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Abstract: Reduction of spaceflight costs calls for development of new technologies that render
rockets reusable. This new requirement and the continuous improvement of rocket engines
require pro-active approach towards the possibility of integrating health monitoring systems
on-board. These health monitoring strategies should also take into consideration the state
of degradation and the remaining useful life prediction. In this paper, an Extended Kalman
Filter is used to estimate the state of health and the dynamics of the degradation, and the
remaining useful life is predicted with respect to failure thresholds pre-set by the user. The
first-order inverse reliability method is employed to assess the quality of the remaining useful
life prediction by quantifying the associated uncertainty. The overall method is validated using
simulation study involving degradation data provided by Centre National d’Etudes Spatiales
(CNES) applied to liquid propulsion rocket engine (LPRE) combustion chamber.
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1. INTRODUCTION

The reuse of liquid propulsion rocket engine (LPRE) has
become increasingly important in order to reduce the
cost as well as wastage of materials (Kawatsu (2019)).
This new requirement and the recent interest to improve
the performance and reduce load, has led to reflections
on the possibilities of considering on-board engine health
monitoring systems. Such monitoring systems should take
into account estimation of health of the motor as well
as prediction of remaining useful life (RUL) (Dai et al.
(2013)).

Therefore, the necessity of an accurate and efficient health
management system has become extremely important in
the context of safety and mission-critical engineering sys-
tems. The objective of health monitoring is to survey
the performance of these systems continuously, perform
diagnostics at the system or subsystem level, perform
prognostics at the component / system level, and support
online decision (Sikorska et al. (2011)). Approaches based
on measurement information of health state are divided
into the following categories :
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• Model-based: An empirical or physical model of the
degradation is used to assess health state. However,
building models is not a simple task as the degra-
dation processes are not generally understood well
(Sikorska et al. (2011));

• Data-driven: These approaches are primarily based
on data and do not require accurate model of system
or degradation process (Tsui et al. (2015));

• Hybrid: These approaches combine the advantages of
the two methods above. The information provided
by the real sensor measurements are merged with
an approximately correct degradation model in an
appropriate manner (Jha et al. (2016a))(Simon et al.
(2014)). This approach has been applied later in this
paper.

Prognostics allows for predicting of future failures and
RUL. Uncertainty evaluation and management are im-
portant aspects of health monitoring due to the presence
of several unknown factors that affect the functioning
of the concerned system. There are two main categories
of methods for uncertainty quantification (Sankararaman
and Goebel (2013)): sampling-based methods and analyt-
ical methods.
In sampling-based methods such as Monte Carlo simu-
lations, a large number of random realizations of RUL



are generated. Monte Carlo sampling (MCS) approximate
the entire probability distribution. These methods require
considerable time for online implementation. Furthermore,
MCS based methods use random samples for uncertainty
quantification, and therefore do not guarantee generation
of exactly same result while using the same algorithm.
This work considers application of the analytical method
Inverse First Order Reliability Method (IFORM) that al-
lows for quantification the RUL uncertainty though gener-
ation of a confidence interval. IFORM enables calculation
of RUL value for a given probability and remains well
suitable for linear or linearized systems under the setting
of linear stochastic Gaussian filter such as Kalman filter
and Extended Kalman filter (EKF). Moreover, IFORM is
computation efficient and remains feasable for implemen-
tation in real time. Another advantage of this approach
is that it can produce deterministic results i.e. the same
PDF (Probability Distribution Function) can be produced
every time the algorithm is exacuted leading to repeatable
results and thus facilitating verification and validation
protocols in the aerospace domain (Sankararaman et al.
(2014)).

This paper extends the previous work (Chelouati et al.
(2021)) with formulation of RUL prediction problem as
a hybrid prognostics procedure and presents IFORM as
a suitable method for quantification of uncertainty on
RUL predictions. The novelty lies in quantification of
uncertainty and application of IFORM in the context of
LRPE. To that end, Section 2 presents a brief description
of the liquid propellant engine adopted in a previous study
(Chelouati et al. (2021)). Section 3 presents the estimation
of the State Of Health (SoH) and its evolution in the
future by using an appropriate degradation model and
a linear stochastic filter (Bressel et al. (2016a)). Section
4 presents the RUL prediction algorithm wherein predic-
tions generated at each instant of time using futuristic
projections as well as an appropriate analytical expression.
Section 5 describes the IFORM algorithm, which is used
for uncertainty quantification. In section 6, methods are
applied on dataset generated by the dynamic simulator
(CARINS) developed by the CNES, and finally, section 7
presents the conclusions.

2. LIQUID PROPULSION ROCKET ENGINE

2.1 System description

A fictive Liquid oxygen oxidizer - Liquid hydrogen fuel
(LOX-LH2) engine of 10 kN thrust with a chamber pro-
pellant supply via two electro-pumps is chosen as a prac-
tical application case for RUL estimation methods. The
chamber is equipped with a hydrogen regenerative circuit
(RC) and a nozzle allowing to deliver the required thrust
of 10 kN. Two isolation valves VCO and VCH are located
on the propellants feed lines. They enable to admit the
propellants into the chamber. The operating range of
thrust is between 50 and 110 % of the nominal thrust.
To provide data that can be used in the RUL prediction
algorithms, typical engine life profiles have been simulated
corresponding to two types of engines in open loop:

• Qualification (or production support) engines

• Flight engines

Qualification engines have more diverse usage profiles that
cover multiple operating points, while flight engines have
only two operating points. The RUL of the latter will be
studied in this work . All the data were generated from the
dynamic simulator system realized with the tool CARINS
by the CNES (Chelouati et al. (2021)).

2.2 Degradation description and modeling

Strong thermomechanical solicitation on the internal wall
of the chamber causes several cracks responsible for a di-
rect leakage of cold hydrogen into the chamber by creating
a cooling film on the internal wall (Hötte et al. (2020)).
This presence of film cooling leads to a low heat flux
extracted by the CR and an inhomogeneity of mixture
ratio (MR) in the chamber, which can be observed macro-
scopically with a loss of combustion efficiency, leading to
an overall degradation of the engine performance. In a
previous study, it was identified that among the measured
process data, the characteristic velocity efficiency ηC∗

would be the most appropriate candidate to be the state of
health indicator (SoH). Once cracking appears, ηC∗ starts
to decrease.

This work mainly focuses on the degradation dynamics as
the global system model is not available. The measurement
data under degradation is considered to analyse the degra-
dation dynamics. Degradation processes exhibit certain
prominent characteristics such as monoticity with time
and stochasticity. As such, various mathematical functions
can be considered as viable candidate for modelling of
degradation dynamics (Jha et al. (2016b)). In this paper,
the evolution of health indicator is assumed to be mod-
eled according to the following exponential mathematical
formulation:

f(t) = eαt + f0 (1)
where f0 is the degradation value at time t = 0 and α is the
degradation progression parameter (unknown parameter).
In order to estimate the state of health f(t) and the
degradation evolution α, a hybrid approach which is the
EKF is applied in the following section.

3. SOH ESTIMATION

3.1 Problem formulation

Under linear and additive Gaussian conditions, the EKF
can be used to evaluate the state estimation that mini-
mizes the mean square error. The dynamics of the EKF are
generated by consecutive cycles of prediction and filtering
(Chelouati et al. (2021)).

In this context of state and parameter estimation, the
system is described in discrete time using Euler order 1:

f(k) = g(f(k − 1), α(k − 1), k) + wf (k) (2)

where f(.) is the unknown SoH, g(., ., k) is the non-linear
transition function allowing to obtain the current state
through the previous states and wf is the additive Gaus-
sian process noise associated to f(.) with variance σf . In
comparison to the global system dynamics, the degrada-
tion progression rate is considered slow and modelled as a
random walk process:

α(k) = α(k − 1) + wα(k) (3)



where wα is an additive noise associated to α with variance
σα. Then, the discrete equations (2) and (3) can be written
in the linearized state form as:

x(k + 1) = A(k)x(k) + w(k) (4)

where x(k) =

[
f(k)
α(k)

]
, A(k) =

[
1 + α(k).Ts −f0.Ts

0 1

]
is

the Jacobian matrix with Ts as the sampling time and

w(k) =

[
wf (k)
wα(k)

]
.

The observations of the state of this system are done
according to the following observation equation:

z(k) = h(x(k), k) + v(k) (5)

where z(k) is the measurement at instant k, v(k) is the
additive observation noise with variance σv, and h(.) is
the observation function. The noises w(k) and v(k) are
assumed to be Gaussian with zero mean and variances Q

and R respectively with Q =

[
σ2
f 0
0 σ2

α

]
and R = σ2

v .

3.2 SoH estimation based on EKF

The EKF (Durrant-Whyte (2006)) handles the nonlinear-
ity of system and measurements and allow to estimate
the unknown parameters. The discrete EKF algorithm
(Algorithm 1) comprises three steps which are presented
as a pseudo-algorithm with E(.) as the mean operator and
V ar(.) as the variance operator.

Algorithm 1 SoH Estimation using EKF

Input : x̂(0|0), P (0|0), z(0), Q, R
Output : x̂(k) , P (k|k)

Initialization
x̂(0|0) = E(xt0) , P (0|0) = V ar(xt0)

Prediction
x̂(k|k − 1) = A(k)x̂(k − 1|k − 1)
P (k|k − 1) = A(k)P (k − 1|k − 1)AT (k) +Q

Correction
x̂(k|k) = x̂(k|k − 1) +W (k)[z(k)− h(x̂(k|k − 1))]
P (k|k) = P (k|k − 1)−W (k)S(k)WT (k)

with W (k) = P (k|k − 1)∇hTx (k)S−1(k) , ∇hx(k) = ∂h(k)
∂x(k)

and S(k) = ∇hx(k)P (k|k − 1)∇hTx (k) +R
x̂(k)← x̂(k|k)

4. RUL ESTIMATION

Algorithm 1 computes at each discrete time the SoH
and the degradation evolution which are used for RUL
prediction. As shown in Fig. 1, the difference between
the time of prediction tpred and the predicted end of life
tfailure is defined by the remaining useful life (Saxena et al.
(2008)):

RUL(k) = tfailure − tpred (6)

RUL prediction can be done by two methods presented in
the following sections.
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Fig. 1. RUL illustration

4.1 Using p-step ahead prediction of RUL

The previous algorithm provides the estimated state of

health f̂(k) and its evolution α̂(k) at every discrete time
k. This information serves as an input of the prediction
algorithm detailed below (Algorithm 2). At each time k,
the future SoH is predicted until it passes a threshold
ffailure predefined by the user. The projection in the
future is done using the estimated degradation model
according to the following recurrence :

f̂(k + p)← [1 + α̂(k).Ts]f̂(k + p− 1)− f0.Ts (7)

This operation is repeated each time a new estimate of
SoH is generated by Algorithm 1. The RUL obtained by
Algorithm 2 is noted by RULproj .

Algorithm 2 p-step ahead prediction of RUL

Input : f̂(k), α̂(k), ffailure
Output : RULproj(k)

Initialization : p← 0

while f̂(k + p) < ffailure do

f̂(k + p)← [1 + α̂(k).Ts]f̂(k + p− 1)− f0.Ts
p← p+ Ts

end while
RULproj(k)← p

4.2 Using analytic expression

Under the assumptions of linearity, the prediction of RUL
can be done analytically by expliciting the expression of
RUL.

f̂(k + 1) = (1 + α̂(k).Ts)f̂(k)− f0.Ts.α̂(k)

By successive recurrence until time k + p with f0 = 0 :

f̂(k + p) = (1 + α̂(k).Ts)
pf̂(k)

where p is the number of time steps until threshold is
reached.
For f̂(k + p) = ffailure, RULcal(k) is given by :

RULcal(k) = p.Ts =
ln(ffailure)− ln(f̂(k))

ln(1 + α̂(k).Ts)
.Ts (8)

The function RULcal takes as input the estimated values

of f̂ and α̂ at time k. This expression will be used in the
section bellow for uncertainty quantification.



5. RUL UNCERTAINTY QUANTIFICATION BASED
ON IFORM

5.1 RUL uncertainty

It is not only necessary to build a robust algorithm for
diagnosis and prognosis but it is also important to quantify
the degree of confidence in the prognostic results. Perform-
ing such uncertainty quantification online is necessary to
aid decision-making process.

The predicted RUL at time k depends of several factors
(Sankararaman et al. (2014)). LetX = [X1, X2, ...Xi, ...Xn]
be the vector of all such factors, where n is the number
of uncertain quantities influencing the prediction of RUL.
Then, RUL can be expressed in terms of any non-linear
function R as:

RUL = R(X) (9)

The quantities in X are considered uncertain, and the
objective is to calculate their combined effect on the pre-
diction of RUL. This task can be achived by computing the
probability density function or the cumulative distribution
function of RUL.

5.2 Inverse First-Order Reliability Method (IFORM)

The IFORM algorithm necessitates a limit state function
R(X) that represents the boundary between the safe
and the failure zone in the random variable Standard
Normalized Space as shown in Fig. 2 where U1 and U2

correspond to the random state variables X1 and X2 in the
standard normal space, and u1 and u2 are the realizations
of U1 and U2 (Bressel et al. (2016b)), (Sankararaman et al.
(2014)).

MPP

β

Standard

Normal

Space
Region 1

Region 2

R(X) < r 

R(X) > r 
u1

u2

R(X) - r = 0

Linear Approxima�on

Fig. 2. Limit state function and MPP (Sankararaman et al.
(2014))

Therefore, it is important to find a linear function that
resembles the contour R(x) − r = 0. The linearization
point must be on this demarcation curve; in other words,
it must satisfy R(x)− r = 0. However, there exist infinite
points that satisfy this condition. Each of these infinite
points has a likelihood of occurrence, and the one with
the maximum likelihood of occurrence is adopted as a
linearization point and it’s called MPP (Most Probable
Point). The distance between MPP and the origin is
exactly equal to β (reliability index) and since :

P (R ≤ r) ≈ Φ(−β) (10)

where Φ(.) represents the standard normal cumulative
distribution function, the problem of computing CDF is
reduced to identify the MPP on the limit state curve
using the iterative procedure Algorithm 3 where µi =

[f̂(k), α̂(k)] and σi = [P (k|k, 1), P (k|k, 2)].

Algorithm 3 IFORM for RUL estimation

Input : µi, σi, ffailure, β
Output : RULIFORM

Initialization :
j ← 0
xji ← [xj1, x

j
2] . Initial guess of MPP

while |R(xji )− r| ≤ δ1 and |xj+1
i − xji | ≤ δ2 do

. Tolerance limits δ1 and δ2
ui ← (xi − µi)/σi
ai ← ∂R

∂ui
= ∂R

∂xi

∂xi

∂ui

uj+1 ← a
|a|β

xj+1
i ← ui.σi + µi

end while
RULIFORM ← R(xj+1

i )

This iterative procedure described usually converges within
4 or 5 iterations. One of the practical challenges of IFORM
method is that it requires an explicit expression of RUL i.e.
an explicit function RUL = R(X) which could be difficult
in the case of complex systems.

6. SIMULATION RESULTS AND DISCUSSION

As noted in section 2.2, ηC∗ provided by the LPRE
simulator is considered the indicator of state of health
SoH. In the following, a change of scale was done to have
a degradation evolution consistent with the expectations
of used methods :

fmes(k) =
ηC∗max − ηC∗(k)

ηC∗max − ηC∗min
(11)

with ηC∗max and ηC∗min are respectively the maximum and
the minimum value of ηC∗. f(.) represents the state of
health indicator and therefore it is denoted as SoH.

The first step in the EKF algorithm is the initialization of
the states and the adjustment of the covariance matrices
to make the filter work properly. Since z(.) represents the
measured value of SoH (z(k) = fmes(k)), the average of
the first measurements can be taken as the initial value of
state :
f̂(0|0) = 1

500

∑500
i=1 z(i) ≈ 0 and α̂(0|0) = 0

In practice, process and measurement noise Q and R
are difficult to obtain. The steady-state performance of
the filter is determined by the values of the state and
observation noise covariances which are chosen as the filter
inputs. There are some general principles to be considered
when tuning as referred in Durrant-Whyte (2006). In this
study, Q and R are set as :

Q =

[
σ2
f 0
0 σ2

α

]
, R = σ2

v

with σf = 3.10−5, σα = 10−6, σv = 8.10−3

The measured and estimated SoH for about 10 launches
and landing are presented in Fig. 3a. A strong correlation



(a) SoH estimation based on EKF
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Fig. 3. Estimation of SoH
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Fig. 4. Estimation of parameter α

is observed between the two curves, which implies that the
EKF is able to estimate the degradation of the indicator of
SoH since the estimated values converge to the measured
values. Fig. 3b illustrates the variation of the operating
points of flight engine. At t ≈ {125s, 1000s, 1850s}, the
system functions with 60% of the nominal thrust for about
80s and this appears via the peaks in the measured and
the estimated curves of SoH. Fig. 4 shows the estimated α̂,
a fast evolution of the slope occurs after the appearance of
cracking and tends toward a maximum. The importance of
α̂ is to provide information on the speed of degradation. A
tendency analysis applied on α̂ can be developed to detect
the occurrence of faults and to activate the RUL prediction
process.

Assuming that the degradation is only influenced by one
degradation mode (operating condition), the RULreal al-
lows to validate the RUL predictions and is calculated by
subtracting the prediction time from the failure time. The
RULs generated by projection (RULproj of Algorithm 2)
and by explicit expression (RULcal of Eq.(8)) are plotted
and compared with theoretical RULs (RULreal) and its
±10% bounds in order to check the robustness of the
predictions. Note that the RUL prediction procedure is
launched at the time of appearance of cracking to avoid
computational complexities at the beginning of the degra-
dation. Fig. 5 shows that the RULproj is merged with the
RULcal. In fact, RULcal is computed to apply IFORM
method for uncertainty quantification. Furthermore, the
RULs are overestimated for the first 1000 s, this is ex-
plained by the time the algorithm takes to converge to
the RULreal curve. Once the estimated RUL converges to
the RULreal, it remains in the ±10% range. For t ≈ 7500s,
the SoH exceeds the predetermined threshold and the RUL
becomes zero.
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Fig. 5. RUL estimation

The IFORM method is directly applied to calculate the
value of RUL corresponding to P (R ≤ r) = [0.3, 0.5, 0.95]
as presented in Fig. 6. Here, RULIFORMP=0.3

,
RULIFORMP=0.95

and RULIFORMP=0.5
correspond re-

spectively to 30% , 95% and 50% of the RUL prob-
ability distribution. At any time t, the two curves
RULIFORMP=0.3

and RULIFORMP=0.95
constitute 65% of

the RUL distribution by generating the 30% and 95%
bounds over the distribution. Moreover, RULIFORMP=0.5

is plotted to indicate the median of the RUL. The bounds
and the median are calculated until tfailure = 7500s, when
the failure looks imminent. According to Fig. 6, it is seen
that the uncertainty of RUL distribution is initially large
(high variance of RUL PDF) which progressively decreases
until the failure is reached. The latter indicates decrease
in the inherent uncertainty of RUL PDF which is desirable
for accurate predictions.

The RUL uncertainty at initial stages is large owing to
large prediction time horizon calling for incorporation of
uncertainty associated with future states over longer peri-
ods of time, and initial estimation of inaccurate α with
large variance. However, at a later time stages, as the
estimation quality improves with in-coming measurements
(sensor information) the inherent uncertainty of the RUL
decreases.
Fig. 7 shows the computation time of IFORM algorithm
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that converges approximately after a time of order 10−5s
thorugh out the degradation process indicating a good pos-
sibility of online implementation of this approach online as
well as within a closed loop.
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7. CONCLUSION

This paper employs a hybrid approach for RUL predictions
wherein knowledge brought in by an approximately correct
degradation model is combined with sensor information
to estimate the state of health of the LRPE as well as
prediction of RUL. The methodology used is based on the
Extended Kalman Filter (EKF) that leads to estimation
the current health state and its evolution rate and con-
sequently, allows for fast and accurate estimation of the
RUL. The inherent uncertainty associated with RUL pre-
dictions of LRPE is quantified by generation of confidence
bounds using IFORM approach that allows for calculation
of RUL values corresponding to the specified user based
probability levels. The procedure can be useful for online
decision making. The obtained results demonstrate the
efficacy of the presented approach for prediction of RUL of
combustion chamber of LRPE for engines operating under
nominal conditions. Future works will consider synthesiz-
ing a control law that adjust the performance of the system
in order to minimize the risk of failure and to extend RUL.
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