks as function approximators: the actor exploits gradients derived from the policy

gradient method and adjust the policy parameters, while the critic estimates the approximate value

function for the current policy π.

The learning phase is realized by the interaction between actor and critic neural networks and the

environment at each time step t and it is explained in details in B This idea of combining policy-

based and value-based method is nowadays considered standard for solving RL problems thanks to its

performance and stability. Most modern algorithms rely on actor-critic architecture and expand this

basic idea into more sophisticated and complex technique such as Deep Deterministic Policy Gradient

algorithm which is one of the most used technique for control systems which will be explained in the

next section.

3.3 Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) is a model-free, actor-critic algorithm with continuous

action spaces, presented by Dr. Lillicrap et al. [11] in 2015. It is the main algorithm chosen for study

in this thesis, mainly due to being adapted specifically for environments with continuous action spaces,
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which most physical control tasks have, and because of its high performance. DDPG is an extension

of two other algorithms, Deep Q-Networks (DQN) [13] and Deterministic Policy Gradient (DPG) [20].

Specifically, it utilizes the experience replay and target network techniques which will be discussed

in-depth below, and uses actor-critic with a deterministic policy. In particular, DDPG concurrently

learns a Q-value function Q(st, at) and a policy π: it uses off-policy data and the Bellman Equation

Q-function based defined in eq. 3.16 in order to learn the Q-value function thanks to which it will

subsequently learn policy:

Qπ(st, at) = Est+1∼E [rt+1 + γEat+1∼π[Qπ(st+1, at+1)] (3.16)

where rt+1 is the reward observed from the environment after the action at at time step t, st+1 ∼ E

means that the transition is sampled from the environment defined as E, and at+1 ∼ π means that

the action is sampled from policy π. If the policy is deterministic, it is usually denoted as µ, and the

inner expectation of the Bellman equation can be avoided:

Qµ(st, at) = Est+1∼E [rt+1 + γQϕ(st+1, µ(st+1)] (3.17)

Due to the fact that this expectation only depends on the environment, Qµ can be learned off-policy,

by using transitions generated by a different policy β. Using the greedy policy from Q-learning,

µ(st) = argmax
a

Q(st, at) and representing the Q-function as a function approximator parameterized

by θQ, the mean-squared error can be used as a loss function in the same way actor-critic method

approach (see 3.2.2).

The optimization problem is by minimizing the loss function:

L(θQ) = Estρβ ,at∼β,rt+1∼E [(yt −Q(st, at)|θQ)2], (3.18)

where

yt = rt+1 + γQ(st+1, µ(st+1)|θQ), (3.19)

and ρβ is the discounted state transition for the policy β. yt is often called the target value.

DDPG uses an actor-critic approach where the actor is parameterized approximation of a deterministic

policy µ(st|θµ, and the critic is parameterized approximation of the action-value function, Q(st, at|θQ),

and they are both represented by deep neural networks. The critic Q(st, at), is learned using the

Bellman equation as Q-learning (see above), while the actor is learned by using the policy gradient.

Dr. Silver et al. [20] showed that for a deterministic policy, the policy gradient is simply the expected

gradient of the action-value function:

∇θµJ ≈ Est∼ρβ [∇θµQ(st, µ(st|θµ)|θQ)] (3.20)
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= Est∼ρβ [∇atQ(st, µ(st)|θQ)∇θµµ(st|θµ)] (3.21)

3.3.1 Replay Buffers

Most optimization algorithms used for training neural networks assume that the samples used are

independently and identically distributed. In RL, where the samples are generated from sequentially

interacting with the environment, this assumption does not hold. Additionally, to take advantage of

hardware optimizations, it is essential to learn in mini-batches, rather than online.

One way to deal with this issue, is to use an experience replay buffer, which was introduced by Dr. Lin

[12]. Following some policy, different experience tuples et = (st, at, rt+1, st+1) are generated, and saved

in a cache. This set contains a finite amount of previous experiences, and at each time step, both the

actor and critic are updated using a uniformly sample mini-batch of tuples from this buffer, yielding

uncorrelated sample for training. When the buffer is full, old samples are discarded to make place for

new ones.

3.3.2 Target networks

The DDPG algorithm uses another trick to achieve stable learning with the deep neural networks by

using target networks. The critic network Q(st, at|θQ) is being updated while also being used in the

target value defined in eq. 3.19) of the loss function, which means the parameter update depends on

the parameters θ which are being updated. This causes the Q update to be prone to divergence, and

makes learning unstable. To avoid this, copies of both the actor and critic networks are created, and

denotes as µ
′
(st|θQµ) and Q

′
(st, at|θQ′ ). They are used for computing the target values, hence their

names. The idea is that the weights of the target networks are initialized as copies of the weights of

the actor and critic networks, but updated more slowly to keep them fixed for some time steps. The

target networks are updated with "soft" updates:

θQ′ ← τθQ + (1− τ)θQ′ (3.22)

θµ′ ← τθµ + (1− τ)θµ′ (3.23)

where τ ∈ (0, 1) is a hyperparameter, usually with a small value (e.g. 0.001). This causes the target

networks to change slowly, which slows the learning phase but greatly improves learning stability.

3.3.3 Exploration

As discussed earlier, the trade-off between exploration and exploitation is an important problem in

reinforcement learning, especially in continuous action spaces. Due to the fact that DDPG is off-policy

the problem of exploration can be completely separated from the learning algorithm itself. In order to
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make the DDPG agent explore the environment, noise sampled from a noise process N is added to the

actor policy when selecting an action during training:

π(st) = µ(st|θµ) +N (3.24)

This is called action noise. Different noise processes can be used, the original DDPG paper [19] suggest

an Ornstein-Uglenbeck process explained in [18], which is time correlated. In order to reduce the failure

rate of training, it is used to use a the variance of the noise between 1 % and 10 % of the maximum

control input action.

3.4 Conclusion: discussion on RL

At this point it is possible to think that only setting up an environment, placing the RL agent in it and

then let the computer solve all the problems while the engineer is doing other things. Unlucky, even

if a perfect agent is setup and the RL algorithm converges on a solution, there are still drawback to

this method and it need experience to know how to interpret correctly the results and how to improve

them. There challenges come down to two main question

• How is known the solution is going to work?

• Could be improved even if the solution seems good?

The first issue regards the fact that a policy is made up of a neural network with very high number

of weights and biases and non linear activation functions. The contribution of these values and the

structure of the network create a complex function that maps high-level observations to low-level

actions. This function is a black box to the designer. It is possible to have a sense of how this function

operates but it is possible to know the reason behind those values. Another problem concerning this

type of approach is the computing power and memory available in the personal computer. The timing

of the application of these algorithms strongly depends on the computing power and can go from a few

minutes to a few hours with the same hyperparameters but with two different computers. On the other

hand, traditional control approaches can quickly become difficult or impossible to achieve when the

system is hard to model, is highly nonlinear, or has large state and action spaces (e.g walking robot)

but they can be applied when the plant is not too complicated to model and its dynamics are perfectly

known. Due to all these problems mentioned above, the implementation of the DDPG algorithm that

will be deepened in the next chapter, took a long time to adapt the tuning of the hyperparameters both

from the point of view of the time required for training and for the high number of hyperparameters

to be tested to obtain good performance by the agent on the system to be controlled.
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DDPG implementation using RL

MATLAB Toolbox

Reinforcement Learning Toolbox provide functions and blocks for training policies using reinforcement

learning algorithms including Deep Deterministic Policy Gradient. These policies can be used to

implement controllers and decision-making algorithms for complex systems. It is also possible to

implement the policies using deep neural networks, polynomials or look-up tables. This toolbox gives

the possibility to train policies by enabling them to interact with environment represented by Matlab

or Simulink. The evaluation of the algorithms, experimentation with hyperparameter setting, and

monitor training progress is also provided.

In this section the implementation of DDPG algorithm on a linear and non linear dynamical system for

optimal control will be presented in order to evaluate the algorithm performances. The implementation

will be divided analyzing step-by-step the following flow-chart:

1. Formulate Problem: define the task for the agent to learn, including how the agent interacts

with the environment from the set of observations and actions point of view and any primary

and secondary goals the agent must achieve.

2. Create Environment: define the environment within which the agent operates, including the

interface between agent and environment and the environment dynamic model.

3. Define Reward: design the reward signal that the agent uses to measure its performance with

respect to task goals and how this signal is calculated from the environment.

4. Create Agent: define the agent, which includes defining a policy representation and configuring

the agent learning algorithm and its hyperparameters.

5. Train Agent: train the agent policy representation using the defined environment, reward and

agent learning algorithm.
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6. Validate Agent: evaluate the performance of the trained agent by simulating the agent envi-

ronment together.

4.1 Example: DC Motor

There are various uses of direct current machines in the industry. DC motors are used in both high

and low power applications as well as fixed and variable speed electric drives. For example, their

applications range from low power toys, spinning and weaving machines, vacuum cleaners, elevators,

electric traction and so on. The speed of a DC motor can be adjusted easily, by changing voltage and

current depending on the type of the DC motor used.

4.1.1 Speed control problem

Consider the following state space representation of a DC motor second-order continuous time model:

xt+1 = f(xt, ut) = Axt +Bt (4.1)

→ d

dt

ω
i

 =

 −b
J

K
J

−K
L

−R
L

ω
i

+

0

1
L

V

where:

• xt ∈ Rn is the measured state DC Motor speed [ radsec ] , xmax = 10 [ radsec ],xmin = 0 [ radsec ];

• ut ∈ Rm is the control input Voltage applied to the DC motor [V] , umax = 10 [V ] , umin = 0

[V ];

• yt ∈ Rp is the output and A,B,C are dynamical matrices of the system.

It is assumed that the DC Motor can only rotate counterclockwise with a saturated range of ut to

[0, 10]V .

For the infinite-horizon LQT problem, the goal is to design an optimal controller for the system which

ensures that the output ytmeas tracks a step reference speed trajectory ytref and acts on the difference

between the two, the optimal control problem can be seen as regularization of the form:

ytref − ytmeas = 0→ et = 0 (4.2)

In Figure C.1 can be see the physical setup of the DC Motor.

4.1.2 Designing reference speed signal

The regularization control problem is set with respect to a time-varying step function characterized by

a period of 60 [s] designed in Figure 4.1.
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Figure 4.1: Reference speed signal

The design of the step function reference signal with different amplitudes was carried out in order

to allow the neural network, and therefore the agent to become aware of all the frequencies present in

its operating range and to verify after training whether the agent was able to track any step function

or other shapes such as sin and ramp with different amplitudes until saturation.

4.1.3 Create Environment

In a Reinforcement Learning scenario, the environment model the dynamics with which the agent

interacts and the one that the agent must learn. In particular, the dynamics include the plant modeling

and also the disturbances. Practically speaking, the environment is everything except the controller

defined by the RL algorithm, reward and policy.

Usually what is done to solve a RL problem is to train in a simulated environment which contains the

plant and then improve its behavior by continuing to train the agent in the real environment so that

it is also able to face off against a real environment characterized by uncertainty and disturbances.

The dynamics of the system can be modelled as:

J
d2θ

dt2
= T − b

dθ

dt
→ d2θ

dt2
=

1

J
(Kti− b

dθ

dt
) (4.3)

L
di

dt
= −Ri+ V − e→ di

dt
=

1

L
(−Ri+ V −Ke

dθ

dt
) (4.4)

The plant’s dynamics will be defined as the environment of the RL problem, it is necessary to create

the environment MATLAB object which will interact with the Agent by generating the instantaneous

rewards signals and observations in response to agent actions.

4.1.4 Observation and Action signals

The observation signals which consist of the feedback from a control point of view is defined in such a

way as to make the agent able to learn all of the frequencies covered by the various in time reference

speed signal designed in the previous paragraph: S ∈ [ykmeas ykref ˙ykmeas ˙ykref ]. The action
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set which is the control input range, on the other hand, is defined as continuous since the DDPG can

be trained in continuous set, is defined by the action range of the voltage applied to the DC Motor:

A ∈ [0 10]V which will be normalized in the same scale as the observation set.

4.1.5 Reward signal

The reward signal is one of the most important designing function used to guide the learning process

of the agent because this signal measures the performance of the Agent with respect to the specific

task. In other words, for a given observation or state, the reward measures the effectiveness of taking

a particular action. During training, an agent updates its policy based on the rewards received for

different state-action combinations in order to maximize the total outcome of the reward function

which is the goal of the Reinforcement learning problem.

At each time step t, the reward is defined as follows:

rt+1 = r(xt, ut) = −Q|et| − q11 | ˙ymeas| (4.5)

where et = ytref − ytmeas .

Since this is a maximization problem of a negative quantity, the Agent must learn how to make the

reward function converge to zero as close as possible. The first term is responsible for tracking the

reference signal by minimizing the error while the second one for reducing the oscillating behaviour

once it achieved the tracking of speed

4.1.6 Normalization

In this example a min-max normalization normalization defined in eq. 4.6 was implemented for both

observation and action spaces in order to improve the speed and the performance of the training.

xknorm =
xkmeas − xmin

xmax − xmin
(u− l) + l (4.6)

• xkmeas is the original data with no normalization,

• xknorm is the normalized data,

• xmax, xmin are respectively the maximum and minimum values of the quantity to be normalized

• u, l are respectively the upper and lower values of the new range for the normalized data:

xnorm ∈ [l = −1;u = 1].

Notice that the control input action at each time step t from the controller is passed back to the reward

function Matlab function (via a unit delay to align them with the new state observations they cause).

This means they can be included in the reward calculation. In addiction, a white noise was designed
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and added to the agent action in order to simulate the tolerance of the actuator and to improve the

exploration of the Agent itself.

4.1.7 Training configuration

This section will present the settings and hyperparameters used to train the agent after learning the

optimal policy π∗

4.1.7.1 RL Design process

Training an RL agent presents a different set of challenges:

• Selecting the reward signal;

• Tuning many design variables;

• Long training times;

Finding a successfully reward signal is the most challenging part of the RL design. It is an iterative

process which depends on multiple design parameters, and it cannot be validated quickly due to the

long training times. That is one of the main reasons a absolute value or quadratic-based reward signal

is most used. The approach used to select the correct weights is discussed below.Besides the reward

signal, there are many other design variables involved in training the agent such as the simulation time,

sampling rate, number of nodes in both critic and actor networks, defining a reset function and so on.

Training a reinforcement learning agent is lengthy process ranging approximately between 30[min]

to 2[h] for Optimal DC Motor speed control. Thus, unlike model-based design, with RL its takes

time to validate if the agent can successfully could achieve the goal depending also on how much the

agent will explore the main frequencies of the system and how much data it collects around the main

frequencies. It is very important to document how changing certain parameters (i.e, design variables)

affects the response of the system. One way is to have a table with the various design parameters and

the corresponding outcome. These are the main design parameters that were changed in the training

sessions:

• Reward signal: quadratic weights used in the reward function and penalization terms

• Critic and Actor networks: number of hidden layers, neurons, activation functions

• Sample time: sample time of the Simulink model which represents the environment and the

dynamics to be study for both the environment and the agent.

• Training Episodes: the number of episodes it took for the RL algorithm to create the policy

for the agent to be trained.
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4.1.7.2 Hyperparameters and network architectures

The table presented in Figure C.3 shows the hypermerameters used for training the agent after several

iterations of the RL design process.

The DDPG algorithm is fairly sensitive to hyperparameter tuning. Small changes are generally un-

problematic or can lead to faster learning in some cases and even though DDPG turned out to be

highly sensitive to the reward functions, they have not been included in the original paper. As can be

seen in the table, among the several reward functions were tried, the most reliable one is the one with

Q = 6 and q11 = 0.01 (ref. to eq. 4.5) making the error term with the highest influence and pushing

the agent to track the convergence of the error to zero.

Notice also that the number of neurons comprising the feature input layer for each neural network

is equal to the dimension of the observation state while the number of neurons of the output layer

corresponds to control input action space. The number of hidden layers and their neurons depend on

the complexity of the dynamics to be learned for the agent, in this case 4 hidden layers with 16 neurons

each. In order to push the agent explore in an important way, 10 % of the control input voltage range

is selected as variance.

4.1.8 Performances

Once successful agent is trained, how well the policy is for tracking the reference speed is tested in

simulation on Simulink platform.

By plotting the closed-loop step Agent response response:

Figure 4.2: Speed controlled trajectory from time varying step function
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Figure 4.3: Speed controlled trajectory from sin wave

Figure 4.4: Speed controlled trajectory from Ramp

The plot in figure 4.2 shows how the agent was able to learn the unknown dynamics of the DC Motor

and track the the designed reference signal with a rise time = 0.3 [s] managing to rotate the motor

making the steady state error ess the with an acceptable zero mean oscillator behavior converging

close to zero:

ess = lim
t→+∞

et = 0.0008 (4.7)

where et is the error defined as the difference between the reference signal and the control input defined

in eq. 4.2 but considering the control input after the transient phase.

The maximum number of steps for each episode was setted to 6000 which means an episode duration

of 60 sec in order to give the agent the time to track the entire reference speed signal:

ept = Ts ∗maxsteps (4.8)

where ept is the episode duration expressed in sec while Ts = 0.01 is the sampling time.

The agent after 581 episodes = 20[min] of training was able to converge to the optimal policy π∗ and

also to adapt its behaviour to track also different signals characterized with the same frequencies as

the one used for train.

From the plot in Figures 4.4 and 4.5 it can be see that the agent is also able to track a sin wave and

also a ramp reference signals which have different dynamics as it was trained. In particular, the agent
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is able to track the ramp signal until physical saturation while for the positive sine wave, the agent

tracks the signal with a small time offset. Taking into account that the agent was unaware of these

shape of signals during the training phase, this is an impressive result.

4.1.9 Conclusions

It has been demonstrated that the implementation of the DDPG algorithm in LQT control of a first-

order linear system was successful with excellent performance and the training phase lasted relatively

shortly. This is due to the not overly complicated dynamics that the agent had to learn. However,

before applying the trained agent to the real system, it is recommended to finish training it on the

real real system in order to allow the agent to learn the uncertain effects due to real hardware systems

and compensate them with a suitable voltage. In the next section, the implementation of the DDPG

algorithm on a non-linear system will be tested in order to make the system agent learn more complex

dynamics and analyze its performance with respect to the linear one.

4.2 Example: Inverted Pendulum

In this section, the implementation of the DDPG algorithm on a Inverted Pendulum system is analyzed.

The agent first will train in a simulated environment and then the goal will be to apply the optimal

policy and the system dynamics learned during training on the real hardware system in order to verify

if the agent will be able to adapt to the dynamics of the real system and in non-simulated conditions

such as air friction or with some physical variables which change in time such as mass.

The QUBE-Servo 2 Inverted Pendulum system, shown below, has two encoders to measure the position

of the rotary arm (i.e., the DC motor angle) and the pendulum link and a DC motor at the base of

the rotary arm.
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Figure 4.5: QUBE-Servo 2 Inverted Pendulum

4.2.1 Position control problem

The control of a pendulum has been one of fundamental problems in control field. As a control strategy

to stabilize at the up-right position, it is well known that a linear quadratic technique is effective. The

goal of the implementation of the model-free DDPG algorithm is aiming not only to make an agent

learn its dynamics but also to stabilize it and also to swing up the pendulum in the vertical position.

4.2.2 Create Environment

The environment used to train the agent is a nonlinear dynamic model of the rotational inverted

pendulum QUBE-Servo 2 system and is defined in the Simulink QUBE-Servo 2 Pendulum Model block

provided by MATLAB which contains all the real dynamics equations of the Inverted Pendulum and

its physical parameters of the hardware. The system consist of a motor arm, which is actuated by a

DC servo motor, with a swinging pendulum arm attached to its end. This system is challenging to

control because it is under-actuated, highly non linear and non minimum phase.

The table presented in Figure D.1 shows the physical parameters of the Inverted Pendulum.

The pendulum system was modeled in Simulink using Simscape Electrical and Simscape Multibody

components.

For this system:

• θ ∈ [−π
2

π
2 ] is the motor arm angle and α ∈ [−2π 2π] is the pendulum angle.

• The motor arm angle is 0 [rad] when the arm is oriented horizontal and forward as shown in the

diagram (counterclockwise is positive)

• The pendulum angle is 0 [rad] when the pendulum is oriented vertically downwards (counter-

clockwise is positive)
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• Input of the plant model is a DC voltage signal for the motor. The voltage values range from

-12 to 12 V.

• The pendulum and motor angles and angular velocities are measured by sensors.

In the Simulink model, a change of reference system was applied in order to have a zero rad. value

angle (α = 0[rad]) in vertical equilibrium position in order to treat the problem as regularization

control problem. This technique makes the unstable vertical equilibrium point as a single value (α = 0)

without putting the agent in a position to understand if the direction of rotation is counterclockwise

(ϕ = −π[rad]) or clockwise (α = π[rad]).

4.2.3 Action and Observation signals

For the rotary inverted pendulum there are four continuous observation signals: S ∈ [θ, α, θ̇, α̇]. On

the other side, even if the voltage range applied is in between -12 [V] and 12 [V], the continuous action

set is in between -10 [V] and 10 [V] in order to improve the robustness when applied to the hardware.

Both the observation and action state are normalized between -1 and 1 using the following procedure

and formula of the previous implementation.

4.2.4 Reward signal

The reward signal was designed as follows:

rt+1 = −
(
q11θ

2
t + q22α

2
t + q33θ̇

2
t + q44 α̇2

t + r11u
2
t

)
(4.9)

The agent’s purpose is to maximize the reward function. In other words, the weighted quadratic

function rewards the agent when the rotary arm stays within the 0 radians for both the angles. The

terms concerning both rotational speeds and control input effort are introduced in order to penalize

high oscillations and the control motor voltage does not go too high.

It was found that quadratic-based reward signals are easier to tune and increase the likelihood of

training a successful policy with this system.

4.2.5 Hyperparamers and network architectures

The table presented in Figure D.2 shows the hypermerameters used for training the agent after tuning.

4.2.6 Performances

Once a successful agent is trained, how well the policy balances the pendulum is tested in simulation,

on the Simulink platform using the QUBE-Servo 2 block. Training a reinforcement learning agent is

a lengthy process ranging approximately between 1.5 and 5 hours for the rotary pendulum. Thus,

37



CHAPTER 4. DDPG IMPLEMENTATION USING RL MATLAB TOOLBOX

unlike model-based design, with RL its takes time to validate if the agent can successfully balance the

pendulum and assess its response. It is important to document how changing certain parameters (i.e.,

design variables) affects the response of the system.

The response of the rotary arm and pendulum when it starts at approximately 0 deg from the upright

balance position is shown in the Inverted Pendulum (deg) shown in alphadeg scope in Figure 4.6 and

the corresponding voltage applied to the motor is shown in the Voltage Vm (V) scope in Figure 4.7.

As shown in the responses below, the pendulum is balanced in approximately 2 sec. This time could

be decreased by decreasing the number of maximum steps which will decrease the time available for

the agent to train in a single episode. In this case, as shown in Figure D.2 the maximum number of

steps for each episode was setted to 2000, which means an episode duration of 20 sec:

ept = Ts ∗maxsteps (4.10)

where ept is the episode duration expressed in sec while Ts = 0.01 is the sampling time.

Figure 4.6: Inverted Pendulum Angle (deg)

Figure 4.7: Voltage Vm
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4.2.7 Conclusions

While some improvements can be made, this approach demonstrates that reinforcement learning can

successfully be used for advanced control tasks in a non linear electromechanical system and is realizable

on actual hardware. There have already been a host of examples showing how RL can be used to balance

and swing-up pendulum systems. While using RL for control system applications has already shown

some benefit, it is still in its infancy and will become a more powerful and easy-to-use technique in the

next few years.
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Conclusions

The DRL algorithm achieves fairly high performance in the demonstrated experiments, considering

the general and generic implementation, short training time and little hyperparameter tuning. In this

context a list of tips that have been learned during numerous tests and experiments carried out for

the implementation will be provided in appendix section (see The DRL algorithm displays an impres-

sive flexibility in a variety of control domains. The performance of the agent with a modified reward

function demonstrates the power of using reward functions to design agent behaviour, and the level of

generalization due to dynamic randomization is also notable.

However, there are substantial drawbacks to the DRL paradigm. In the control theory approach, ro-

bustness and stability are important aspects of any controller solution. When dealing with deep neural

network approximators, there are few guarantees to be made in practice. In theory, given infinite

simulation steps, the policy are guaranteed to converge, but this is not realizable when it comes to the

real world. If something goes wrong in real systems, explanations and analysis are usually required,

which can be considerably difficult or even impossible to obtain in black box systems. Even if DRL

methods outperform the classic control theory methods, safety concerns and robustness and stability

outweigh performance in most physical systems.

Sample inefficiency is one of the biggest problems in DRL. The best performing algorithms usually

require millions of environment interactions to find good solutions for complex problems, and few meth-

ods exist for when the sample size is small. This is also a problem for deep learning in general. Purely

data-driven approaches such as DRL might not be the leading solution for real-world applications yet,

and they might never be, but there is no denying that these methods have achieved impressive feats.

The attempt to combine the robustness and stability of control theory with the exciting performance

of machine learning is definitely an interesting research area.
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Chapter 6

Perspectives

This report summarizes half of the period spent in internship at Polytech Nancy where my goal was

to learn the basic concepts and main tools and algorithms of Deep and Reinforcement Learning and

then learn how to implement them in dynamic systems that are more used in traditional control

as a tool. The goal that we set ourselves for the end of the internship is to apply this acquired

knowledge to realize the path-planning of a hexarotor composed of a cascade controller entirely using

the reinforcement learning applied to a hexarotor. The cascade controller will consist of an outer loop

controller with the aims of learning the dynamics present between the inertial reference system and

the body frame, the so-called position control, generating in output the angles yaw, pitch, roll that

will be then fed into the controller / inner loop agent to directly generate the torque of each motor at

a low level to maneuver the hexarotor and bring it to its predetermined destination.
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